Spelling suggestions: "subject:"feststoff"" "subject:"reststoff""
31 |
Keramische Membranen für die Katalyse : Evaluierung des Potenzials katalytisch aktiver Membranen im katalytischen Diffusor und Porendurchflussreaktor für schnelle Feststoff-katalysierte Gas/Flüssig-Reaktionen am Beispiel der Hydrierung von {[alpha]-Methylstyrol [Alpha-Methylstyrol] /Urbanczyk, Daniel. January 2008 (has links)
Zugl.: Erlangen, Nürnberg, Universiẗat, Diss., 2008.
|
32 |
Application of Coriolis Mass Flowmeters in bubbly or particulate two-phase flowsZhu, Hao January 2008 (has links)
Zugl.: Erlangen, Nürnberg, Univ., Diss., 2008
|
33 |
Akustische Onlineüberwachung und Strömungssimulation von Verwirbelungsprozessen bei der FilamentgarnverarbeitungSeide, Gunnar Henrik January 2008 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2008
|
34 |
Zur Beschreibung des kapillaren Flüssigkeitstransportes in PapierMiddendorf, Jörg 14 July 2000 (has links)
In Offsetdruckanlagen wird neben der Druckfarbe
eine im wesentlichen aus Wasser bestehende
Flüssigkeit, sog. Feuchtmittel, auf das Papier
übertragen. Diese Feuchtigkeit verbleibt nicht an
der Oberfläche des Bedruckstoffes, sondern dringt
unter der Wirkung von Kapillarkräften in den
Kernbereich der porösen Struktur ein.
Der zeitliche Verlauf dieses kapillaren
Transportvorganges übt insofern einen entscheidenden
Einfluß auf die Druckqualität aus, als eine
schnelle Entfeuchtung der Oberflächenzone die Voraussetzung
für eine vollständige Farbannahme beim sukzessiven
mehrfarbigen Bedrucken darstellt. Darüber hinaus
hängen feuchtigkeitsbedingte Änderungen des für
die Gesamtstruktur maßgeblichen Deformationsverhaltens
von der Geschwindigkeit ab, mit welcher sich die
Flüssigkeit über den Querschnitt verteilt.
In dieser Arbeit wird auf der Grundlage einer
mischungstheoretischen Axiomatik ein Modell
zur Beschreibung des kapillaren Flüssigkeitstransportes
in Papier vorgeschlagen, dessen Homogenisierungsgrad
einerseits den wesentlichen Einflüssen des
Porenraumes auf das Transportverhalten Rechnung
trägt, andererseits Einzelheiten nur soweit
einbezieht, als sie sich einer Identifikation
erschließen.
Ein wesentliches Merkmal des strukturübergreifend
formulierten Ansatzes besteht in der Einführung von
Volumenanteilen für die Konstituierenden des als
Mehrphasenkörper betrachteten teilgesättigten
porösen Mediums. In Bezug auf die Formulierung
eines makroskopischen Bewegungsgesetzes für den
teilgesättigten Flüssigkeitstransport sowie hinsichtlich
der Annahmen, welche die konstitutiven Beziehungen
betreffen, wird auf den MUSKATschen Ansatz zurückgegriffen,
wie er sich auf den Gebieten der Hydrologie bzw.
der Bodenphysik bewährt hat.
Mit der Vernachlässigbarkeit des
Schwerkrafteinflusses sowie der Annahme einer
kompressionsfreien Verdrängung der im Porenraum
enthaltenen Luft ergeben sich gegenüber einem
allgemeinen Zweiphasentransportproblem Vereinfachungen
in der mathematischen Beschreibung: Die von der
Luftströmung entkoppelte Betrachtung der
Flüssigkeitsbewegung mündet in eine Transportgleichung
vom Typ einer nichtlinearen Wärmeleitungsgleichung.
Zur Lösung dieser parabolischen Differentialgleichung
für das Anfangs-Randwert-Problem, wie es den
obengenannten Ausbreitungsvorgang beschreibt,
wurde das Heat-Transfer-Tool des kommerziellen
Finite-Element-Programms MARC eingesetzt.
