• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 26
  • 18
  • 11
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 233
  • 233
  • 60
  • 45
  • 44
  • 37
  • 30
  • 24
  • 24
  • 21
  • 19
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Power Transformer Partial Discharge (PD) Acoustic Signal Detection using Fiber Sensors and Wavelet Analysis, Modeling, and Simulation

Tsai, Shu-Jen Steven 12 December 2002 (has links)
In this work, we first analyze the behavior of the acoustic wave from the theoretical point of view using a simplified 1-dimensional model. The model was developed based on the conservation of mass, the conservation of momentum, and the state equation; in addition, the fluid medium obeys Stokes assumption and it is homogeneous, adiabatic and isentropic. Experiment and simulation results show consistency to theoretical calculation. The second part of this thesis focuses on the PD signal analysis from an on-site PD measurement of the in-house design fiber optic sensors (by Virginia Tech, Center for Photonics Technology). Several commercial piezoelectric transducers (PZTs) were also used to compare the measurement results. The signal analysis employs the application of wavelet-based denoising technique to remove the noises, which mainly came from vibration, EMI, and light sources, embedded in the PD signal. The denoising technique includes the discrete wavelet transform (DWT) decomposition, thresh-holding of wavelet coefficients, and signal recovery by inverse discrete wavelet transform. Several approaches were compared to determine the optimal mother wavelet. The threshold limits are selected to remove the maximum Gaussian noises for each level of wavelet coefficients. The results indicate that this method could extract the PD spike from the noisy measurement effectively. The frequency of the PD pulse is also analyzed; it is shown that the frequencies lie in the range of 70 kHz to 250 kHz. In addition, with the assumed acoustic wave propagation delay between PD source and sensors, it was found that all PD activities occur in the first and third quadrant in reference to the applied sinusoidal transformer voltage. / Master of Science
132

Upscaling of Lacustrine Groundwater Discharge by Fiber Optic Distributed Temperature Sensing and Thermal Infrared imaging

Marruedo Arricibita, Amaya Irene 29 August 2018 (has links)
Der Zustrom von Grundwasser zu Seen (lacustrine groundwater discharge, LGD) kann signifikante Auswirkungen auf Qualität und Quantität des Seewassers haben. Viele Ansätze zur Identifikation und Quantifizierung von LGD basieren auf Temperaturunterschieden zwischen Grund- und Seewasser und der Messung des damit einhergehenden Wärmetransports. Ziel der Doktorarbeit ist es, Signalfortpflanzung und -ausbreitung des Grundwasserzustroms von der Punktskala an der Sediment-Wasser-Grenzfläche über den Wasserkörper bis zur Grenzfläche Wasseroberfläche-Atmosphäre zu untersuchen. Getestet wird die Hypothese, dass das im Verhältnis zum Umgebungswasser wärmere und daher leichtere Grundwasser in der kalten Wassersäule aufsteigt und die Detektion von LGD an der Wasseroberfläche mit thermalen Infrarot Aufnahmen (TIR) erlaubt. Zunächst wird mit der hierarchical patch dynamics ein Konzept entwickelt, das eine angemessene Kombination multipler Techniken zur Erfassung von Wärme- und Wasserflüssen anbietet (Kap. 2). Dabei werden verschiedene räumliche Skalen und ökohydrologische Grenzflächen abgedeckt. Darauf basierend werden in einem Mesokosmos-Experiment unterschiedliche LGD-Raten durch den Zustrom von warmem Wasser am Grund eines Outdoor-Pools simuliert (Kap. 3 und 4). Ein Glasfaserkabel (fibre-optic distributed temperature sensing, FO-DTS) wird in verschiedenen Tiefen installiert, um das Wärmesignal des Grundwasserzustroms unter verschiedenen Bedingungen zu verfolgen. Mit einer TIR-Kamera wird die Temperatur des Oberflächenwassers aufgezeichnet. Die Aufnahmen werden mit FO-DTS-Temperaturen von 2 cm unter der Wasseroberfläche validiert. Die Anwendung von TIR und FO-DTS ermöglicht die Detektion von LGD in der Wassersäule und an der Grenzfläche Wasseroberfläche-Atmosphäre. Wolkenbedeckung und der Tagesgang der Netto-Strahlung kontrollieren den Auftrieb von LGD und die Zuverlässigkeit der TIR-Ergebnisse. Die besten Ergebnisse werden bei Bewölkung und nachts erzielt. / Lacustrine groundwater discharge (LGD) can have significant impacts on lake water quantity and quality. There is a need to understand LGD mechanisms and to improve measurement methods for LGD. Approaches to identify and quantify LGD are based on significant temperature differences between GW and lake water. The main goal of this PhD thesis is to trace heat signal propagation of LGD from the point scale at the sediment-water interface across the overlying water body to the water surface-atmosphere interface. The PhD thesis tests the hypothesis that the positive buoyancy of warm GW causes upwelling across the cold water column and allows detection of LGD at the water surface by thermal infrared imaging (TIR). First, a general conceptual framework is developed based on hierarchical patch dynamics (HPD). It guides researchers on adequately combining multiple heat tracing techniques to identify and quantify heat and water exchange over several spatial scales and ecohydrological interfaces (Chapter 2). Second, the conceptual framework is used for the design of a mesocosm experiment (Chapters 3 and 4). Different LGD rates were simulated by injecting relatively warm water at the bottom of an outdoor mesocosm. A fiber optic distributed temperature sensing (FO-DTS) cable was installed in a 3D setup in the water column to trace the heat signal of the simulated LGD under different weather conditions and over entire diurnal cycles. Finally, a TIR camera was mounted 4 meters above the mesocosm to monitor water surface temperatures. TIR images were validated using FO-DTS temperature data 2 cm below the water surface (Chapter 4). The positive buoyancy of relatively warm LGD allows the detection of GW across the water column and at the water surface-atmosphere interface by FO-DTS and TIR. Cloud cover and diurnal cycle of net radiation strongly control the upwelling of simulated LGD and the reliability of TIR for detection of LGD at the water surface-atmosphere interface. Optimal results are obtained under overcast conditions and during night.
133

