• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 8
  • 7
  • 4
  • 1
  • Tagged with
  • 64
  • 12
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Next-generation biofuels: the supply chain approach to estimating potential land-use change

Okwo, Adaora 29 March 2012 (has links)
Biofuels, including ethanol and biodiesel, are important components of energy policy in the U.S. and abroad. There is a long history of ethanol production from corn (maize) in the United States and from sugarcane in Brazil. However, there has been a push for greater use of next-generation biofuels (including those derived from cellulosic feedstocks) to mitigate many of the environmental and potential food system impacts of large scale biofuel production. Farmer willingness to grow biomass crops and ensuring adequate feedstock supply are two important challenges impeding large scale commercialization of next-generation biofuels. The costs of transporting bulky, low density biomass will be substantial. Consequently, in the near term, the economic success of next-generation biofuels will hinge on the supply of locally available biomass. As such, agricultural contracts are expected to be an important tool in overcoming the feedstock acquisition challenge. The broad objective of this study is to understand the effect of contracting for non-food energy crops (cellulosic feedstocks) on the agricultural landscape via the displacement of commodity (food) crops on productive cropland. We develop an analytical framework for evaluating the design and use of two different contract structures for securing cellulosic feedstock in a representative supply chain with a biorefinery and farmer. We study the dynamics of scarce land and indirect competition from commodity market production on a biorefinery's equilibrium pricing strategy and the resultant supply of cellulosic biomass. And we consider its sensitivity to various production characteristics and market conditions. We develop a method for quantifying the biorefinery's tradeoff between profit margins and competing for land in order to secure the requisite feedstock for biofuel production. And we characterize the loss of efficiency in the decentralized system, relative to a vertically integrated system, that can be attributed to the need to compete for the farmer's scarce land resource versus that which results from the biorefinery's desire to make a profit. Then we extend our framework to consider multi-year contracts for biomass production and evaluate the importance of land quality, yield variability and contract structure on a farmer's willingness to accept a contract to produce cellulosic feedstock as well as the resulting impact on the agricultural landscape through the displacement of commodity crops. Using switchgrass production in Tennessee as a case study, we develop feedstock supply curves for each contract structure considered and evaluate the conditions and contract prices at which land devoted to various field crops would be displaced by switchgrass based on field trials of switchgrass production in Tennessee and recent USDA data on crop prices and production.
42

Utilization of switchgrass as a biofuel feedstock

Hu, Zhoujian 05 1900 (has links)
Secondary generation biofuels such as cellulosic biofuels rely on large portions of cellulosic bioresources, which may include forests, perennial grasses, wood and agricultural residues. Switchgrass is one promising feedstock for biofuel production. In the present study, thesis work focused on the chemical and structural profiles and hydrothermal pretreatment of switchgrass. Four populations of switchgrass were investigated for their chemical properties among populations and morphological portions, including the compositions of lignin and carbohydrates, extractives content, higher heating value (HHV), and syringyl:guaiacyl (S:G) ratio. The results demonstrate similar chemical profiles and lignin structure among the four populations of switchgrass. Morphological fractions of switchgrass including leaves, internodes, and nodes differ significantly in chemical profiles and S:G ratios of lignin. The structure of isolated cellulose from switchgrass SW9 is similar between leaves and internodes. The structure of isolated lignin from leaves and internodes of switchgrass SW9 differs in S:G ratio and molecular weight. Hydrothermal pretreatment of leaves and internodes indicates that a similar chemical composition and chemical structure for pretreated leaves and internodes. The degree of polymerization (DP) for cellulose of the pretreated internodes is 23.4% greater than that of the pretreated leaves. The accessibility of pretreated leaves measured by Simons' Staining technique is greater than that of pretreated internodes. Pretreated leaves have a 32.5-33.8% greater cellulose-to-glucose conversion yield than do pretreated internodes.
43

