Spelling suggestions: "subject:"feldiagnos"" "subject:"feldiagnoser""
1 |
Feldiagnostisering: sex läkares upplevelserOlofsson De-Millo, Nils January 2020 (has links)
Diagnosprocessen är en av de mest väsentliga delarna inom läkaryrket. En feldiagnostisering kan innebära förödande konsekvenser. Forskningen menar att några av orsakerna bakom feldiagnostisering kan bottna i kognitiv partiskhet och erfarenhet. Forskningen betonar vikten att genom bättre självinsikt om sin kognitiva förmåga och noggrannare rutiner så kan feldiagnostisering minimeras. Syftet med denna studie var att undersöka läkares hantering av feldiagnostisering och vilka faktorer de anser kan påverka feldiagnostiseringar. Sex läkare deltog i studien. En tematisk analys tillsammans med meningskoncentrering användes för att bearbeta och analysera data. Resultatet visar att faktorer som kan påverka feldiagnostisering var ovisshet, som exempelvis svårfattliga symtom och en tidskrävande diagnosprocess. Resultaten visar vidare att läkares hantering för att undvika feldiagnostisering var av största vikt i diagnosprocessen, där konsultation och erfarenhet var två hanteringsmetoder för att minimera feldiagnostisering. Faktorerna bakom feldiagnostisering är många och kan vara svåra att upptäcka. Genom ökad förståelse och en bättre insyn på människors beslutsfattande, så kan feldiagnostisering identifieras snabbare, elimineras och förhindra vårdskada.
|
2 |
Feldiagnos för RM12 baserad på identifierade modeller / Fault Diagnosis of RM12 based on identified modelsViborg, Andreas January 2004 (has links)
<p>The jetengines of today are growing in complexity. Reliability for aircraft engines are of extreme importance, mainly due to safety reasons but also economical ones. This master thesis deals with faultdiagnosis in the turbine section of RM12, the engine used in Saab/BAe's Gripen. Three different faults which can occur in the turbine section was studied. These faults are: clogged fuel nozzle, hole in outlet guide vane and sensor fault. An analysis of the behaviour of the engine with these faults present was made. Based on this analysis an existing simulation model of RM12 was modified, so that these faults could be simulated. For the purpose of fault diagnosis two models were developed for two different engine parameters, one linear state space model and a neural network. These two models are then used to isolate the faults. The linear state space model is used to estimate the temperature right behind the engine turbines. This is a state space model with two states. This model estimates the temperature well at higher throttle levels, but has a temperature discrepancy of almost 100 K at lower throttle levels, the temperature right behind the turbines varies between 300 and 1200 K. A neural network was estimated to detect a decrease in turbine efficiency which is a phenomena which occurs when one or several of the engine's eighteen fuel nozzles are clogged. The neural network was able to detect this fault at some points. The diagnosis algorithm developed, based on the models mentioned above, is able to detect faults at most operating points, but fails to isolate the present fault at some points.</p>
|
3 |
Feldiagnos för RM12 baserad på identifierade modeller / Fault Diagnosis of RM12 based on identified modelsViborg, Andreas January 2004 (has links)
The jetengines of today are growing in complexity. Reliability for aircraft engines are of extreme importance, mainly due to safety reasons but also economical ones. This master thesis deals with faultdiagnosis in the turbine section of RM12, the engine used in Saab/BAe's Gripen. Three different faults which can occur in the turbine section was studied. These faults are: clogged fuel nozzle, hole in outlet guide vane and sensor fault. An analysis of the behaviour of the engine with these faults present was made. Based on this analysis an existing simulation model of RM12 was modified, so that these faults could be simulated. For the purpose of fault diagnosis two models were developed for two different engine parameters, one linear state space model and a neural network. These two models are then used to isolate the faults. The linear state space model is used to estimate the temperature right behind the engine turbines. This is a state space model with two states. This model estimates the temperature well at higher throttle levels, but has a temperature discrepancy of almost 100 K at lower throttle levels, the temperature right behind the turbines varies between 300 and 1200 K. A neural network was estimated to detect a decrease in turbine efficiency which is a phenomena which occurs when one or several of the engine's eighteen fuel nozzles are clogged. The neural network was able to detect this fault at some points. The diagnosis algorithm developed, based on the models mentioned above, is able to detect faults at most operating points, but fails to isolate the present fault at some points.