Phase Sensitive Estimation Of Fluorescence Lifetime For Fiber Optic Biosensors

Vadde, Venkatesh 06 1900 (has links)
Fluorescence lifetime determination and allied studies find application in spectroscopy in general and fiber optic biosensors in particular. Instruments and sensors cited in literature however use open loop, intensity based techniques with sophisticated detectors and components. We propose phase sensitive signal processing schemes to estimate the fluorescence lifetime using simple detectors and components, without compromising on accuracy. The performance of the schemes proposed is analysed and contrasted from a communications (signals and systems) point of view. The resolution and sensitivity limits imposed in processing the signal, by systematic errors and additive noise, are derived for the schemes suggested. It is found that systematic errors impose a phase resolution limit of about 2°. We then study the suitability of different detectors and channels for application in phase sensitive fluorescence biosensors we analyse the effect of systematic limitations as well as additive noise, in the detection/transmission process, from the point of view of the components used. Certain fundamental limits of operation in terms of excitation intensities are derived for different detector-channel combinations, with a view to obtain a given resolution. A photodiode used with a fiber bundle is found to be sufficient for accurate phase read outs with 10"4 radians resolution. A PMT used in conjunction with a multimode fiber serves as a very good device for microsensing applications Lastly, the biosensor for oxygen sensing, the ruthenium complex, is studied for standardisation of the sensor. We examine the quenching of fluorescence, the repeatability and reusability of the sensor, the stability of the instrument and such.
134

Design, Analysis and Development of Sensor Coil for Fiber Optics Gyroscope

Kumar, Pradeep January 2011 (has links) (PDF)
Interferometer Fiber Optic Gyroscope (IFOG) has established as critical sensor for advance navigation systems. Sensor coil is known to be heart of IFOG. The bias drift and scale factor performance of IFOG depend on the sensor coil. The environmental perturbations like vibration, shock, temperature and magnetic field can affect the measured phase difference between the counter propagating beams, thereby introducing a bias error resulting in degradation of IFOG performance. In general these factors are both time varying and unevenly distributed throughout the coil producing a net undesirable phase shift due to variations in the optical light path, which is undistinguishable from the rotation induced signal. The development of sensor coil for high performance includes selection of optical fiber, spool material, coil winding technique and potting adhesive. In the thesis, the effects of various perturbations like temperature, vibration and magnetic field on the sensor coil are analysed, which degrades the gyro performance. The effect of temperature and vibration can be reduced by proper selection of spool material, winding method and by applying adhesive during the winding of sensor coil. The effect of magnetic field can be reduced by using the high birefringence polarization maintaining fiber with shorter beat length, shielding the sensor coil and reducing the number of twist during the winding. Design and fabrication of the sensor coil is done for control grade & navigation grade FOG with fiber length of 100 m and 1000 m respectively with the polarization maintaining fiber of two different manufacturer Fiber Core, UK and Nufern, USA selected based upon the beat length and Numerical Aperture so that sensor coil has minimum effect of magnetic field and the bending of fiber. Presently the spool material used is Aluminium alloy (HE15) for the ease of fabrication and easily availability of material. The Quadrupolar winding is done to reduce the thermal gradient effects. The indigenously developed special adhesive is applied layer by layer to reduce the environmental effects. In order to study the lifetime of sensor coil accelerated aging test (85°C, RH 85 %) for 30 days is also carried out.
135

