• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 21
  • 17
  • 15
  • 9
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Efimov Physics in Fermionic Lithium atoms

Kang, Daekyoung 27 September 2011 (has links)
No description available.
22

Electromagnetic processes in few-body systems

Rampho, Gaotsiwe Joel 11 1900 (has links)
Electromagnetic processes induced by electron scattering off few-nucleon systems are theoretically investigated in the non-relativistic formalism. Non-relativistic one-body nuclear current operators are used with a parametrization of nucleon electromagnetic form factors based on recent experimental nucleon scattering data. Electromagnetic form factors of three-nucleon and four-nucleon systems are calculated from elastic electron-nucleus scattering information. Nuclear response functions used in the determination of differential cross sections for inclusive and exclusive quasi-elastic electron-nucleon scattering from the 4He nucleus are also calculated. Final-state interactions in the quasi-elastic nucleon knockout process are explicitly taken into account using the Glauber approximation. The sensitivity of the response functions to the final-state interactions is investigated. The Antisymmetrized Molecular Dynamics approach with angular momentum and parity projection is employed to construct ground state wave functions for the nuclei. A reduced form of the realistic Argonne V18 nucleon-nucleon potential is used to describe nuclear Hamiltonian. A convenient numerical technique of approximating expectation values of nuclear Hamiltonian operators is employed. The constructed wave functions are used to calculate ground-state energies, root-mean-square radii and magnetic dipole moments of selected light nuclei. The theoretical predictions of the nuclear properties for the selected nuclei give a satisfactory description of experimental values. The Glauber approximation is combined with the Antisymmetrized Molecular Dynamics to generate wave functions for scattering states in quasi-elastic scattering processes. The wave functions are then used to study proton knockout reactions in the 4He nucleus. The theoretical predictions of the model reproduce experimental observation quite well. / Physics / Ph D. (Physics)
23

Materie-Optik mit Edelgasmolekülen an Nanostrukturen / Matter Optics with Noble Gas Molecules and Nanostructures

Stoll, Werner Martin 18 December 2003 (has links)
No description available.
24

Electromagnetic processes in few-body systems

Rampho, Gaotsiwe Joel 11 1900 (has links)
Electromagnetic processes induced by electron scattering off few-nucleon systems are theoretically investigated in the non-relativistic formalism. Non-relativistic one-body nuclear current operators are used with a parametrization of nucleon electromagnetic form factors based on recent experimental nucleon scattering data. Electromagnetic form factors of three-nucleon and four-nucleon systems are calculated from elastic electron-nucleus scattering information. Nuclear response functions used in the determination of differential cross sections for inclusive and exclusive quasi-elastic electron-nucleon scattering from the 4He nucleus are also calculated. Final-state interactions in the quasi-elastic nucleon knockout process are explicitly taken into account using the Glauber approximation. The sensitivity of the response functions to the final-state interactions is investigated. The Antisymmetrized Molecular Dynamics approach with angular momentum and parity projection is employed to construct ground state wave functions for the nuclei. A reduced form of the realistic Argonne V18 nucleon-nucleon potential is used to describe nuclear Hamiltonian. A convenient numerical technique of approximating expectation values of nuclear Hamiltonian operators is employed. The constructed wave functions are used to calculate ground-state energies, root-mean-square radii and magnetic dipole moments of selected light nuclei. The theoretical predictions of the nuclear properties for the selected nuclei give a satisfactory description of experimental values. The Glauber approximation is combined with the Antisymmetrized Molecular Dynamics to generate wave functions for scattering states in quasi-elastic scattering processes. The wave functions are then used to study proton knockout reactions in the 4He nucleus. The theoretical predictions of the model reproduce experimental observation quite well. / Physics / Ph D. (Physics)
25

Numerical Study of the Fractional Quantum Hall Effect: a Few-Body Perspective

Bin Yan (6622667) 15 May 2019 (has links)
<div><div><div><p>When confined to a finite, two-dimensional area and exposed to a strong magnetic field, electrons exhibit a complicated, highly correlated quantum behavior known as the quantum Hall effect. This dissertation consists of finite size numerical investigations of this effect. One line of study develops treatment of the fractional quantum Hall effect using the hyperspherical method, in conjunction with applications to the few-body quantum Hall systems, e.g., highly-controlled atomic systems. Another line of research fully utilizes the developed numerical techniques to study on the platform of finite size fractional quantum Hall states the bulk-edge correspondence principle, which is universal for phases in topological orders. It has been demonstrated that the eigenstates associated with the entanglement spectrum reveal more information about the ground state than the spectrum alone.</p></div></div></div>
26

