• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 18
  • 17
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Spin Fluctuations and non-Fermi Liquid Behavior Close to a Quantum Critical Point in CeNi<sub>2</sub>Ge<sub>2</sub>

Zoghbi, Bilal 22 October 2009 (has links)
No description available.
22

Localisation et corrélations électroniques en deux dimensions dans des nouvelles phases dérivées de 1T-VS2 / Localization and electronic correlations in two dimensions of new 1T-VS2 derived phases

Moutaabbid, Hicham 22 September 2016 (has links)
Cette thèse vise à étudier la stabilité des phases métalliques et isolantes en compétition dans les systèmes 2D 1T-VS2 et composés dérivés, Cu⅔V⅓V2S4 et Sr3V5S11. Pour atteindre cet objectif, nous avons développé et optimisé des voies ad hoc de synthèse à hautes pressions pour stabiliser les nouvelles phases sous forme de monocristal de haute qualité, qui nous permettrait d’étudier les propriétés électroniques et de transport. Un important résultat de notre étude est le contrôle de la concentration, x, des atomes interstitiels V situés entre les plans adjacents VS2 dans le système V1+xS2, qui est obtenu en variant la pression de synthèse. Cela nous a permis d’explorer le diagramme de phase T-x du système. Le résultat principal de cette étude est que la phase CDW observée dans la phase stoichiométrique (x = 0) disparait rapidement avec x, alors que les propriétés métalliques sont augmentées. Dans Cu⅔V⅓V2S4, la substitution partielle du V par Cu dans le site interstitiel change complètement le système en un fermion semi-lourd aux caractéristiques prononcées du liquide de Fermi jusqu’à ~ 20 K, où la transition de Kondo apparait. Ce phénomène inattendu dans les sulfures suggère que la force des corrélations électroniques dans ces composés peut être pilotée en variant simplement la nature chimique et la concentration de l’atome intercalé. La force modérée des corrélations dans Cu⅔V⅓V2S4 ouvre le chemin vers une description théorique fiable de la disparition du régime de liquide de Fermi. Les corrélations électroniques apparaissent importantes aussi pour piloter une phase isolante dans Sr3V5S11, qui devrait être un métal d’après la théorie conventionnelle de bande. Dans ce cas, les corrélations peuvent être augmentées par la dimensionnalité réduite créée par un large écartement des couches VS2 et par une modulation structurale 1D des couches. Des études supplémentaires pourront clarifier s’il s’agit d’un mécanisme d’Anderson de faible localisation qui contribue à la stabilisation d’un état isolant dans les plans pristine métalliques VS2. / This thesis work aims at studying the stability of the metallic and insulating phases that compete in the two-dimensional 1T-VS2 system and related compounds, Cu⅔V⅓V2S4, and Sr3V5S11. We have developed and optimized ad hoc high-pressure synthesis routes in order to stabilize the above novel phases in the form of high-quality single crystals, which enabled us to reliably investigate their electronic and transport properties. An important achievement of our study is the control of the concentration, x, of interstitial V atoms located between adjacent VS2 planes in the V1+xS2 system, which is obtained by varying synthesis pressure. This has enabled us to explore the T-x phase diagram of the system. The main result of this study is that the CDW phase observed in the stoichiometric (x=0) phase quickly disappears with x, whilst the metallic properties are enhanced. In Cu⅔V⅓V2S4, the partial substitution of V for Cu in the interstitial site is found to completely change the system into a semi-heavy fermion with pronounced Fermi-liquid characteristics down to ~20 K, where a Kondo transition occurs. These unexpected phenomena in sulfides suggest that the strength of the electronic correlations in these compounds can be tuned by simply varying the chemical nature and concentration of the intercalant atom. The moderate strength of the correlations in Cu⅔V⅓V2S4 opens the way towards a reliable theoretical description of the breakdown of the Fermi liquid regime. Electronic correlations appear to be important also to drive an insulating phase in Sr3V5S11, which should be a metal within a conventional band picture. In this case, the correlations may be enhanced by the reduced dimensionality caused by a large spacing between VS2 layers and by a 1D structural modulation of the layers. Further studies may clarify whether the Anderson’s mechanism of weak localization contributes to the stabilization of an insulating state in the pristine metallic VS2 planes.
23

Quantification de la charge et criticalité quantique Kondo dans des circuits mésoscopiques avec peu de canaux / Charge quantization and Kondo quantum criticality in few-channel mesoscopic circuits

