• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • Tagged with
  • 20
  • 13
  • 10
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Faltenmodelle und Verformungsverteilung in Deckenstrukturen am Beispiel der Morcles-Decke (Helvetikum der Westschweiz) /

Huggenberger, Peter. January 1985 (has links)
Diss. ETH Zürich, 1985. / Literaturverz. S. 188-192.
2

Untersuchung initialer Schritte der Peptidfaltung mit Ultrakurzzeitspektroskopie

Satzger, Helmut. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--München.
3

P-adische Rankin-Selberg-Faltungen

Januszewski, Fabian January 2009 (has links)
Zugl.: Karlsruhe, Univ., Diss., 2009 / Hergestellt on demand
4

Regularization of an autoconvolution problem occurring in measurements of ultra-short laser pulses

Gerth, Daniel 17 July 2012 (has links) (PDF)
Introducing a new method for measureing ultra-short laser pulses, the research group "Solid State Light Sources" of the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, encountered a new type of autoconvolution problem. The so called SD-SPIDER method aims for the reconstruction of the real valued phase of a complex valued laser pulse from noisy measurements. The measurements are also complex valued and additionally influenced by a device-related kernel function. Although the autoconvolution equation has been examined intensively in the context of inverse problems, results for complex valued functions occurring as solutions and right-hand sides of the autoconvolution equation and for nontrivial kernels were missing. The thesis is a first step to bridge this gap. In the first chapter, the physical background is explained and especially the autoconvolution effect is pointed out. From this, the mathematical model is derived, leading to the final autoconvolution equation. Analytical results are given in the second chapter. It follows the numerical treatment of the problem in chapter three. A regularization approach is presented and tested with artificial data. In particular, a new parameter choice rule making use of a specific property of the SD-SPIDER method is proposed and numerically verified. / Bei der Entwicklung einer neuen Methode zur Messung ultra-kurzer Laserpulse stieß die Forschungsgruppe "Festkörper-Lichtquellen" des Max-Born-Institutes für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin, auf ein neuartiges Selbstfaltungsproblem. Die so genannte SD-SPIDER-Methode dient der Rekonstruktion der reellen Phase eines komplexwertigen Laserpulses mit Hilfe fehlerbehafteter Messungen. Die Messwerte sind ebenfalls komplexwertig und zusätzlich beeinflusst von einer durch das Messprinzip erzeugten Kernfunktion. Obwohl Selbstfaltungsgleichungen intensiv im Kontext Inverser Probleme untersucht wurden, fehlen Resultate für komplexwertige Lösungen und rechte Seiten ebenso wie für nichttriviale Kernfunktionen. Die Diplomarbeit stellt einen ersten Schritt dar, diese Lücke zu schließen. Im ersten Kapitel wird der physikalische Hintergrund erläutert und insbesondere der Selbstfaltungseffekt erklärt. Davon ausgehend wird das mathematische Modell aufgestellt. Kapitel zwei befasst sich mit der Analysis der Gleichung. Es folgt die numerische Behandlung des Problems in Kapitel drei. Eine Regularisierungsmethode wird vorgestellt und an künstlichen Daten getestet. Insbesondere wird eine neue Regel zur Wahl des Regularisierungsparameters vorgeschlagen und numerisch bestätigt, welche auf einer speziellen Eigenschaft des SD-SPIDER Verfahrens beruht.
5

Folding and boudinage under constriction and plane strain results from analogue modelling

Enama Mengong, Mathurin Unknown Date (has links)
Univ., Diss., 2006--Frankfurt (Main)
6

Two new distinct mechanisms drive epithelial folding in Drosophila wing imaginal discs