Auf der Grundlage experimentell ermittelter
Porengrößenverteilungsdichten gelang eine
näherungsweise Bestimmung der Transportkoeffizienten
sowie der konstitutiven Beziehungen.
|
35 |
Optimization of fracturing fluid to increase shale gas productionLiu, Yong 04 December 2020 (has links)
As same as other countries in the world, China is also facing the problem of a severe shortage of energy. Specifically, the demand for natural gas is rising explosively after the energy consumption structure has changed from oil to gas. Due to various reasons and motivations, shale has been considered having great reserves and believed in alleviating the energy crisis. Nevertheless, the massive investment in developing shale has a disappointing interest with low-yielding production. Scholars have done many researches and experiments for investigating the causes and increasing the productivity of shale formation, in field and in laboratory respectively. Based on the statistics, more details, and further discussion, in this dissertation a probable method for more effectively producing was demonstrated.
Although the hydro-fracturing technology has been conducted in field frequently, sometimes the decrease of permeability has been observed after the treatment. To figure out this phenomenon, the investigation started from the basic characterization of matrix. Believed in the most component in shale, quartz consisted of silica which could dissolve in fluid. Been assigned as variables, temperature, pH, and salinity have been implemented for explanation of dissolution. Temperature played a great role in the process. Combined with confining pressure, the reconsolidation happened inside samples. Through more experiments the mechanism of reconsolidation has been discovered that both confining pressure and temperature are necessary for gelling in fracture.
Perspective on the whole formation, well logs were a super supplement to laboratory experiments. It serviced not only a further confirmation, but also pointed out the relationship between desorption capacity and different components. Samples from upper and lower formations have been used for going further. The exchange which exists between N2 and CH4 could be a great idea to exploit gas from reservoir. Feldspar supported space for adsorbed gas, and it was also easy to release. In contrast, the organic matter in which a network of pores developed has ability to trap the gas deeply because of the specific surface area. Quartz had positive effect on production because of containing the organic matter, while the influence of clay minerals on adsorption and desorption could be neglected.
Based on the analysis of reconsolidation and desorption, an idea has been conceived using foam as fracturing fluid for increasing gas production. Compared to the pure fluid, foam has less water, which could prevent the reconsolidation. Nitrogen could be the gas to foam. The exchange between N2 and CH4 will increase the production of gas. In order to serve the condition that increases the time of exchange and makes negative effect on reconsolidation simultaneously, the foaming test with ABS and K12 has been evaluated first. For better stability of foam more experiment have been done. Three formulas were recommended which could keep the balance between the increasing viscosity and decreasing volume.
The work interpreted in this thesis has enhanced our understanding of microscopic properties of shale and was expected to make contribution to further research of fracturing and production design.
|
36 |
Fluid- und Feststofftransport in Rohrsystemen und PumpstationenIsmael, Bashar 25 May 2021 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Thematik des hydraulischen Feststofftransports in Druckrohrleitungen zur Bestimmung der hydraulischen Energieverluste des Wasser-Feststoff-Gemisches und der wirtschaftlichen Gemischgeschwindigkeit (der s.g. kritischen Geschwindigkeit) vcrit.
Zu diesem Zweck wurde der Transportvorgang in verschiedenen Rohrkonfigurationen (horizontal, schräg und z. T. vertikal) an einem physikalischen Modell im Hubert-Engels-Labor des Instituts für Wasserbau und Technische Hydromechanik der Technischen Universität Dresden untersucht. Dabei kamen drei Sandfraktionen zum Einsatz (0,1 - 0,5 mm; 0,71 - 1,25 mm und 1,4 - 2,2 mm). Die Partikel weisen eine Dichte von ρF=2650 kg/m³ auf.
Ziel der Untersuchungen war, mithilfe der Messdaten eine Formel zur Berechnung des Verlustanteils der dispersen Phase an dem gesamten Energieverlust besonders für das heterogene und das quasi-homogene Transportregime in Abhängigkeit von den Einflussgrößen (Dichte, Konzentration, Partikeldurchmesser etc.) abzuleiten.