Iftikhar, Zubair Qurshi 21 November 2016 (has links)
Cette thèse explore plusieurs sujets fondamentaux pour les circuits mésoscopiques qui incorporent un faible nombre de canaux de conduction électroniques. Les premières expériences concernent le caractère quantifié (discret) de la charge dans les circuits. Nous démontrons le critère de quantification de la charge, nous observons la loi d’échelle prédite pour cette quantification ainsi qu’une transition vers comportement universel à mesure que la température augmente. Le second ensemble d’expériences concerne la physique critique quantique non-conventionnelle qui émerge du modèle Kondo à multi-canaux. Par l’implémentation d’une impureté Kondo avec un pseudo-spin de valeur ½ constitué de deux états de charge dégénérés d’un circuit, nous explorons la physique Kondo à deux- et trois-canaux. Au point critique quantique symétrique, nous observons les points fixes Kondo universels prédits, des exposants universels de lois d’échelle et nous validons les courbes complètes obtenues par le groupe de renormalisation numérique. En s’écartant du point critique quantique, nous explorons la transition depuis la zone critique quantique : par une visualisation directe du development d’une transition de phase quantique, par l’espace des paramètres de la zone critique quantique ainsi que par les comportements d’universalité et d’échelle. / This thesis explores several fundamental topics in mesoscopic circuitry that incorporates few electronic conduction channels. The first experiments address the quantized character (the discreteness) of charge in circuits. We demonstrate the charge quantization criterion, observe the predicted charge quantization scaling and demonstrate a crossover toward a universal behavior as temperature is increased. The second set of experiments addresses the unconventional quantum critical physics that arises in the multichannel Kondo model. By implementing a Kondo impurity with a pseudo-spin of ½ constituted by two degenerate charge states of a circuit, we explore the two- and three-channel Kondo physics. At the symmetric quantum critical point, we observe the predicted universal Kondo fixed points, scaling exponents and validate the full numerical renormalization group scaling curves. Away from the quantum critical point, we explore the crossover from quantum criticality: direct visualization of the development of a quantum phase transition, the parameter space for quantum criticality, as well as universality and scaling behaviors.
24

Dynamique dans les fluides quantiques : Etude des excitations collectives dans un liquide de Fermi 2D / Dynamics in quantum fluid : Study of collective excitations in a bidimensional Fermi liquid

Sultan, Ahmad 25 May 2012 (has links)
L'4He et l'3He sont des systèmes modèles pour comprendre les propriétés quantiques de la matière fortement corrélée. C'est pour cette raison que plusieurs études ont été consacrées à la compréhension de leur dynamique. A basses températures où les effets quantiques jouent un rôle essentiel, les excitations élémentaires dans l'4He sont décrites par un mode collectif d'excitations: phonon-roton. Par contre pour un système d'3He la description est plus complexe, le spectre d'excitation a deux composantes: un mode collectif (zéro-son) et un continuum d'excitations incohérentes de type particule-trou. Les deux sont bien décrites par la théorie de Landau des liquides de Fermi qui trouve sa validité pour des petits vecteurs d'onde. Jusqu'à présent, on supposait que la dynamique dans les liquides de Fermi à vecteurs d'onde élevés était essentiellement incohérente. Cette thèse porte sur l'exploration, par diffusion inélastique de neutrons, des excitations collectives dans l'3He liquide 2D adsorbé sur un substrat de graphite. Un tel travail expérimental requiert trois ingrédients essentiels : un réfrigérateur à dilution afin de travailler à basses températures, un spectromètre temps de vol afin de mesurer le facteur de structure dynamique du système et un substrat solide (graphite exfolié ZYX) pour la préparation de films d'3He-2D par physisorption. Nos expériences sur ces films d'3He déposés en deuxième couche sur de l'4He solide adsorbé sur le graphite nous ont permis de faire les observations suivantes : à petit vecteur d'onde, le zéro-son est plus proche de la bande particule-trou que celui observé dans le cas de l'3He massif, tandis qu'à fort vecteur d'onde le mode collectif entre dans le continuum et réapparait de l'autre côté. Cette nouvelle branche, observée pour la première fois, est aujourd'hui décrite par la théorie dynamique à N-corps développée par nos collaborateurs de l'université Johannes Kepler de Linz, Autriche. Au cours de ce travail de thèse plusieurs techniques expérimentales ont été développées, en particulier, un réfrigérateur à dilution sans fluide cryogénique robuste adapté à des expériences de diffusion neutronique. Son optimisation a permis de réduire le temps de refroidissement de ce type de réfrigérateurs. / 4He and 3He are model systems for understanding quantum properties of strongly interacting matter. For this reason many studies have been devoted for the understanding of their dynamics. At low temperatures at which quantum effects play an essential role, the elementary excitations in 4He are described by a phonon-roton collective mode. For 3He, the physical description is more complicated, the spectrum has two components: collective excitations (zero-sound) and incoherent particle-hole excitations. Both are described by Landau's theory of Fermi liquids which is valid at low wave vectors. So far, it was thus believed that the dynamics at high wave vectors is essentially incoherent. This thesis is mainly concerned by exploring the collective excitations of a two dimensional 3He film adsorbed on graphite, using inelastic neutron scattering. Such an experiment has three main requirements: a dilution refrigerator in order to work at low temperatures, a time of flight spectrometer for measuring the dynamical structure factor of 3He and a solid substrate (exfoliated graphite ZYX) to obtain a two dimensional film by physical adsorption. Our investigations of the dynamics in two-dimensional 3He adsorbed on graphite preplated with 4He films have revealed important features: At low wave-vectors, the zero-sound mode is considerably depressed compared to bulk 3He. At higher wave vectors, the collective excitations branch enters the particle-hole continuum, and reappears at the lower energy branch of the continuum. This new branch, observed for the first time, is described by the dynamic many-body theory developed by our collaborators from Johannes Kepler University, Linz, Austria. During this work several low temperature techniques have been developed, in particular a robust, cryogen-free dilution refrigerator adapted to the demanding conditions of a neutron scattering experiments. Due to its efficient design, the cooling time has been considerably reduced compared to that of refrigerators of the same type developed in the past.
25