|
4 |
Supervised Failure Diagnosis of Clustered Logs from Microservice Tests / Övervakad feldiagnos av klustrade loggar från tester på mikrotjänsterStrömdahl, Amanda January 2023 (has links)
Pinpointing the source of a software failure based on log files can be a time consuming process. Automated log analysis tools are meant to streamline such processes, and can be used for tasks like failure diagnosis. This thesis evaluates three supervised models for failure diagnosis of clustered log data. The goal of the thesis is to compare the performance of the models on industry data, as a way to investigate whether the chosen ML techniques are suitable in the context of automated log analysis. A Random Forest, an SVM and an MLP are generated from a dataset of 194 failed executions of tests on microservices, that each resulted in a large collection of logs. The models are tuned with random search and compared in terms of precision, recall, F1-score, hold-out accuracy and 5-fold cross-validation accuracy. The hold-out accuracy is calculated as a mean from 50 hold-out data splits, and the cross-validation accuracy is computed separately from a single set of folds. The results show that the Random Forest scores highest in terms of mean hold-out accuracy (90%), compared to the SVM (86%) and the Neural Network (85%). The mean cross-validation accuracy is the highest for the SVM (95%), closely followed by the Random Forest (94%), and lastly the Neural Network (85%). The precision, recall and F1-score are stable and consistent with the hold-out results, although the precision results are slightly higher than the other two measures. According to this evaluation, the Random Forest has the overall highest performance on the dataset when considering the hold-out- and cross-validation accuracies, and also the fact that it has the lowest complexity and thus the shortest training time, compared to the other considered solutions. All in all, the results of the thesis demonstrate that supervised learning is a promising approach to automatize log analysis. / Att identifiera orsaken till en misslyckad mjukvaruexekvering utifrån logg-filer kan vara en tidskrävande process. Verktyg för automatiserad logg-analysis är tänkta att effektivisera sådana processer, och kan bland annat användas för feldiagnos. Denna avhandling tillhandahåller tre övervakade modeller för feldiagnos av klustrad logg-data. Målet med avhandlingen är att jämföra modellernas prestanda på data från näringslivet, i syfte att utforska huruvida de valda maskininlärningsteknikerna är lämpliga för automatiserad logg-analys. En Random Forest, en SVM och en MLP genereras utifrån ett dataset bestående av 194 misslyckade exekveringar av tester på mikrotjänster, där varje exekvering resulterade i en stor uppsättning loggar. Modellerna finjusteras med hjälp av slumpmässig sökning och jämförs via precision, träffsäkerhet, F-poäng, noggrannhet och 5-faldig korsvalidering. Noggrannheten beräknas som medelvärdet av 50 datauppdelningar, och korsvalideringen tas fram separat från en enstaka uppsättning vikningar. Resultaten visar att Random Forest har högst medelvärde i noggrannhet (90%), jämfört med SVM (86%) och Neurala Nätverket (85%). Medelvärdet i korsvalidering är högst för SVM (95%), tätt följt av Random Forest (94%), och till sist, Neurala Nätverket (85%). Precisionen, träffsäkerheten och F-poängen är stabila och i enlighet med noggrannheten, även om precisionen är något högre än de andra två måtten. Enligt den här analysen har Random Forest överlag högst prestanda på datasetet, med hänsyn till noggrannheten och korsvalideringen, samt faktumet att denna modell har lägst komplexitet och därmed kortast träningstid, jämfört med de andra undersökta lösningarna. Sammantaget visar resultaten från denna avhandling att övervakad inlärning är ett lovande tillvägagångssätt för att automatisera logg-analys.