Ein weiterer Schwerpunkt der Arbeit war, die kritische Gemischgeschwindigkeit genauer zu betrachten und einen entsprechenden Rechenansatz aufzustellen. Diese Geschwindigkeit stellt den Übergang von dem Transport mit beweglicher Sohle zum heterogenen Feststofftransport dar.
Nach Abschluss der physikalischen Versuche wurde der Feststofftransport mit der Software ANSYS-Fluent numerisch untersucht. Im Fokus der Modellierung stand die Festsetzung der Wandrandbedingung für die disperse Phase, mit Hilfen derer die physikalisch gemessenen Energieverluste erreicht werden konnten. Die Simulationen wurden mit dem Euler-Granular-Modell durchgeführt. Hierbei wird der Feststoff als zweites Kontinuum betrachtet und seine rheologischen Eigenschaften wurden durch die Erweiterung der kinetischen Theorie der Gase auf die disperse Phase (eng. kinetic theory of granular flow KTGF) berechnet.
Das angewendete zwei-Fluid-Modell (TFM) eignet sich sehr gut für alle möglichen vorkommenden Feststoffkonzentrationen und liefert gute Übereinstimmung mit den Messergebnissen im Gegensatz zu dem Euler-Lagrange-Modell (DPM), welches lediglich bei niedrigen Feststoffkonzentrationen Anwendung findet.:Inhaltsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Symbolverzeichnis
Indexverzeichnis
1 Einleitung und Zielsetzung
2 Grundlagen des hydraulischen Feststofftransports in Rohrleitungen
2.1 Das Energiegesetz
2.2 Feststofftransport in Rohrleitungen
2.3 Partikeleigenschaften
2.4 Typisierung der Partikelbewegung mit der Strömung
2.5 Einfluss der Turbulenz auf die Partikelbewegung in horizontaler Rohrleitung
2.6 Transportzustände in horizontaler Rohrleitung
2.7 Transportzustände in vertikaler Rohrleitung
2.8 Stopfgrenze
2.9 Kräftebilanz an einem Feststoffpartikel
2.10 Dimensionsanalyse
2.10.1 Auflistung der Einflussgrößen
2.10.2 Anzahl der dimensionslosen π-Parameter
2.10.3 Auswahl der Hauptvariablen
2.10.4 Ermittlung der π-Parameter
2.10.5 Form des funktionellen Zusammenhangs
3 Bemessungsansätze des hydraulischen Transports
3.1 Stand des Wissens
3.1.1 Feststofftransport in horizontaler Rohrleitung
3.1.2 Feststofftransport in geneigter Rohrleitung
3.1.3 Feststofftransport in vertikaler Rohrleitung
3.1.4 Die kritische Gemischgeschwindigkeit in horizontaler Rohrleitung
3.1.5 Die kritische Gemischgeschwindigkeit in geneigter Rohrleitung
3.1.6 Weitere Rechenmodelle
3.2 Erweiterung des Energiegesetzes auf Gemischströmung
3.2.1 In horizontaler Rohrleitung
3.2.2 In geneigter Rohrleitung
3.2.3 In vertikaler Rohrleitung
4 Experimentelle Untersuchungen
4.1 Aufbau der ersten Versuchsanlage
4.2 Messtechnik
4.3 Umbau der Versuchsanlage
4.4 Untersuchungsmaterial
4.5 Experimentelles Verfahren
5 Numerische Simulationen mit ANSYS-Fluent
5.1 Grundlagen der Mehrphasenströmungen
5.2 Auswahl des numerischen Modells
5.3 Das Granular-Euler-Modell
5.3.1 Die Erhaltungsgleichung
5.3.2 Die kinetische Theorie der dispersen Phase
5.4 Modellvalidierung
6 Vorstellung der Untersuchungsergebnisse
6.1 Ergebnisse der experimentellen Untersuchungen in horizontaler Leitung
6.1.1 Experimentelle Untersuchungen zum Energieverlust
6.1.2 Experimentelle Untersuchung zu der kritischen Geschwindigkeit
6.2 Ergebnisse der hydronumerischen Untersuchungen in horizontaler Rohrleitung
6.2.1 Randbedingungen
6.2.2 Numerische Lösung und Konvergenz
6.2.3 Parameteranalyse anhand eigener Versuche