Cálculos numéricos de sistemas eletrônicos desordenados correlacionados / Numerical calculations in disordered strongly correlated electronic systems

Andrade, Eric de Castro e 16 August 2018 (has links)
Orientador: Eduardo Miranda / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-16T08:19:56Z (GMT). No. of bitstreams: 1 Andrade_EricdeCastroe_D.pdf: 5537554 bytes, checksum: 1391d5fcc710b5e471f0814a4a6d484f (MD5) Previous issue date: 2010 / Resumo: Sistemas eletrônicos fortemente correlacionados desordenados possuem dois mecanismos básicos para a localização eletrônica e a subsequente destruição do estado metálico: o de Mott (causado pela interação elétron-elétron) e o de Anderson (causado pela desordem). Nesta tese, estudamos como estes mecanismos competem dentro da fase metálica e também como afetam o comportamento crítico do sistema, empregando uma generalização para o caso desordenado do cenário de Brinkman-Rice para a transição de Mott. Investigamos os efeitos de desordem fraca e moderada sobre a transição metal-isolante de Mott a T = 0 em duas dimensões. Para desordem sucientemente baixa, a transição mantém sua característica do tipo Mott, na qual temos os pesos de quasipartícula Zi indo a zero na transição e uma forte blindagem da desordem na região crítica. Em contraste com o comportamento encontrado para d = 8 , no nosso caso as flutuações espaciais dos pesos de quasipartícula são fortemente amplificadas próximo à transição de Mott de tal forma que eles adquirem uma distribuição do tipo lei de potência P (Z) ~ Z a-1 ,com a --> 0 na transição. Tal comportamento altera completamente as características desta transição com relação ao caso limpo, e é um indício robusto da emergência de uma fase de Griffiths eletrônica precedendo a transição metal-isolante de Mott, com uma fenomenologia surpreendentemente similar àquela do "ponto fixo de desordem infinita" encontrada em magnetos quânticos. Uma consequência imediata dessas novas características introduzidas pela desordem é que estados eletrônicos próximos à superfície de Fermi tornam-se mais homogêneos na região crítica, ao passo que estados com maiores energias têm o comportamento oposto: eles apresentam uma grande inomogeneidade precisamente nas vizinhanças da transição de Mott. Sugerimos que uma desordem efetiva dependente da interação é uma característica comum a todos os sistemas de Mott desordenados. Estudamos também como os efeitos bem conhecidos das oscilações de longo alcance de Friedel são afetados por fortes correlações eletrônicas. Primeiramente, mostramos que sua amplitude e alcance são consideravelmente suprimidos em líquidos de Fermi fortemente renormalizados. Posteriormente, investigamos o papel dos espalhamentos elásticos e inelásticos na presença dessas oscilações. Em geral, nossos resultados analíticos mostram que um papel proeminente das oscilações de Friedel é relegado a sistemas fracamente interagentes. Abordamos, por m, os efeitos das interações sobre o isolante de Anderson em uma dimensão. Construímos a função de escala ß (g) e mostramos que a escala de "crossover" g *, que marca a transição entre o regime ôhmico e o localizado da condutância, é renormalizada pelas interações. Como consequência, embora não haja a emergência de estados verdadeiramente estendidos, o regime ôhmico de g estende-se agora por uma região consideravelmente maior do espaço de parâmetros. / Abstract: Disordered strongly correlated electronic systems have two basic routes towards localization underlying the destruction of the metallic state: the Mott route (driven by electron-electron interaction) and the Anderson route (driven by disorder). In this thesis, we study how these two mechanisms compete in the metallic phase, and also how they change the critical behavior of the system, within a generalization to the disordered case of the Brinkman-Rice scenario for the Mott transition. We investigate the effects of weak to moderate disorder on the Mott metal-insulator transition at T = 0 in two dimensions. For sufficiently weak disorder, the transition retains the Mott character, as signaled by the vanishing of the local quasiparticle weights Zi and strong disorder screening at criticality. In contrast to the behavior in d = 8, here the local spatial fluctuations of quasiparticle parameters are strongly enhanced in the critical regime, with a distribution function P(Z) ~ Z a-1 and a --> 0 at the transition. This behavior indicates the robust emergence of an electronic Griffiths phase