Spelling suggestions: "subject:"farmakologi"" "subject:"farmakologie""
151 |
Population Pharmacokinetics of Linezolid for Optimization of the Treatment for Multidrug Resistant TuberculosisHansen, Viktor January 2022 (has links)
Tuberculosis is one the leading causes of death globally and was before the COVID-19 pandemic the leading cause of death from a single infectious agent. Developing active tuberculosis is life threatening and therefore is the rise of drug-resistant tuberculosis alarming as this risk causing current treatments to become ineffective. Linezolid is a promising drug for treatment of drug-resistant pulmonary tuberculosis, but the effect of linezolid treatment for pulmonary tuberculosis subjects is still not understood well enough and the World Health Organization has requested this knowledge gap to be filled. In this project we support the closing of this knowledge gap by describing the pharmacokinetics of linezolid for treatment of pulmonary tuberculosis using data collected from a phase two clinical trial in a South African population. This was done by creating a pop-PK model and resulted in the PK of linezolid in pulmonary tuberculosis patients from South Africa was best described using a one-compartment model, with first-order absorption process preceded by a series of transit compartments and saturable elimination. However, the diagnostics of the model still show that there are room for improvements and future work is necessary to further optimize the model.
|
152 |
Digital Image Analysis using Qupath to determine immune cell content in formalin-fixed, paraffin-embedded murine neuroblastoma tumorsBergström Holm, Anton January 2023 (has links)
Neuroblastoma (NB), an extracranical solid tumor, is among the most prevalent cancers affecting children, particularly those under the age of five. High-risk NB presents a survival rate just below 50 %. Angiogenesis, a crucial process in NB, is induced by various pro-angiogenic factors. The compound SU11657 has demonstrated efficacy in inhibiting angiogenesis and tumor progression. Tumor-associated macrophages (TAMs) and Tumor-associated neutrophils (TANs) contribute to tumor progression, including angiogenesis, and their heightened levels within the tumor has been correlated with a poor clinical prognosis. This study aimed to quantify TANs and TAMs in NB tumors through manual assessment and the development of an automated digital image analysis. Unfortunately, due to time constraints, TAMs were not subjected to detailed analysis. Immunohistochemistry using antibody ab2557 and DAB staining was employed, and cell content analysis was performed through both manual assessment and digital analysis using QuPath. Successful differentiation of TANs was achieved with ab2557. The manual assessment observed a decrease of TANs between the control and treatment groups in UB7 and UB8, with UB7 being statistically significant (p<0.05), based on a two-tailed t-test. QuPath analysis noted increases in the percentages of TANs between the control and treatment groups, with the t-tests being non-significant (p>0.05). While digital image analysis is gaining importance in clinical applications, imperfections persist, underscoring the imperative for further research and development to accurately distinguish biomarkers.
|
153 |
Management of chemical risk through occupational exposure limitsSchenk, Linda January 2009 (has links)
Occupational Exposure Limits (OELs) are used as an important regulatory instrument to protect workers’ health from adverse effects of chemical exposures. The OELs mirror the outcome of the risk assessment and risk management performed by the standard setting actor. In paper I the OELs established by 18 different organisations or national regulatory agencies from the industrialised world were compared. The comparison concerned: (1) what chemicals have been selected and (2) the average level of exposure limits for all chemicals. In paper II the OELs established by 7 different national regulatory agencies of EU member states are compared to those of the European Commission (EC). In addition to the same comparisons as performed in the first study a comparison level was introduced (3) the similarity between the OELs of these EU member states and the OELs recommended by the EC. List of OELs were collected through the web-pages of, and e-mail communication with the standard-setting agencies. The selection of agencies was determined by availability of the lists. The database of paper I contains OELs for a total of 1341 substances; of these 25 substances have OELs from all 18 organisations while more than one third of the substances are only regulated by one organisation alone. In paper II this database was narrowed down to the European perspective. The average level of OELs differs substantially between organisations; the US OSHA exposure limits are (on average) nearly 40 % higher than those of Poland. Also within Europe there was a nearly as large difference. The average level of lists tends to decrease over time, although there are exceptions to this. The similarity index in paper II indicates that the exposure limits of EU member states are converging towards the European Commission’s recommended OELs. These two studies also showed that OELs for the same substance can vary significantly between different standard-setters. The work presented in paper III identifies steps in the risk assessment that could account for these differences. Substances for which the level of OELs vary by a factor of 100 or more were identified and their documentation sought for further scrutiny. Differences in the identification of the critical effect could explain the different level of the OELs for half of the substances. The results reported in paper III also confirm the tendency of older OELs generally being higher. Furthermore, several OELs were more than 30 years old and were based on out-dated knowledge. But the age of the data review could not account for all the differences in data selection, only one fifth of the documents referred to all available key studies. Also the evaluation of the key studies varied significantly.