6.2.4 Numerische Untersuchungen zur Wechselwirkung zwischen den hydraulischen Kenngrößen
6.3 Ergebnisse der experimentellen Untersuchungen in vertikaler Leitung
6.4 Ergebnisse der experimentellen Untersuchungen in geneigter Rohrleitung
6.4.1 Experimentelle Untersuchungen zum Energieverlust
6.4.2 Experimentelle Untersuchung zu der kritischen Gemischgeschwindigkeit
6.5 Ergebnisse der numerischen Untersuchungen in geneigter Rohrleitung
7 Fehleranalyse und weitere Betrachtungen
7.1 Degradierung des Feststoffes
7.2 Die Abnutzung der Pumpe
7.3 Abrieb und Durchbruch der Rohrleitungen
7.4 Die Instabilität des Systems bei geringen Geschwindigkeiten
7.5 Messabweichung des Durchflussmessers
7.6 Fehlerquelle bei der Untersuchung der kritischen Gemischgeschwindigkeit
7.7 Fortbewegung der Feststoffe bei Geschwindigkeiten unterhalb vcrit
7.8 Einfluss der Transportkonzentration auf den Arbeitspunkt der Pumpe
8 Zusammenfassung
Literaturverzeichnis
Anhang / The present work deals with the hydraulic transport characteristics of sand-water mixtures in pipelines to determine hydraulic gradients and the deposition-limit velocity (critical velocity).
For this purpose, the transport process in various pipe configurations (horizontal, inclined and vertical) was investigated on a physical model at the Hubert Engels Laboratory of the Institute of Hydraulic Engineering and Technical Hydromechanics of the Technical University of Dresden. Three sand fractions were used (0.1 - 0.5 mm, 0.71 - 1.25 mm and 1.4 - 2.2 mm) with particles density of ρF = 2650 kg/m³.
The aim of the investigations was to develop a model for calculating the head loss percent-age of the disperse phase in terms of total energy loss, especially for the heterogeneous and quasi-homogeneous transport regime correlating to the influence quantities (density, concentration, particle diameter, etc.).
Another important aspect for this work was to consider the critical velocity and to set up a corresponding calculation approach for this parameter. The deposition-limit velocity represents the transition from sliding Bed transport to heterogeneous transport.
In the next step, the solids transport process was investigated numerical with ANSYS-Fluent. The focus of the modeling was the determination of the wall boundary condition for the disperse phase, with help of which the physically measured energy losses could be re-stored. The simulations were performed with the Euler Granular model. Here, the solid is considered to be the second continuum, and its rheological properties were calculated by expanding the kinetic theory of gases to disperse phase (KTGF).:Inhaltsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Symbolverzeichnis
Indexverzeichnis
1 Einleitung und Zielsetzung
2 Grundlagen des hydraulischen Feststofftransports in Rohrleitungen
2.1 Das Energiegesetz
2.2 Feststofftransport in Rohrleitungen
2.3 Partikeleigenschaften
2.4 Typisierung der Partikelbewegung mit der Strömung
2.5 Einfluss der Turbulenz auf die Partikelbewegung in horizontaler Rohrleitung
2.6 Transportzustände in horizontaler Rohrleitung
2.7 Transportzustände in vertikaler Rohrleitung
2.8 Stopfgrenze
2.9 Kräftebilanz an einem Feststoffpartikel
2.10 Dimensionsanalyse
2.10.1 Auflistung der Einflussgrößen
2.10.2 Anzahl der dimensionslosen π-Parameter
2.10.3 Auswahl der Hauptvariablen