preceding the MIT, in a fashion surprisingly reminiscent of the " Infinite Randomness Fixed Point" scenario for disordered quantum magnets. As an immediate consequence of these new features introduced by disorder, we have that the electronic states close to the Fermi energy become more spatially homogeneous in the critical region, whereas the higher energy states show the opposite behavior: they display enhanced spatial inhomogeneity precisely in the close vicinity to the Mott transition. We suggest that such energy-resolved disorder screening is a generic property of disordered Mott systems. We also study how well-known effects of the long-ranged Friedel oscillations are affected by strong electronic correlations. We first show that their range and amplitude are signifficantly suppressed in strongly renormalized Fermi liquids. We then investigate the interplay of elastic and inelastic scattering in the presence of these oscillations. In the singular case of two-dimensional systems, we show how the anomalous ballistic scattering rate is conned to a very restricted temperature range even for moderate correlations. In general, our analytical results indicate that a prominent role of Friedel oscillations is relegated to weakly interacting systems. Finally, we discuss the effects of correlations on the Anderson insulator in one dimension. We construct the scaling function ß(g) and we show that the crossover scaling g*, which marks the transition between the ohmic and the localized regimes of the conductance, is renormalized by the interactions. As a consequence, we show that, although truly extend states do not emerge, the ohmic regime covers now a considerably larger region in the parameter space. / Doutorado / Física da Matéria Condensada / Doutor em Ciências
26

Numerical calculations of quasiparticle dynamics in a Fermi liquid

Virtanen, T. (Timo) 08 March 2011 (has links)
Abstract The problem of describing a system of many interacting particles is one of the most fundamental questions in physics. One of the central theories used in condensed matter physics to address the problem is the Fermi liquid theory developed by L. D. Landau in the 1956. The theory describes interacting fermions, and can be used to explain transport phenomena of electrons in metals and dynamics of helium three. Even when the theory is not directly applicable, it forms a basis against which other, more sophisticated theories can be compared. this thesis the Fermi liquid theory is applied to 3He-4He-mixtures at temperatures where the bosonic 4He part is superfluid, and the mechanical properties of the system are largely determined by the 3He component, treated as a degenerate normal Fermi liquid. The dynamics of strongly interacting liquid 3He can be described as a collection of quasiparticles, elementary excitations of the system, which interact only weakly. In 3He-4He mixtures the interactions can be continuously tuned by changing the temperature and the concentration of the mixture. The scattering time of quasiparticles depends on temperature, and thus the transition from the hydrodynamic limit of continuous collisions at higher temperatures to the collisionless ballistic limit at low temperatures can be studied. This gives invaluable information on the role of the interactions in the dynamics of the system. In this work, by using the Fermi liquid theory and Boltzmann transport equation, the dynamics of helium mixture disturbed by a mechanical oscillator is described in the full temperature range. The solution necessarily is numeric, but new analytical results in the low temperature limit are obtained as well. The numerical approach enables one to study various boundary conditions thoroughly, and allows application of the theory to a specic geometry. It is shown that in order to explain the experimental observations, it is necessary to take into account the reflection of quasiparticles from the walls of the container. For suitable choice of oscillator frequency and container size, second sound resonances are observed at higher temperatures, while in the ballistic limit quasiparticle interference can be seen. The numerical results are in quantitative agreement with experiments, thus attesting the accuracy of Fermi liquid theory. In particular, the previously observed decrease of inertia of a mechanical oscillator immersed in helium at low temperatures is reproduced in the calculations, and is explained by elasticity of the fluid due to Fermi liquid interactions.
27