Life Cycle Assessment of Asphalt Roads : Decision Support at the Project Level

Butt, Ali Azhar January 2014 (has links)
Transport infrastructures such as roads are assets for the society as they not only ensure mobility but also strengthen society’s economy. Considerable amount of energy and materials, that include bitumen, aggregates and asphalt, are required to build and maintain roads. Improper utilization of energy and/or use of materials may lead to more waste and higher costs. The impact on the environment cannot be neglected either. Life cycle assessment (LCA) as a method can be used to assess the environmental impacts of a road system over its entire life time. Studying the life cycle perspective of roads can help us improve the technology in order to achieve a system that has a lower impact on the environment. There are number of LCA tools available. However, implementation of such tools is still unseen in real road projects. This clearly indicates that there are gaps which are needed to be filled in order to bring these tools into practice. An open road LCA framework was developed for the asphalt roads in order to help in decision support at the late project planning stage such as that related to the green procurement. The framework takes into account the construction, maintenance and end of life phases and focuses on energy and greenhouse gas (GHG) emissions. Threshold values for the production of some additives were also determined to show how LCA tools can help material suppliers to improve the road materials production processes and the road authorities to set limits on the use of different materials based on the environmental criteria. Additive consideration and feedstock energy in road LCAs were also identified as gaps that were looked in detail. The attributes that are important to consider in an asphalt road LCA that seeks to serve as a decision support in a procurement situation are described. A brief literature review was carried out that focused on project LCAs, and specifically those considering pavements, as this level is assumed to be appropriate for questions relevant in a procurement situation. Following the different standards; road LCAs developed all over the world have generated a lot of knowledge and the studies have been different from each other such as in terms of goals and system boundaries. Hence, the patterns observed have been very different from study to study. It was also difficult to assess the decision support level for which the various LCA frameworks or tools were developed. It is important to define system boundaries based on where in the system the decision support is needed. For LCA to be useful for decision support in a procurement situation, it is important to have a clear understanding of the attributes that constitute the life cycle phases and how data of high quality for them are obtained. The level of consistency and transparency of road LCAs becomes increasingly important in pre-procurement and procurement situations. The key attributes used in a road LCA should mirror the material properties used in a pavement design and therefore be closely linked to the performance of the road in its life cycle. From the different case studies, it was found that asphalt production and transportation of materials are usually highest in the energy and GHG emissions chain. It is highly favorable to have the quarry site, the asphalt plant and the construction site not far from each other and to use the electricity that has been produced in an efficient way. Based on the laboratory test results, it is shown that the effects of chemical warm mix asphalt additives (WMAA)s must be evaluated on a case by case basis since WMAA interaction with the aggregate surface mineralogy appears to play a significant role and thus affects its long term structural behavior. Using the material properties obtained from the Superpave indirect tensile test (IDT) results, pavement thickness design was done in which Arlanda aggregate based asphalt mixtures resulted in thinner pavements as compared to Skärlunda aggregate based asphalt mixtures for the same design life period. Energy (feedstock and expended) saving and reduction in GHG emissions were also seen with addition of WMAA, for both aggregate type cases, based on the data used. Importantly, the results presented illustrate the importance of a systems based LCA approach for evaluating the sustainability for different design and construction options. In this context, having actual pavement material properties as the key attributes in the LCA enables a pavement focused assessment of environmental costs associated with different design options. / <p>QC 20141118</p>
44

Trade-off analysis of forest ecosystem services – A modelling approach

Pang, Xi January 2017 (has links)
Forest is a resource that is increasingly utilized for multiple purposes. The balance between energy demands and the long-term capacity of ecosystems to support biodiversity and other ecosystem services is crucial. The aim of this project was to increase the knowledge on and to develop methods and tools for trade-offs and synergies analysis among forest ecosystem services based on different forest management policies. Paper I provides an overview of existing models for integrated energy-environment assessment. A literature review was conducted on assessment models and their ability to integrate energy with environmental aspects. Missing environmental aspects concern land use, landscapes and biodiversity. In Paper II a modelling framework was set up to link a landscape simulator with a habitat network model for integrated assessment of bioenergy feedstock and biodiversity related impacts in Kronoberg County. In Paper III we continued with the same management scenarios, while the analysis was expanded to five ecosystem services by developing the Landscape simulation and Ecological Assessment (LEcA) tool: industrial wood, bioenergy, forest carbon stock, recreation areas and habitat networks. In Paper IV we present two heuristic methods for spatial optimization – simulated annealing (SA) and genetic algorithm (GA) – to find optimal solutions for allocating harvest activities, in order to minimize the impacts on habitat networks. In Paper V, as response to the findings in Paper I, we linked the energy model MESSAGE with our LEcA tool for forest bioenergy demand assessment while applying environmental and transport restrictions, in a study of Lithuania. We found trade-offs between industrial wood production and bioenergy on one side, and recreation values, biodiversity, and to some extent carbon storage on the other side. The LEcA tool integrated forest simulation and management with assessment of ecosystem services, which is promising for integrated sustainability assessment of forest management policies. / <p>QC 20171023</p>
45

MECHANICAL CHARACTERIZATION OF Ti-6AL-4V REPAIRED BY DIRECTED ENERGY DEPOSITION IN COMPARISON WITH THE CONVENTIONAL Ti-6AL-4V

Shrestha, Sulochana 29 April 2021 (has links)
No description available.
46

Synthesis and characterization of sustainable and biobased copolymers from lignocellulosic