|
154 |
Analysis of Epigenetic Changes Induced by Exposure to Endocrine Disrupting Chemicals in a Human Cell ModelJastrzebska, Teresa January 2024 (has links)
No description available.
|
155 |
Systemic and local regulation of experimental arthritis by IFN-α, dendritic cells and uridineChenna Narendra, Sudeep January 2017 (has links)
In this thesis, we have studied the immunological processes of joint inflammation that may be targets for future treatment of patients with arthritis. We focus on the immune-modulating properties of interferon-α (IFN-α) and uridine in experimental arthritis. The nucleoside uridine, which is regarded a safe treatment has anti-inflammatory properties notably by inhibiting tumor necrosis factor (TNF) release. Because the inflamed synovium in rheumatoid arthritis (RA) is characterised by pathogenic TNF-production, uridine could potentially be away to ameliorate arthritis. Systemic administration of uridine had no effect on antigeninduced arthritis (AIA), which is a T-cell dependent model where animals are immunized twice (sensitization) with bovine serum albumin (mBSA), before local triggering of arthritis by intra-articular antigen (mBSA) re-challenge. In contrast, intra-articular administration of uridine clearly down modulated development of AIA in a dose dependent manner and inhibited the expression of synovial adhesion molecules, influx of inflammatory leukocytes and synovial expression of TNF and interleukin 6, but did not affect systemic levels of proinflammatory cytokines or antigen-specific T-cell responses. Local administration of uridine may thus be a viable therapeutic option for treatment of arthritis in the future. Viral double-stranded deoxyribonucleic acid (dsRNA), a common nucleic acid found in most viruses, can be found in the joints of RA patients and local deposition of such viral dsRNA induces arthritis by activating IFN-α. Here we show that arthritis induced by dsRNA can be mediated by IFN-producing dendritic cells in the joint and this may thus explain why viral infections are sometimes associated with arthritis. Earlier, to study the effect of dsRNA and IFN-α in an arthritis model, that like RA, is dependent on adaptive immunity, dsRNA and IFN-α were administered individually during the development of AIA. Both molecules clearly protected against AIA in a type I IFN receptor-dependent manner but were only effective if administered in the sensitization phase of AIA. Here we show that the anti-inflammatory effect of IFN-α is critically dependent on signalling via transforming growth factor β (TGF-β) and the enzymatic activity of indoleamine 2,3 dioxygenase 1 (IDO). The IDO enzyme is produced by plasmacytoid DC and this cell type was critically required both during antigen sensitization and in the arthritis phase of AIA for the protective effect of IFN-α against AIA. In contrast, TGF-β and the enzymatic activity of IDO were only required during sensitization, which indicate that they are involved in initial steps of tolerogenic antigen sensitization. In this scenario, IFN- α first activates the enzymatic activity of IDO in pDC, which converts Tryptophan to Kynurenine, which thereafter activates TGF-β. Common for IDO-expressing pDC, Kyn and TGF-β is their ability to induce development of regulatory T cells (Tregs). We found that Tregs were crucial for IFN-α-mediated protection against AIA, but only in the arthritis phase. In line with this, adoptive transfer of Tregs isolated from IFN-α treated mice to recipient animals in the arthritis phase clearly protected against AIA. The numbers of Tregs were not significantly altered by IFN-α but IFN-α increased the suppressive capacity of Tregs against antigen-induced proliferation. This enhanced suppressive activity of Tregs in the arthritis phase was dependent on the earlier activated enzyme IDO1 during the sensitization phase of AIA. Thus, presence of IFN-α at the time of antigen sensitization activates the enzymatic activity of IDO, which generates Tregs with enhanced suppressive capacity that upon antigen re-challenge prevents inflammation. We have thus identified one example of how immune tolerance can be developed, that may be a future way to combat autoimmunity.