Electrical resistivity of the kondo systems (Ce1−xREx)In3, RE = Gd, Tb, Dy AND Ce(Pt1−xNix)Si2

Tshabalala, Kamohelo George January 2008 (has links)
>Magister Scientiae - MSc / The present study investigates the strength of the hybridization by substituting Ce atom in Kondo lattice CeIn3 with Gd, Tb, and Dy and by changing the chemical environment around the Ce atom in substituting Pt with Ni in CePtSi2. This thesis covers four chapters outline as follows: Chapter 1 introduces the theoretical background in rare earths elements, and an overview of the physics of heavy-fermion and Kondo systems. Chapter 2 presents the experimental details used in this thesis. Chapter 3 report the effect of substituting Ce with moment bearing rare-earth elements RE = Gd, Tb and Dy in CeIn3, through x-ray diffraction (XRD) and electrical resistivity measurements
28

The universal shear conductivity of Fermi liquids and spinon Fermi surface states and its detection via spin qubit noise magnetometry

Khoo, Jun Yong, Pientka, Falko, Sodemann, Inti 02 May 2023 (has links)
We demonstrate a remarkable property of metallic Fermi liquids: the transverse conductivity assumes a universal value in the quasi-static (ω → 0) limit for wavevectors q in the regime l −1 mfp q pF, where lmfp is the mean free path and pF is the Fermi momentum. This value is (e2/h)RFS/q in two dimensions (2D), where RFS measures the local radius of curvature of the Fermi surface (FS) in momentum space. Even more surprisingly, we find that U(1) spin liquids with a spinon FS have the same universal transverse conductivity. This means such spin liquids behave effectively as metals in this regime, even though they appear insulating in standard transport experiments. Moreover, we show that transverse current fluctuations result in a universal low-frequency magnetic noise that can be directly probed by a spin qubit, such as a nitrogen-vacancy (NV) center in diamond, placed at a distance z above of the 2D metal or spin liquid. Specifically the magnetic noise is given by CωPFS/z, where PFS is the perimeter of the FS in momentum space and C is a combination of fundamental constants of nature. Therefore these observables are controlled purely by the geometry of the FS and are independent of kinematic details of the quasi-particles, such as their effective mass and interactions. This behavior can be used as a new technique to measure the size of the FS of metals and as a smoking gun probe to pinpoint the presence of the elusive spinon FS in two-dimensional systems. We estimate that this universal regime is within reach of current NV center spectroscopic techniques for several spinon FS candidate materials.
29