Saenz, Guery 11 May 2022 (has links) (PDF)
Natural compounds have been the primary resource used to produce polymeric materials by humankind since the mid-1900s. Yet, progress in bio-based polymers from renewable feedstock has encountered some obstacles, mainly due to the low prices of petroleum-based monomers, compared to natural and sustainable materials. However, most commodity plastics are non-degradable materials, and solid plastic waste accumulation adversely affects the environment. As the world population is growing and demanding chemicals, energy, and plastics materials, polymer research is focusing on synthesizing bio-based and degradable polymers. Thus, biomass, a sustainable and inexpensive feedstock, is highly appropriate for designing alternative thermoplastics that are degradable to reduce the current environmental issues. In this dissertation, three different approaches were used to afford alternative thermoplastics to petroleum‐based commodities: bio-based poly(ether-amide)s, random aromatic copolyesters, and copoly(acetal triazole)s. In our first approach, two new lignin‐derived poly(ether‐amide)s (PEA)s were prepared. Their thermal properties showed high degradation temperature (Td) ranging from 330 °C to 380 °C, and glass transition temperature (Tg) between 100 °C and 120 °C. The chemical degradation studies revealed that the PEAs were degradable in 4 M H2SO4, HNO3, and TFA in 3 days. The second polymer group synthesized were semicrystalline bio-based aromatic copolyesters with tunable thermal properties. The thermal analysis of these copolyesters revealed high Td (413 °C to 446 °C) and Tg and Tm ranging from –36 °C to 67 °C and 60 °C to 267 °C, respectively. Their crystallization behavior showed a dependence on the comonomer composition, exhibiting a pseudo-eutectic region. Finally, furfural- and benzaldehyde-based copoly(acetal triazole)s (Td range 280–340 °C) were prepared by click polymerization at room temperature. Preliminary results showed that furfural-based copoly(acetal triazole)s were susceptible to hydrolytic degradation under neutral conditions after only 8 days at 40 °C. Overall, degradable and bio-based polymers were successfully synthesized as a potential thermoplastic alternative for packaging applications.
47

Techno-economic Analysis of Butanol Production through Acetone-Butanol-Ethanol Fermentation

Baral, Nawa Raj January 2016 (has links)
No description available.
48

The Coupling of the Carbon and Nitrogen Cycles in Agriculture: Crop Ecosystem Oxidative Ratio and the Effects of Fertilization on Biofuel Feedstock Quality

January 2011 (has links)
Agriculture significantly impacts the global carbon (C) and nitrogen (N) cycles through land use change, soil C loss, greenhouse gas emissions, and increased fixed-N availability. Agriculture occupies a third of the terrestrial biosphere, making understanding its impacts on the C and N cycles critical. I used a novel analytical tool (solid-state 13 C nuclear magnetic resonance spectroscopy) to characterize properties of the C and N cycles in agriculture, including biochemical responses to N fertilizer and agriculture gas fluxes. A central component of the C cycle is the rapid exchange of carbon dioxide (CO 2 ) and oxygen (O 2 ) between the terrestrial biosphere and the atmosphere. Gas flux O 2 /CO 2 ratios (oxidative ratio-OR) vary depending on ecosystem type, plant species, and nutrient status. It is necessary to constrain OR to assess the uptake of anthropogenic CO 2 by the terrestrial biosphere and ocean. I measured the OR of the top three crops in the United States (soybean, corn, and wheat) and found significant variability. I additionally tested the effect of N fertilizer application on corn ecosystem OR and on the difference between respiration and photosynthesis OR and observed no detectable changes. Conversely, soil organic matter OR is different from gas flux OR values, likely due to the influence of past land use and fractionation of OR during decomposition. I also analyzed how anthropogenic inputs to the N cycle (N fertilizer) and sustainable agriculture practices (cover crop) change plant biochemistry. This work has immediate implications for the biofuel industry. A central challenge to cropping for cellulosic ethanol feedstocks is the potential environmental damage from increased fertilizer use. I showed that yield increases in response to fertilization are not uniform across biochemical classes (carbohydrate, protein, lipid, lignin) or tissues (leaf and stem, grain, reproductive support). Heavy fertilizer application yields minimal grain benefits and almost no benefits in residue carbohydrates, while degrading the cellulosic ethanol feedstock quality and soil C sequestration capacity. Further cost analysis of these results showed that it is not cost-effective for farmers to apply high levels of N fertilizer, whether the crop is intended for food or fuel.
49

Using algae to capture CO₂ and as a feedstock for biofuel

Archbold, Brad. January 2007 (has links) (PDF)
Thesis (M.E.S.)--The Evergreen State College, 2007. / Title from title screen (viewed 1/24/2008). Includes bibliographical references.
50