|
156 |
Studies on anti-leukemic terpenoids from medicinal mushrooms and marine sponges with ChemGPS-NP-based targets investigation of lead compoundsLai, Kuei-Hung January 2017 (has links)
This thesis investigates the anti-leukemic activity of terpenoids isolated from medicinal mushrooms and marine sponges, as well as their possible targets and mechanisms of action. In the first section, we focused on studying the triterpenoidal components of three triterpenoid-enriched medicinal mushrooms Antrodia cinnamomea, Ganoderma lucidum, and Poria cocos, which have been used in folk medicine for centuries and also developed into several contemporary marketed products. We isolated the major and characteristic triterpenoids from these mushrooms, together with six new lanostanoids (II-1–II-6). The anti-leukemic activity of the isolates was evaluated in vitro using MTT proliferative assay and seven of them exhibited potential anti-leukemic effect. The active lead compounds were further subjected to computational analyses utilizing the ChemGPS-NP tool. We established a database for the anti-leukemic relevant chemical space of triterpenoids isolated from these three medicinal mushrooms, which could be used as a reference database for further research on anti-leukemic triterpenoids. Our results indicated that the anti-leukemic effect of the active lead compounds was mediated not only through topoisomerases inhibition but also through inhibiting DNA polymerases. The second and third sections focused on isolation of anti-leukemic sesterterpenoids from sponges. The investigation of Carteriospongia sp. led to the isolation of two new scalarane-type sesterterpenoids (III-1 and III-2) and one known tetraprenyltoluquinol-related metabolite (III-3). All isolates exhibit an apoptotic mechanism of action against Molt 4 cells, found to be mediated through the disruption of the mitochondrial membrane potential (MMP) and inhibition of topoisomerase IIα expression. Detailed investigation of the apoptotic mechanism of action using molecular docking analysis revealed that compound III-1 might target Hsp90 protein. The apoptotic-inducing effect of III-3 was supported by in vivo experiment by suppressing the volume of xenograft tumor growth (47.58%) compared with the control. In the final section of this thesis we studied manoalide and its derivatives, sesterterpenoids isolated from the sponge Luffariella sp.. Manoalide has been studied as a potential anti-inflammatory agent for the last thirty years with more than 200 publications and 40 patents. However, the configurations at positions 24 and 25 were never revealed. In the current study, ten manoalide-type sesterterpenoids (IV-1–IV-10) were isolated from Luffariella sp. and their stereoisomers at positions 24 and 25 were identified and separated for the first time. The configuration at positions 24 and 25 showed to have a significant effect on the anti-leukemic activity of manoalide derivatives, with the 24R,25S-isomer exhibiting the most potent anti-leukemic activity. The apoptotic mechanism of action of compound IV-7 against Molt 4 cells was investigated, and the compound was found to trigger MMP disruption and intracellular reactive oxygen species (ROS) generation. Compound IV-7 also inhibited activity against both human topoisomerases, I and II. The in vivo experiment further supported the anti-leukemic effect of IV-7 with a 66.11% tumor volume suppression compared to the control.