Two-channel Kondo phases in coupled quantum dots

Mitchell, Andrew Keith January 2009 (has links)
We investigate systems comprising chains and rings of quantum dots, coupled to two metallic leads. Such systems allow to study the competition between orbital and spin degrees of freedom in a nanodevice, and the effect this subtle interplay has on two-channel Kondo (2CK) physics. We demonstrate that a rich range of strongly correlated electron behaviour results, with non-Fermi liquid 2CK phases and non-trivial phase transitions accessible. We employ physical arguments and the numerical renormalization group (NRG) technique to analyse these systems in detail, examining in particular both thermodynamic and dynamical properties. When leads are coupled to either end of a chain of dots, we show that the resulting behaviour on low temperature/energy scales can be understood in terms of simpler paradigmatic quantum `impurity' models. An effective low-energy single-spin 2CK model is derived for all odd-length chains, while the behaviour of even-length chains is related fundamentally to that of the classic `two-impurity Kondo' model. In particular, for small interdot coupling, we show that an effective coupling mediated though incipient single-channel Kondo states drives all odd chains to the 2CK fixed point (FP) on the lowest temperature/energy scales. A theory is also developed to describe a phase transition in even chains. We derive an effective channel-anisotropic 2CK model, which indicates that the critical FP of such models must be the 2CK FP. This physical picture is confirmed using NRG for various chain systems. We also examine the effect of local frustration on 2CK physics in mirror-symmetric ring systems. The importance of geometry and symmetry is demonstrated clearly in the markedly different physical behaviour that arises in systems where two leads are either connected to the same dot, or to neighbouring dots. In the latter case, we show for all odd-membered rings that two distinct 2CK phases, with different ground state parities, arise on tuning the interdot couplings. A frustration-induced phase transition thus occurs, the 2CK phases being separated by a novel critical point for which an effective low-energy model is derived. Precisely at the transition, parity mixing of the quasidegenerate local trimer states acts to destabilise the 2CK FPs, and the critical FP is shown to consist of a free pseudospin together with effective single-channel spin quenching. While connecting both leads to the same dot again results in two parity-distinct phases, a simple level-crossing transition now results due to the symmetry of the setup. The proposed geometry also allows access to a novel ferromagnetically-coupled two-channel local moment phase. Driven by varying the interdot couplings and occurring at the point of inherent magnetic frustration, such transitions in ring structures provide a striking example of the subtle interplay between internal spin and orbital degrees of freedom in coupled quantum dot systems, and the resulting effect on Kondo physics.
30

Correlated low temperature states of YFe2Ge2 and pressure metallised NiS2

Semeniuk, Konstantin January 2018 (has links)
While the free electron model can often be surprisingly successful in describing properties of solids, there are plenty of materials in which interactions between electrons are too significant to be neglected. These strongly correlated systems sometimes exhibit rather unexpected, unusual and useful phenomena, understanding of which is one of the aims of condensed matter physics. Heat capacity measurements of paramagnetic YFe$_{2}$Ge$_{2}$ give a Sommerfeld coefficient of about 100 mJ mol$^{−1}$ K$^{−2}$, which is about an order of magnitude higher than the value predicted by band structure calculations. This suggests the existence of strong electronic correlations in the compound, potentially due to proximity to an antiferromagnetic quantum critical point (QCP). Existence of the latter is also indicated by the non-Fermi liquid T$^{3/2}$ behaviour of the low temperature resistivity. Below 1.8 K a superconducting phase develops in the material, making it a rare case of a non-pnictide and non-chalcogenide iron based superconductor with the 1-2-2 structure. This thesis describes growth and study of a new generation of high quality YFe$_{2}$Ge$_{2}$ samples with residual resistance ratios reaching 200. Measurements of resistivity, heat capacity and magnetic susceptibility confirm the intrinsic and bulk character of the superconductivity, which is also argued to be of an unconventional nature. In order to test the hypothesis of the nearby QCP, resistance measurements under high pressure of up to 35 kbar have been conducted. Pressure dependence of the critical temperature of the superconductivity has been found to be rather weak. μSR measurements have been performed, but provided limited information due to sample inhomogeneity resulting in a broad distribution of the critical temperature. While the superconductivity is the result of an effective attraction between electrons, under different circumstances the electronic properties of a system can instead be dictated by the Coulomb repulsion. This is the case for another transition metal based compound NiS$_{2}$, which is a Mott insulator. Applying hydrostatic pressure of about 30 kbar brings the material across the Mott metal-insulator transition (MIT) into the metallic phase. We have used the tunnel diode oscillator (TDO) technique to measure quantum oscillations in the metallised state of NiS$_{2}$, making it possible to track the evolution of the principal Fermi surface and the associated effective mass as a function of pressure. New results are presented which access a wider pressure range than previous studies and provide strong evidence that the effective carrier mass diverges close to the Mott MIT, as expected within the Brinkman-Rice scenario and predicted in dynamical mean field theory calculations. Quantum oscillations have been measured at pressures as close to the insulating phase as 33 kbar and as high as 97 kbar. In addition to providing a valuable insight into the mechanism of the Mott MIT, this study has also demonstrated the potential of the TDO technique for studying materials at high pressures.

Page generated in 0.0485 seconds