Avaliação de misturas injetáveis aplicadas à fabricação de micro componente para pinças de biópsias por moldagem de pós por injeção

Tavares, André Carvalho January 2014 (has links)
A moldagem de pós por injeção (MPI) foi empregada neste trabalho para a fabricação de micro componentes de uma pinça de biópsia, através do desenvolvimento de misturas injetáveis. Utilizou-se a liga de aço inoxidável AISI 316L, liga reconhecidamente biocompatível, para obtenção dos micro componentes. Determinando a quantidade de 39% em volume para fração orgânica das quatro formulações de misturas injetáveis produzidas neste trabalho. Os polímeros estruturais empregados foram o PP, o PEBDL, o PEAD e o PMMA. Como material auxiliar de fluxo foi utilizada a parafina e para agente surfactante, o ácido esteárico. O desenvolvimento do sistema de extração química do polímero auxiliar de fluxo com solvente e posterior extração térmica do ligante em forno convencional e em um reator a plasma foram testados, ainda se empregou estes para testes em sinterização a temperaturas 1200°C, 1250°C e 1300°C. A extração química foi realizada com hexano atingindo 2,41% em massa de material extraído das amostras, após seis horas em um sistema aquecido entre 60°C e 70°C e uma atmosfera de vácuo. As amostras foram testadas química, física, mecânica e eletroquimicamente. Obteve-se os melhores resultados em termos de densificação de 7,05 g/cm³ para as amostras extraídas a plasma e sinterizadas a 1300 °C à vácuo em forno tubular. Isso significa uma densificação de 88,96% comparada a densidade do material comercial cuja a densidade é 7,93 g/cm³. As microdurezas encontradas nas amostras sinterizadas a 1300 °C em um forno convencional obtiveram valores de 208HV se mostrando maiores do que os 165HV obtido de um material maciço fabricado pelo extrusão e comercialmente vendido. Encontrou-se a dureza de 55HRB nas amostras processadas a 1300 °C, devido a presença de poros em componentes sinterizados. Nos componentes maciços foram medidos a dureza de 88HRB que foi maior que os resultados das amostras sinterizadas. As análises metalográficas mostraram um tamanho de grão variando entre, 30 e 50μm, se comparado ao tamanho de partícula médio do D90 de foi de 8,59 μm, se estima que este aumento foi entorno de três vezes e meia. Os testes químicos revelaram que a extração térmica em reatores a plasma melhoram significativamente os níveis de C, N, H e S quando comparados ao processo de extração térmica em forno convencional. A redução dos níveis de carbono residual, resultaram em diminuição do carboneto de cromo nas amostras, provocando uma menor corrosão. As amostras sinterizadas a 1200 °C a plasma apresentaram os melhores resultados de corrosão. / The powders injection molding (PIM) was used in this research, with objective to manufacture micro component, for application in biopsy forceps being developed injectable mixtures . It was used the powder stainless steel AISI 316L alloy, material biocompatible, to obtain the micro components. Through tests was determining the amount optimal volume in 39 % for the organic fraction of the four formulations of injectable mixtures produced in this research. The structural polymers used were PP , LLDPE , HDPE and PMMA . The paraffin was used as auxiliary material flow, the surfactant agent employed that was stearic acid . The development of chemical debiding and the thermal extraction for binder system, was used the conventional furnace and in a plasma reactor were tested also be employed for these tests sintering temperature 1200 ° C , 1250 °C and 1300 °C. Chemical extraction was performed with hexane achieving 2.41 % by extracted mass of sample material, after six hours in a heated system between 60 °C and 70 °C and a vacuum atmosphere. The samples were tested analysis by chemical , physical , mechanical and electrochemical.If it obtained the best results in terms of densification of 7.05g/cm ³ for plasma samples extracted and sintering at 1300 °C in vacuum tube furnace . This means densification of 88.96 % compared to the density of commercial material whose density is 7.93 g/cm ³ . The microhardness found in the samples sintered at 1300°C in a conventional furnace obtained 208HV microhardness showing larger than the commercial 165HV. Found that the HRB hardness of 55 in the samples processed at 1300 °C, due to the presence of pores in sintered parts. In the extruded components were measured hardness of 88HRB which was higher than the results of the sintered samples. The metallographic analysis showing a grain size ranging between 30 and 50μm , compared to the average particle size D90 was 8,59 microns is estimated that this increase was around three and half times . The chemical tests revealed that the thermal plasma extraction reactor significantly improve the levels of C, N , H and S compared to the process heat extraction in a conventional furnace . The residual carbon levels significantly improved, which helps to avoid the formation of chromium carbides , which aumnetou corrosion resistance . The best results in terms of corrosion were found for the samples sintered at 1200 ° C the plasma.

Page generated in 0.0248 seconds