2.10.4 Ermittlung der π-Parameter
2.10.5 Form des funktionellen Zusammenhangs
3 Bemessungsansätze des hydraulischen Transports
3.1 Stand des Wissens
3.1.1 Feststofftransport in horizontaler Rohrleitung
3.1.2 Feststofftransport in geneigter Rohrleitung
3.1.3 Feststofftransport in vertikaler Rohrleitung
3.1.4 Die kritische Gemischgeschwindigkeit in horizontaler Rohrleitung
3.1.5 Die kritische Gemischgeschwindigkeit in geneigter Rohrleitung
3.1.6 Weitere Rechenmodelle
3.2 Erweiterung des Energiegesetzes auf Gemischströmung
3.2.1 In horizontaler Rohrleitung
3.2.2 In geneigter Rohrleitung
3.2.3 In vertikaler Rohrleitung
4 Experimentelle Untersuchungen
4.1 Aufbau der ersten Versuchsanlage
4.2 Messtechnik
4.3 Umbau der Versuchsanlage
4.4 Untersuchungsmaterial
4.5 Experimentelles Verfahren
5 Numerische Simulationen mit ANSYS-Fluent
5.1 Grundlagen der Mehrphasenströmungen
5.2 Auswahl des numerischen Modells
5.3 Das Granular-Euler-Modell
5.3.1 Die Erhaltungsgleichung
5.3.2 Die kinetische Theorie der dispersen Phase
5.4 Modellvalidierung
6 Vorstellung der Untersuchungsergebnisse
6.1 Ergebnisse der experimentellen Untersuchungen in horizontaler Leitung
6.1.1 Experimentelle Untersuchungen zum Energieverlust
6.1.2 Experimentelle Untersuchung zu der kritischen Geschwindigkeit
6.2 Ergebnisse der hydronumerischen Untersuchungen in horizontaler Rohrleitung
6.2.1 Randbedingungen
6.2.2 Numerische Lösung und Konvergenz
6.2.3 Parameteranalyse anhand eigener Versuche
6.2.4 Numerische Untersuchungen zur Wechselwirkung zwischen den hydraulischen Kenngrößen
6.3 Ergebnisse der experimentellen Untersuchungen in vertikaler Leitung
6.4 Ergebnisse der experimentellen Untersuchungen in geneigter Rohrleitung
6.4.1 Experimentelle Untersuchungen zum Energieverlust
6.4.2 Experimentelle Untersuchung zu der kritischen Gemischgeschwindigkeit
6.5 Ergebnisse der numerischen Untersuchungen in geneigter Rohrleitung
7 Fehleranalyse und weitere Betrachtungen
7.1 Degradierung des Feststoffes
7.2 Die Abnutzung der Pumpe
7.3 Abrieb und Durchbruch der Rohrleitungen
7.4 Die Instabilität des Systems bei geringen Geschwindigkeiten
7.5 Messabweichung des Durchflussmessers
7.6 Fehlerquelle bei der Untersuchung der kritischen Gemischgeschwindigkeit
7.7 Fortbewegung der Feststoffe bei Geschwindigkeiten unterhalb vcrit
7.8 Einfluss der Transportkonzentration auf den Arbeitspunkt der Pumpe
8 Zusammenfassung
Literaturverzeichnis
Anhang
|
37 |
Geophysics for the Evaluation of Reactive SystemsBörner, Jana 23 August 2024 (has links)
The field of geosciences, including geophysics, plays a crucial role in addressing society's pressing concerns related to energy demand, climate change, resource preservation, and environmental protection. Reactive systems encountered in this context are characterized by intricate interactions among various phases, environmental conditions, physical and chemical processes. Achieving a comprehensive understanding of these processes and quantitatively evaluating reactive systems necessitates a holistic scientific approach. This approach encompasses efficient categorization of reactive systems, the development of appropriate experimental and computational tools, and the collection and dissemination of relevant data. In this context, this thesis contributes to geophysics and petrophysics with a focus on reactive systems.