|
157 |
In vitro cellular models for neurotoxicity studies : neurons derived from P19 cellsPopova, Dina January 2017 (has links)
Humans are exposed to a variety of chemicals including environmental pollutants, cosmetics, food preservatives and drugs. Some of these substances might be harmful to the human body. Traditional toxicological and behavioural investigations performed in animal models are not suitable for the screening of a large number of compounds for potential toxic effects. There is a need for simple and robust in vitro cellular models that allow high-throughput toxicity testing of chemicals, as well as investigation of specific mechanisms of cytotoxicity. The overall aim of the thesis has been to evaluate neuronally differentiated mouse embryonal carcinoma P19 cells (P19 neurons) as a model for such testing. The model has been compared to other cellular models used for neurotoxicity assessment: retinoic acid-differentiated human neuroblastoma SH-SY5Y cells and nerve growth factor-treated rat pheochromocytoma PC12 cells. The chemicals assessed in the studies included the neurotoxicants methylmercury, okadaic acid and acrylamide, the drug of abuse MDMA (“ecstasy”) and a group of piperazine derivatives known as “party pills”. Effects of the chemicals on cell survival, neurite outgrowth and mitochondrial function have been assessed. In Paper I, we describe a fluorescence-based microplate method to detect chemical-induced effects on neurite outgrowth in P19 neurons immunostained against the neuron-specific cytoskeletal protein βIII-tubulin. In Paper II, we show that P19 neurons are more sensitive than differentiated SH-SY5Y and PC12 cells for detection of cytotoxic effects of methylmercury, okadaic acid and acrylamide. Additionally, in P19 neurons and differentiated SH-SY5Y cells, we could demonstrate that toxicity of methylmercury was attenuated by the antioxidant glutathione. In Paper III, we show a time- and temperature-dependent toxicity produced by MDMA in P19 neurons. The mechanisms of MDMA toxicity did not involve inhibition of the serotonin re-uptake transporter or monoamine oxidase, stimulation of 5-HT2A receptors, oxidative stress or loss of mitochondrial membrane potential. In Paper IV, the piperazine derivatives are evaluated for cytotoxicity in P19 neurons and differentiated SH-SY5Y cells. The most toxic compound in both cell models was TFMPP. In P19 neurons, the mechanism of action of TFMPP included loss of mitochondrial membrane potential. In conclusion, P19 neurons are a robust cellular model that may be useful in conjunction with other models for the assessment of chemical-induced neurotoxicity.
|
158 |
Spontaneous reporting of adverse drug reactions : Possibilities and limitationsBäckström, Martin January 2005 (has links)
Adverse drug reactions (ADRs) constitute a major problem in society and in drug therapy. They are a common cause of short-term hospitalization, prolonged hospitalization and death. Spontaneous reporting of ADRs remains one the most effective methods for detecting new and serious drug reactions. In Sweden physicians are legally required to report fatal and serious ADRs. We know from previous studies that there is a substantial degree of under-reporting of ADRs also in Sweden. Attitudes towards reporting of ADRs among physicians in the northern region of Sweden were investigated using a questionnaire. The most important factor for not reporting ADRs among physicians and general practioners in our region was that the reaction was considered to be well known. However, their attitudes could also allow for a considerable rate of under-reporting. The effect on the reporting rate when nurses received instruction and were encouraged to report ADRs was studied. During a 12-month study period, 18 ADR reports with a total number of 22 ADRs were sent in by the nurses participating in the study to test nurses as reporters of ADRs. Using the Swedish ADR database, we calculated the risk of agranulocytosis associated with the use of metamizole by using consumption data from the case records of scrutinized patients’ and stored prescriptions. Over the period from 1996 to 1999, ten cases of agranulocytosis during treatment with metamizole were reported to SADRAC. Metamizole was prescribed to 666 (19%) inpatients during the 3-month study period and 112 prescriptions were identified at the participating pharmacies. Thirty-eight percent of them indicated treatment for more than 15 days. Making certain assumptions, the calculated risk of agranulocytosis was one out of every 31 000 inpatients and one out of every 1400 outpatients. The degree of under-reporting of serious ADRs was studied in five hospitals. More than 1300 case records were scrutinized and among these we found 107 cases that according to current rules for ADR reporting, should have been reported. Only fifteen of these were found in the SADRAC database, indicating a under-reporting rate of 86%.The effect on the reporting rate of ADRs was studied in an intervention study in which a small economical inducement was given to those who reported ADRs. The effect of a small economical stimulation to increase the reporting rate was studied. From the intervention area we received 62 suspected ADRs compared with 50 from the control area. The increase in the number of reports was 59% compared with an unchanged reporting rate from the control area. The physicians in northern Sweden have a relatively good knowledge of the existing rules for ADR reporting. Nurses could play an important role in detecting and reporting suspected ADRs. The risk of developing an metamizole induced agranulocytosis is considerably increased if metamizole is given to patients for a longer time than recommended. The rate of reported ADRs is very low, also for serious and fatal reactions. An increase in the reporting rate of suspected ADRs was observed during study period.