|
5 |
Condition monitoring of induction machines using a signal injection technique / Tillståndsövervakning av asynkronmotorer med hjälp av signalinjektionSenthil Kumar, Sathiya Lingam January 2020 (has links)
Condition monitoring techniques can be employed to enhance reliability of electric machinery. The stator winding fault is one of the dominant causes for the failure of induction machines. In this work, the condition monitoring of an inverter-fed induction machine using high-frequency signal injection based technique is investigated. Initially, an analytical model of the induction machine with a stator inter-turn fault is developed. Subsequently, the behaviour of the induction machine in the presence of stator inter-turn fault is analyzed using the symmetrical component theory. Because of their use for fault diagnosis purposes, the analytical expressions for the fundamental and high-frequency symmetrical component currents are derived. The high-frequency signal injection is performed by adding a balanced three-phase high-frequency low-magnitude voltage to the fundamental excitation voltage. The resulting high-frequency negative-sequence current component can be used as reliable fault indicator to detect stator inter-turn faults. The effectiveness of the high-frequency negative-sequence current as a fault indicator is compared with the fundamental negative-sequence current, which is one of the traditionally used fault indicators for detecting these faults. The high-frequency signal injection technique proposed in this work is tested experimentally on a prototype machine in a laboratory set-up. The use of the proposed fault indicator is found to be advantageous when compared to the use of the traditional fault indicator for variable-frequency drives. In particular, it is shown that the proposed fault indicator is less dependent from the drive operating conditions than the traditional fault indicator. / Tillståndsövervakning är en teknik som kan användas för att förbättra tillförlitligheten hos elektriska maskiner. För asynkronmaskiner är fel i statorlindningen en av de dominerande orsakerna som leder till problem. I detta arbete undersöks tillståndsövervakning av en omriktarmatad asynkronmotor med hjälp av en högfrekvent signalinjektionsbaserad teknik. Inledningsvis utvecklas en analytisk modell av en asynkronmaskin med korsslutningsfel mellan varven i statorn. Därefter analyseras beteendet hos maskinen med hjälp av teorin för symmetriska komponenter. Analytiska uttryck för både grund- och övertoner härleds för de symmetriska komponenterna. Den högfrekventa signalinjektionen utförs genom att addera en liten högfrekvent trefasspänning till den matningsspänningen. Den resulterande högfrekventa negativa strömkomponenten kan användas som en tillförlitlig indikator för att upptäcka eventuella kortslutningar i statorlindningen. Förmågan som felindikator hos den högfrekventa negativa sekvensströmmen jämförs med den grundläggande negativa strömkomponentens förmåga, vilken är den traditionella indikatorn för att detektera dessa fel. Den högfrekventa signalinjiceringsmetoden som föreslås i detta arbete undersöks experimentellt på en prototypmaskin. Den föreslagna felindikatorn har visat sig vara fördelaktig jämfört med användningen av den traditionella felindikatorn för frekvensomriktare. I synnerhet visas att den föreslagna felindikatorn är mindre beroende av frekvensomriktarens driftsförhållanden än den traditionella felindikatorn.
|
6 |
Bearing Diagnosis Using Fault Signal Enhancing Teqniques and Data-driven ClassificationLembke, Benjamin January 2019 (has links)
Rolling element bearings are a vital part in many rotating machinery, including vehicles. A defective bearing can be a symptom of other problems in the machinery and is due to a high failure rate. Early detection of bearing defects can therefore help to prevent malfunction which ultimately could lead to a total collapse. The thesis is done in collaboration with Scania that wants a better understanding of how external sensors such as accelerometers, can be used for condition monitoring in their gearboxes. Defective bearings creates vibrations with specific frequencies, known as Bearing Characteristic Frequencies, BCF [23]. A key component in the proposed method is based on identification and extraction of these frequencies from vibration signals from accelerometers mounted near the monitored bearing. Three solutions are proposed for automatic bearing fault detection. Two are based on data-driven classification using a set of machine learning methods called Support Vector Machines and one method using only the computed characteristic frequencies from the considered bearing faults. Two types of features are developed as inputs to the data-driven classifiers. One is based on the extracted amplitudes of the BCF and the other on statistical properties from Intrinsic Mode Functions generated by an improved Empirical Mode Decomposition algorithm. In order to enhance the diagnostic information in the vibration signals two pre-processing steps are proposed. Separation of the bearing signal from masking noise are done with the Cepstral Editing Procedure, which removes discrete frequencies from the raw vibration signal. Enhancement of the bearing signal is achieved by band pass filtering and amplitude demodulation. The frequency band is produced by the band selection algorithms Kurtogram and Autogram. The proposed methods are evaluated on two large public data sets considering bearing fault classification using accelerometer data, and a smaller data set collected from a Scania gearbox. The produced features achieved significant separation on the public and collected data. Manual detection of the induced defect on the outer race on the bearing from the gearbox was achieved. Due to the small amount of training data the automatic solutions were only tested on the public data sets. Isolation performance of correct bearing and fault mode among multiplebearings were investigated. One of the best trade offs achieved was 76.39 % fault detection rate with 8.33 % false alarm rate. Another was 54.86 % fault detection rate with 0 % false alarm rate.
|
Page generated in 0.0436 seconds