It presents and interprets laboratory datasets that address various complex aspects of rock behavior, including the presence of graphite, resulting anisotropy, and the challenging petrophysical characteristics of carbonate rocks. This compilation of research results provides a multifaceted perspective on the complex nature of rocks, including their mineralogical, physical, and chemical properties. It thus contributes to a deeper comprehension of electrical rock properties and their practical utility. Upon examining carbonate rocks and the response of graphitic schist to CO$_\mathrm{2}$ under reservoir conditions, it becomes clear that the impact of increased reactivity in a system on geophysical parameters varies depending on the specific characteristics of the rocks and systems under investigation. Consequently, geophysical methods aiming at a quantitative assessment of reactive systems must exhibit robustness and efficiency in order to be effectively applied in a site- and system-specific manner.
Expanding on this foundation, computational methods have been developed to aid in the quantitative analysis of reactive processes in laboratory experiments. These methods also serve as tools for gaining insights into the origin of rock properties and the impact of microstructure variation. Furthermore, inversion techniques are introduced in conjunction with custom-designed experiments within the field of petrophysics. The resultant software tool is made publicly accessible. The research further delves into the exploration of how physical properties of rocks are influenced by their microstructure, as well as how the stochastic nature of pore space geometry can introduce variability and uncertainty in rock physics data. This investigation was carried out through microstructure modeling and finite element simulations.
Leveraging these tailored computational techniques allowed for a comprehensive understanding of laboratory data, facilitating robust generalizations and contextualization for field applications and site-specific integrated interpretation. To illustrate the application in a complex natural reactive system, a field study focusing on coastal fumarolic vents in volcanic terrain was carried out and is presented. The challenges, prospects and visualization strategies for integrating simulation or inversion results from different methods are examined. Effective evaluation of complex sites requires open access to existing knowledge, including laboratory datasets. Consequently, this work documents and provides openly accessible examples of complex multi-method laboratory datasets to facilitate better understanding, re-evaluation and application in the field.
Finally, the handling of multi-reactive systems in field applications is discussed. It involves the integration of three-dimensional subsurface models with petrophysical insights related to multi-reactive systems. These models are calibrated using additional complementary data from surface or borehole sources. This integrated approach enables a quantitative assessment of site-specific multi-reactive systems.
|
38 |
Parallele Algorithmen für die numerische Simulation dreidimensionaler, disperser Mehrphasenströmungen und deren Anwendung in der Verfahrenstechnik / Parallel algorithms for the numerical simulation of 3-dimensional disperse multiphase flows and theire application in process technologyFrank, Thomas 30 August 2002 (has links)
Many fluid flow processes in nature and technology are characterized by the presence
and coexistence of two ore more phases. These two- or multiphase flows are furthermore
characterized by a greater complexity of possible flow phenomena and phase interactions
then in single phase flows and therefore the numerical simulation of these multiphase
flows is usually demanding a much higher numerical effort. The presented work
summarizes the research and development work of the author and his research group on
"Numerical Methods for Multiphase Flows" at the University of Technology, Chemnitz over the
last years. This work was focussed on the development and application of numerical
approaches for the prediction of disperse fluid-particle flows in the field of
fluid mechanics and process technology.
A main part of the work presented here is concerned with the modelling of different
physical phenomena in fluid-particle flows under the paradigm of the Lagrangian treatment
of the particle motion in the fluid. The Eulerian-Lagrangian approach has proved to be an
especially well suited numerical approach for the simulation of disperse multiphase flows.
On the other hand its application requires a large amount of (parallel) computational power
and other computational ressources. The models described in this work give a mathematical
description of the relevant forces and momentum acting on a single spherical particle in
the fluid flow field, the particle-wall interaction and the particle erosion to the wall.
Further models has been derived in order to take into account the influence of
particle-particle collisions on the particle motion as well as the interaction of the
fluid flow turbulence with the particle motion. For all these models the state-of-the-art
from literature is comprehensively discussed.