Sui, Liyuan 16 April 2018 (has links) (PDF)
Epithelial folding is an important morphogenetic process that is essential in transforming simple sheets of cells into complex three-dimensional tissues and organs during animal development (Davidson, 2012). Epithelial folding has been shown to rely on constriction forces generated by the apical actomyosin network (Martin et al., 2009; Roh-Johnson et al., 2012; Sawyer et al., 2010). However, the contributions of mechanical forces acting along lateral and basal cell surfaces to epithelial folding remain poorly understood. Here we combine live imaging with force measurements of epithelial mechanics to analyze the formation of two epithelial folds in the Drosophila larval wing imaginal disc. We show that these two neighboring folds form via two distinct mechanisms. These two folds are driven either by decrease of basal tension or increase of lateral tension, none of them depends on apical constriction. In the first fold, a local decrease in extracellular matrix (ECM) density in prefold cells results in a reduction of mechanical tension on the basal cell surface, leading to basal expansion and fold formation. Consistent with that, a local reduction of ECM by overexpression of Matrix metalloproteinase II is sufficient to induce ectopic folding. In the second fold a different mechanism is at place. Here basal tension is not different with neighboring cells, but pulsed dynamic F-actin accumulations along the lateral interface of prefold cells lead to increased lateral tension, which drives cell shortening along the apical-basal axis and fold formation. In this thesis I described two distinct mechanisms driving epithelial folding, both basal decrease and lateral increase in tension can generate similar morphological changes and promote epithelial folding in the Drosophila wing discs. / Die Faltung von Epithelien ist ein wichtiger morphogenetischer Prozess, der die Entstehung komplexer, dreidimensionaler Gewebe und Organe aus einfachen Zellschichten ermöglicht (Davidson, 2012). Es ist bekannt, dass Kräfte erzeugt durch das apikale Aktomyosin-Netzwerk wichtig sind für die erfolgreiche Faltung von Epithelien (Martin et al., 2009; Roh-Johnson et al., 2012; Sawyer et al., 2010). Die Rolle von mechanischen Kräften, die entlang der lateralen und basalen Seite wirken, ist jedoch kaum verstanden. Wir verbinden Lebendmikroskopie mit der Messung von mechanischen Eigenschaften, um die Entstehung von 2 Epithelfalten in den Imaginalscheiben von Drosophila zu verstehen. Wir können dadurch zeigen, dass die beiden Falten durch unterschiedliche Mechanismen entstehen. Sie entstehen entweder durch eine Verringerung der Spannung auf der basalen Seite oder durch eine Erhöhung der Spannung auf der lateralen Seite, aber keine von beiden entsteht durch zusammenziehende Kräfte auf der apikalen Seite. Die erste Falte entsteht durch eine lokale Verringerung der extrazellulären Matrix in den Vorläuferzellen, was zu einer Reduktion der Spannung auf der basalen Seite und zur Ausbildung der Falte führt. Die zweite Falte wird durch einen anderen Mechanismus ausgebildet. Hier ist nicht die Spannung auf der basalen Seite reduziert sondern dynamische Anreicherungen von F-Aktin auf der lateralen Seite resultieren in einer erhöhten lateralen Spannung, die zu einer Verkürzung der Zellen und damit zur Ausbildung einer Falte führt. In meiner Arbeit zeige ich 2 neue Mechanismen zur Entstehung von Epithelfalten auf, durch Absenken der Spannung auf der basalen oder Erhöhen auf der lateralen Seite.
7

Exploring the Mechanical Stability and Visco-elasticity of Membrane Proteins by Single-Molecule Force Measurements / Untersuchung der mechanischen Stabilität und Viskoelastizität von Membranproteinen mit Einzelmolekül-Kraftmessungen

Janovjak, Harald 18 December 2005 (has links) (PDF)
Relatively little is known about the folding and stability of membrane proteins. Conventional thermal or chemical unfolding techniques probe the average behavior of large numbers of molecules and thus cannot resolve co-existing minor and major unfolding pathways and intermediates. Here, I applied single-molecule force measurements based on an atomic force microscope (AFM) to characterize the stability of the membrane protein bacteriorhodopsin (BR). In these mechanical unfolding experiments, an external pulling force played the role of the denaturant and lead to unfolding of the three-dimensional structure of individual proteins. It was found that single BRs unfold step-wise in a well-defined sequence of stable intermediates and in different unfolding pathways. Although single [alpha]-helices were sufficiently stable to unfold in individual steps they also exhibited certain probabilities to unfold in pairs. These observations support the "two-stage" and the "helical-hairpin" model of membrane protein folding. Dynamic force measurements showed that [alpha]-helices and helical hairpins are relatively rigid structures, which are stabilized by narrow energy barriers and have stabilities between 100-10?000 seconds. These forced unfolding experiments were complemented with the development of new force measurement techniques. It is demonstrated that hydrodynamic effects need to be considered to obtain more complete kinetic pictures of single molecules. In addition, two force spectroscopy approaches to measure the complex visco-elastic response of single molecules are presented and applied to BR. These experiments revealed that the unfolding patterns of single proteins are dominated by purely elastic polypeptide extension and determined the dissipative interactions associated with the unfolding of single [alpha]-helices. In addition, it was found that kinks result in a reduced unfolding cooperativity of [alpha]-helices.
8

Two new distinct mechanisms drive epithelial folding in Drosophila wing imaginal discs