|
159 |
Uridine, 4-thiouridine and isomaltitol in an asthma-like model : Anti-inflammatory and modulating effectsEvaldsson, Chamilly January 2009 (has links)
In chronic inflammatory diseases like asthma or rheumatoid arthritis, erroneous and exaggerated accumulation of leukocytes in a tissue inadvertently causes the body harm. Several efficient anti-inflammatory drugs exist, for example corticosteroids and cyclo-oxygenase inhibitors. However, these drugs have potent and diverse effects and often act by inhibiting events subsequent to initiation of the inflammatory response, leading to more or less severe side-effects, especially when used in high doses for long periods of time. For this reason, strategies aimed at early inhibition of recruitment and activation of leukocytes have been suggested as safer and more specific approaches to reduce inflammation. Leukocyte adhesion to activated endothelium is a prerequisite to the following activation and extravasation, and takes place in the initial phase of inflammation. By using a model that allows leukocytes to adhere to tumour necrosis factor (TNF)-activated endothelial cells, thus mimicking aspects of an inflammatory reaction, we found that uridine, 4-thiouridine and isomaltitol could all reduce adhesion. This suggested that they may have anti-inflammatory potential. We therefore tried the three substances in a Sephadex-induced lung inflammation model and found that uridine and 4-thiouridine have several anti-inflammatory effects, such as being able to reduce leukocyte accumulation, decrease TNF protein levels and partly inhibit the oedema induced by Sephadex. Isomaltitol turned out to have immunomodulating, rather than anti-inflammatory, effects, which could be of interest in diseases where inadequate inflammatory responses are a problem.
|
160 |
Endogenous Opioids and Voluntary Ethanol Drinking : Consequences of Postnatal Environmental Influences in RatsGustafsson, Lisa January 2007 (has links)
Genetic and environmental factors interact to determine the individual vulnerability to develop ethanol dependence. The neurobiological mechanisms underlying these processes are not fully understood. Endogenous opioid peptides have been suggested to contribute. Brain opioids mediate ethanol reward and reinforcement via actions on the mesocorticolimbic dopamine system. This thesis focuses on environmental factors and investigates the impact of the early-life environment on adult voluntary ethanol consumption. The possible involvement of opioid peptides in environmental influences on adult ethanol consumption was examined using an experimental animal model. Maternal separation with short 15 min separations (MS15) was used to simulate a safe environment whereas prolonged 360 min separations (MS360) simulated an unsafe environment. Control rats were subjected to normal animal facility rearing (AFR). The separations were performed daily from postnatal day 1 to 21. Long-term ethanol consumption was registered using a two-bottle or a four-bottle free-choice paradigm in adult male and female ethanol-preferring AA (Alko, Alcohol), ethanol-avoiding ANA (Alko, Non-Alcohol) and non-preferring Wistar rats. In addition, analyses of immunoreactive Met-enkephalin-Arg6Phe7 (MEAP), dynorphin B (DYNB) and nociceptin/orphanin FQ (N/OFQ) peptide levels were performed after maternal separation as well as after voluntary ethanol drinking. In male rats, MS15 was related to lower ethanol consumption and these rats preferred lower concentrations, whereas MS360 was associated with an increased risk for higher consumption and/or preference for higher ethanol concentrations. Differences in basal opioid levels were observed in MS15 and MS360 rats. Furthermore, the ethanol-induced effects on opioid peptides in adults were dependent on the early environment. Female rats, on the other hand, were less affected or unaffected by maternal separation both in terms of ethanol consumption and neurobiological effects. Taken together, voluntary ethanol drinking, preference for low or high ethanol concentrations and opioid peptides in brain areas related to reward and reinforcement, motivation and stress were influenced by postnatal maternal separation in a sex dependent manner. The early environment thus had profound impact on the adult brain and the individual propensity for high ethanol drinking. A deranged endogenous opioid system contributed to these effects and may act as a mediator for long-term environmental influence on voluntary ethanol consumption.
|
Page generated in 0.0449 seconds