The main field of interest of the work presented here is in the area of development,
implementation, investigation and comparative evaluation of parallelization
methods for the Eulerian-Lagrangian approach for the simulation of disperse multiphase
flows. Most of the priorly existing work of other authors is based on shared-memory
approaches, quasi-serial or static domain decomposition approaches. These parallelization
methods are mostly limited in theire applicability and scalability to parallel computer
architectures with a limited degree of parallelism (a few number of very powerfull compute
nodes) and to more or less homogeneous multiphase flows with uniform particle concentration
distribution and minor complexity of phase interactions. This work now presents a novel
parallelization method developed by the author, realizing a dynamic load balancing
for the Lagrangian approach (DDD - Dynamic Domain Decomposition) and therefore leading
to a substantial decrease in total computation time necessary for multiphase flow
computations with the Eulerian-Lagrangian approach.
Finally, the developed and entirely parallelized Eulerian-Lagrangian approach MISTRAL/PartFlow-3D
offers the opportunity of efficient investigation of disperse multiphase flows with
higher concentrations of the disperse phase and the resulting strong phase interaction
phenomena (four-way coupling). / Viele der in Natur und Technik ablaufenden Strömungsvorgänge sind durch die
Koexistenz zweier oder mehrerer Phasen gekennzeichnet. Diese sogenannten Zwei- oder
Mehrphasensysteme zeichnen sich durch ein hohes Maß an Komplexität aus und
erfordern oft einen sehr hohen rechentechnischen Aufwand zu deren numerischer Simulation.
Die vorliegende Arbeit faßt langjährige Forschungs- und Entwicklungsarbeiten
des Autors und seiner Forschungsgruppe "Numerische Methoden für Mehrphasenströmungen"
an der TU Chemnitz zusammen, die sich mit der Entwicklung und Anwendung numerischer
Berechnungsverfahren für disperse Fluid-Partikel-Strömungen auf dem Gebiet
der Strömungs- und Verfahrenstechnik befassen.
Ein wesentlicher Teil der Arbeit befaßt sich mit der Modellierung unterschiedlicher
physikalischer Phänomene in Fluid-Partikel-Strömungen unter dem Paradigma der Lagrange'schen
Betrachtungsweise der Partikelbewegung. Das Euler-Lagrange-Verfahren hat sich als
besonders geeignetes Berechnungsverfahren für die numerische Simulation disperser
Mehrphasenströmungen erwiesen, stellt jedoch in seiner Anwendung auch höchste
Anforderungen an die Ressourcen der verwendeten (parallelen) Rechnerarchitekturen.
Die näher ausgeführten mathematisch-physikalischen Modelle liefern eine Beschreibung
der auf eine kugelförmige Einzelpartikel im Strömungsfeld wirkenden Kräfte
und Momente, der Partikel-Wand-Wechselwirkung und der Partikelerosion. Weitere Teilmodelle
dienen der Berücksichtigung von Partikel-Partikel-Stoßvorgängen und der
Wechselwirkung zwischen Fluidturbulenz und Partikelbewegung.
Der Schwerpunkt dieser Arbeit liegt im Weiteren in der Entwicklung, Untersuchung und vergleichenden
Bewertung von Parallelisierungsverfahren für das Euler-Lagrange-Verfahren zur Berechnung von
dispersen Mehrphasenströmungen. Zuvor von anderen Autoren entwickelte Parallelisierungsmethoden
für das Lagrange'sche Berechnungsverfahren basieren im Wesentlichen auf Shared-Memory-Ansätzen,
Quasi-Seriellen Verfahren oder statischer Gebietszerlegung (SDD) und sind somit in ihrer
Einsetzbarkeit und Skalierbarkeit auf Rechnerarchitekturen mit relativ geringer Parallelität
und auf weitgehend homogene Mehrphasenströmungen mit geringer Komplexität der Phasenwechselwirkungen
beschränkt. In dieser Arbeit wird eine vom Autor entwickelte, neuartige Parallelisierungsmethode
vorgestellt, die eine dynamische Lastverteilung für das Lagrange-Verfahren ermöglicht (DDD - Dynamic
Domain Decomposition) und mit deren Hilfe eine deutliche Reduzierung der Gesamtausführungszeiten
einer Mehrphasenströmungsberechnung mit dem Euler-Lagrange-Verfahren möglich ist.