Sui, Liyuan 22 March 2018 (has links)
Epithelial folding is an important morphogenetic process that is essential in transforming simple sheets of cells into complex three-dimensional tissues and organs during animal development (Davidson, 2012). Epithelial folding has been shown to rely on constriction forces generated by the apical actomyosin network (Martin et al., 2009; Roh-Johnson et al., 2012; Sawyer et al., 2010). However, the contributions of mechanical forces acting along lateral and basal cell surfaces to epithelial folding remain poorly understood. Here we combine live imaging with force measurements of epithelial mechanics to analyze the formation of two epithelial folds in the Drosophila larval wing imaginal disc. We show that these two neighboring folds form via two distinct mechanisms. These two folds are driven either by decrease of basal tension or increase of lateral tension, none of them depends on apical constriction. In the first fold, a local decrease in extracellular matrix (ECM) density in prefold cells results in a reduction of mechanical tension on the basal cell surface, leading to basal expansion and fold formation. Consistent with that, a local reduction of ECM by overexpression of Matrix metalloproteinase II is sufficient to induce ectopic folding. In the second fold a different mechanism is at place. Here basal tension is not different with neighboring cells, but pulsed dynamic F-actin accumulations along the lateral interface of prefold cells lead to increased lateral tension, which drives cell shortening along the apical-basal axis and fold formation. In this thesis I described two distinct mechanisms driving epithelial folding, both basal decrease and lateral increase in tension can generate similar morphological changes and promote epithelial folding in the Drosophila wing discs. / Die Faltung von Epithelien ist ein wichtiger morphogenetischer Prozess, der die Entstehung komplexer, dreidimensionaler Gewebe und Organe aus einfachen Zellschichten ermöglicht (Davidson, 2012). Es ist bekannt, dass Kräfte erzeugt durch das apikale Aktomyosin-Netzwerk wichtig sind für die erfolgreiche Faltung von Epithelien (Martin et al., 2009; Roh-Johnson et al., 2012; Sawyer et al., 2010). Die Rolle von mechanischen Kräften, die entlang der lateralen und basalen Seite wirken, ist jedoch kaum verstanden. Wir verbinden Lebendmikroskopie mit der Messung von mechanischen Eigenschaften, um die Entstehung von 2 Epithelfalten in den Imaginalscheiben von Drosophila zu verstehen. Wir können dadurch zeigen, dass die beiden Falten durch unterschiedliche Mechanismen entstehen. Sie entstehen entweder durch eine Verringerung der Spannung auf der basalen Seite oder durch eine Erhöhung der Spannung auf der lateralen Seite, aber keine von beiden entsteht durch zusammenziehende Kräfte auf der apikalen Seite. Die erste Falte entsteht durch eine lokale Verringerung der extrazellulären Matrix in den Vorläuferzellen, was zu einer Reduktion der Spannung auf der basalen Seite und zur Ausbildung der Falte führt. Die zweite Falte wird durch einen anderen Mechanismus ausgebildet. Hier ist nicht die Spannung auf der basalen Seite reduziert sondern dynamische Anreicherungen von F-Aktin auf der lateralen Seite resultieren in einer erhöhten lateralen Spannung, die zu einer Verkürzung der Zellen und damit zur Ausbildung einer Falte führt. In meiner Arbeit zeige ich 2 neue Mechanismen zur Entstehung von Epithelfalten auf, durch Absenken der Spannung auf der basalen oder Erhöhen auf der lateralen Seite.
9

Asymmetrische Ausblicke: Ruhige Ausschnitte versus dynamische Form

Esslinger, Alexander, Evers, Tanja 17 November 2023 (has links)
Der Entwurf beschäftigt sich mit der Transformation einer Fläche zur Form. Durch das Stilmittel der Faltung werden zweidimensionale Flächen in ein dreidimensionales Objekt überführt. Dieser konstruktive Wandel, durch den aktiven Eingriff des Menschen, stellt ein positives Zukunftsmodell da. Es entsteht ein horizontal ausgerichteter Raum, der eine dynamische Formensprache in der Außenwirkung aufweist. Im spannenden Gegensatz dazu stehen die ruhig ausgerichteten, konzentrierten Innenansichten mit Blick auf den Bildausschnitt – die Natur.
10

Funktion des Wind-Proteins in Drosophila melanogaster bei Faltung und/ oder Transport des sekretorischen Proteins Pipe / Function of Wind in Drosophila melanogaster in folding of the secretory protein Pipe

Barnewitz, Kathrin 01 July 2004 (has links)
No description available.

Page generated in 0.0365 seconds