Advances in the Application of the Similarity Renormalization Group to Strongly Interacting Systems

Wendt, Kyle Andrew 17 December 2013 (has links)
No description available.
27

Testing the Low Energy Theorem for Spinless “Proton-Neutron” Bremsstrahlung

Pidopryhora, Yurii 04 August 2003 (has links)
No description available.
28

Universal Efimov physics in three- and four-body collisions

Wang, Yujun January 1900 (has links)
Doctor of Philosophy / Department of Physics / Brett D. Esry / The Efimov effect plays a central role in few-body systems at ultracold temperature and has thus accelerated a lot of studies on its manifestation in the collisional stability of the quantum degenerate gases. Near broad Feshbach resonances, Efimov physics has been studied both theoretically and experimentally through the zero-energy scattering observables. We have extended the theoretical studies of Efimov physics to a much broader extent. In particular, we have investigated the three-body Efimov physics near narrow Feshbach resonances and have also identified the Efimov features beyond the zero temperature limit. We have found, near a narrow Feshbach resonance, the non-trivial contribution from both of the resonance width and the short-range physics to the three-body recombination and vibrational dimer relaxation. Remarkably, the collisional stability of the Feshbach molecules are found to be opposite to that near the broad resonances: an increased stability for molecules made by bosons and a decreased stability for those made by fermions. The universal physics observed near the narrow Feshbach resonances is further found not to be limited to the zero temperature observables. We have found that the general features of Efimov physics and those pertaining to a narrow resonance are manifested in different energy ranges above zero temperature. This opens the opportunity to observe Efimov physics by changing the collisional energy while keeping the atomic interaction fixed. The landscape of the universal Efimov physics is thus delineated in both of the interaction and the energy domain. We have also investigated Efimov physics in heteronuclear four-body systems where the complexity can be reduced by approximations. In particular, we have proposed ways for controllable production of the Efimov tri-atomic molecules by three-body or four-body recombinations involving four atoms. We have also confirmed the existence of four-body Efimov effect in a system of three heavy particles and one light particle, which has resolved a decade-long controversy on this topic. Finally, we have studied the collisional properties of four identical bosons in 1D, which is important to the experiments on the quantum gases confined in the 1D optical lattices.
29

The role of three-body forces in few-body systems

Masita, Dithlase Frans 25 August 2009 (has links)
Bound state systems consisting of three nonrelativistic particles are numerically studied. Calculations are performed employing two-body and three-body forces as input in the Hamiltonian in order to study the role or contribution of three-body forces to the binding in these systems. The resulting differential Faddeev equations are solved as three-dimensional equations in the two Jacobi coordinates and the angle between them, as opposed to the usual partial wave expansion approach. By expanding the wave function as a sum of the products of spline functions in each of the three coordinates, and using the orthogonal collocation procedure, the equations are transformed into an eigenvalue problem. The matrices in the aforementioned eigenvalue equations are generally of large order. In order to solve these matrix equations with modest and optimal computer memory and storage, we employ the iterative Restarted Arnoldi Algorithm in conjunction with the so-called tensor trick method. Furthermore, we incorporate a polynomial accelerator in the algorithm to obtain rapid convergence. We applied the method to obtain the binding energies of Triton, Carbon-12, and Ozone molecule. / Physics / M.Sc (Physics)
30

The role of three-body forces in few-body systems

Masita, Dithlase Frans 25 August 2009 (has links)
Bound state systems consisting of three nonrelativistic particles are numerically studied. Calculations are performed employing two-body and three-body forces as input in the Hamiltonian in order to study the role or contribution of three-body forces to the binding in these systems. The resulting differential Faddeev equations are solved as three-dimensional equations in the two Jacobi coordinates and the angle between them, as opposed to the usual partial wave expansion approach. By expanding the wave function as a sum of the products of spline functions in each of the three coordinates, and using the orthogonal collocation procedure, the equations are transformed into an eigenvalue problem. The matrices in the aforementioned eigenvalue equations are generally of large order. In order to solve these matrix equations with modest and optimal computer memory and storage, we employ the iterative Restarted Arnoldi Algorithm in conjunction with the so-called tensor trick method. Furthermore, we incorporate a polynomial accelerator in the algorithm to obtain rapid convergence. We applied the method to obtain the binding energies of Triton, Carbon-12, and Ozone molecule. / Physics / M.Sc (Physics)

Page generated in 0.0317 seconds