Im Ergebnis steht mit dem vom Autor und seiner Forschungsgruppe entwickelten vollständig parallelisierten
Euler-Lagrange-Verfahren MISTRAL/PartFlow-3D ein numerisches Berechnungsverfahren zur Verfügung,
mit dem disperse Mehrphasenströmungen mit höheren Konzentrationen der dispersen Phase und
daraus resultierenden starken Phasenwechselwirkungen (Vier-Wege-Kopplung) effektiv untersucht
werden können.
|
39 |
Simulation des Wärme- und Stofftransports in Partialoxidationsprozessen / Simulation of Heat and Mass Transport in Partial Oxidation ProcessesRichter, Andreas 18 April 2018 (has links) (PDF)
Die vorliegende Habilitationsschrift stellt den erreichten Stand der CFD-basierten Modellierung ein- und mehrphasiger Hochtemperaturprozesse dar. Die hierzu vorgelegten Arbeiten umfassen die Hochdruck-Partialoxidation von Erdgas, die Vergasung fester Einsatzstoffe in einem endothermen Flugstromreaktor und in einem mehrstufigen Wirbelschichtprozess sowie die Synthesegasaufbereitung in einem neuen Quenchreaktor. Der Forschungsschwerpunkt reicht dabei von der Entwicklung neuer Korrelationen zur Beschreibung der Strömungskräfte und des Wärmeübergangs basierend auf partikelaufgelösten Rechenmodellen über die Modellierung der thermochemischen Konversion reaktiver Einzelpartikel bis hin zur Berechnung und Optimierung unterschiedlicher Hochtemperaturreaktoren. / This habilitation thesis discusses the state of the art for the CFD modeling of single-phase and multi-phase high-temperature processes. The presented publications comprise the high-pressure partial oxidation of natural gas, the gasification of solid fuels in entrained-flow gasifiers and multi-stage fluidized-bed gasifier as well as the syngas treatment in a new quench reactor. The scientific approach covers the development of new correlations for flow forces and heat transfer based on particle-resolved numerical models, the modeling of the thermochemical conversion of reactive single particles, and the calculation and optimization of different high-temperature processes.
|
40 |
Simulation des Wärme- und Stofftransports in PartialoxidationsprozessenRichter, Andreas 27 March 2018 (has links)
Die vorliegende Habilitationsschrift stellt den erreichten Stand der CFD-basierten Modellierung ein- und mehrphasiger Hochtemperaturprozesse dar. Die hierzu vorgelegten Arbeiten umfassen die Hochdruck-Partialoxidation von Erdgas, die Vergasung fester Einsatzstoffe in einem endothermen Flugstromreaktor und in einem mehrstufigen Wirbelschichtprozess sowie die Synthesegasaufbereitung in einem neuen Quenchreaktor. Der Forschungsschwerpunkt reicht dabei von der Entwicklung neuer Korrelationen zur Beschreibung der Strömungskräfte und des Wärmeübergangs basierend auf partikelaufgelösten Rechenmodellen über die Modellierung der thermochemischen Konversion reaktiver Einzelpartikel bis hin zur Berechnung und Optimierung unterschiedlicher Hochtemperaturreaktoren. / This habilitation thesis discusses the state of the art for the CFD modeling of single-phase and multi-phase high-temperature processes. The presented publications comprise the high-pressure partial oxidation of natural gas, the gasification of solid fuels in entrained-flow gasifiers and multi-stage fluidized-bed gasifier as well as the syngas treatment in a new quench reactor. The scientific approach covers the development of new correlations for flow forces and heat transfer based on particle-resolved numerical models, the modeling of the thermochemical conversion of reactive single particles, and the calculation and optimization of different high-temperature processes.
|
Page generated in 0.027 seconds