Využití a potlačování dvojlomných jevů v optovláknových senzorických aplikacích / Utilization and Suppression of Birefringence Phenomena in Optical Fiber Sensory Applications

Motúz, Rastislav January 2019 (has links)
The thesis deals with integral and distributed optical fiber sensors of electric current. In the area of integral sensors the analysis is performed by Jones matrix calculus and the simultaneous influence of induced circular and undesired linear birefringence using an ortho-conjugation retroreflector. Furthermore, the proposed conjugation loop variant using half-wave phase retarders is analyzed. The theoretical conclusions are confirmed by simulation and experimental measurement. In the field of distributed fiber optic sensors, analysis and simulation for the detection of plasma currents in thermonuclear fusion reactors, based on the POTDR technique, is performed. An improvement procedure is proposed for circular-shaped vacuum vessel reactors. Plasma current detection procedure in divertor-type reactors have been newly designed and simulated to investigate the effect of the OTDR detector noise on plasma current detection accuracy.
136

Experiências do desenvolvimento de transformador para alta temperatura baseado em isolação semi-híbrida e óleo vegetal isolante. / Experiences of development of transformer for high temperature based semi-hybrid insulation and vegetable oil.

Silva, Carlos Alves da 28 September 2015 (has links)
O transformador de potência é um importante equipamento utilizado no sistema elétrico de potência, responsável por transmitir energia elétrica ou potência elétrica de um circuito a outro e transformar tensões e correntes de um circuito elétrico. O transformador de potência tem ampla aplicação, podendo ser utilizado em subestações de usinas de geração, transmissão e distribuição. Neste sentido, mudanças recentes ocorridas no sistema elétrico brasileiro, causadas principalmente pelo aumento considerável de carga e pelo desenvolvimento tecnológico tem proporcionado a fabricação de um transformador com a aplicação de alta tecnologia, aumentando a confiabilidade deste equipamento e, em paralelo, a redução do seu custo global. Tradicionalmente, os transformadores são fabricados com um sistema de isolação que associa isolantes sólidos e celulose, ambos, imersos em óleo mineral isolante, constituição esta que define um limite à temperatura operacional contínua. No entanto, ao se substituir este sistema de isolação formado por papel celulose e óleo mineral isolante por um sistema de isolação semi- híbrida - aplicação de papel NOMEX e óleo vegetal isolante, a capacidade de carga do transformador pode ser aumentada por suportar maiores temperaturas. Desta forma, o envelhecimento do sistema de isolação poderá ser em longo prazo, significativamente reduzido. Esta técnica de aumentar os limites térmicos do transformador pode eliminar, essencialmente, as restrições térmicas associadas à isolação celulósica, provendo uma solução econômica para aperfeiçoar o uso de transformadores de potência, aumentando a sua confiabilidade operacional. Adicionalmente, à aplicação de sensores de fibra óptica, em substituição aos sensores de imagem térmica no monitoramento das temperaturas internas do transformador, se apresentam como importante opção na definição do equacionamento do comportamento do transformador sob o ponto de vista térmico. / The power transformer is important equipment used in electric power system, which is responsible for transmitting electricity or electric power from one circuit to another, transforms voltage and current in an electrical circuit. Moreover, it has wide application and can be used in substations of power plants, transmission and distribution. Recent changes in the electrical system caused mainly by the considerable increase in load and technological development provided by the manufacture of a transformer with the application of high technology, increasing the reliability of this equipment and, in parallel, reducing their overall cost. Traditionally, transformers are manufactured with a solid insulation system that combines solid insulation and cellulose, both immersed in oil, this constitution which limits the continuous operating temperature. However, when replacing this insulation system consisting of paper and cellulose insulating oil by a hybrid system consisting - application paper NOMEX and vegetable oil, the capacity of the transformer can be substantially increased. Thus, the aging of the insulation system may be at long term, significantly reduced. This technique of increasing the thermal limits of the equipment can essentially eliminate thermal constraints associated with conventional insulation, providing an economical solution for the optimization of power transformers, increasing their operational reliability. Additionally, the application of fiber-optic sensors, replacing the thermal imaging sensors to monitor the internal temperature of the transformer is presented as an important option in the definition of the equation of transformer behavior under the thermal point of view.
137

Experiências do desenvolvimento de transformador para alta temperatura baseado em isolação semi-híbrida e óleo vegetal isolante. / Experiences of development of transformer for high temperature based semi-hybrid insulation and vegetable oil.

Carlos Alves da Silva 28 September 2015 (has links)
O transformador de potência é um importante equipamento utilizado no sistema elétrico de potência, responsável por transmitir energia elétrica ou potência elétrica de um circuito a outro e transformar tensões e correntes de um circuito elétrico. O transformador de potência tem ampla aplicação, podendo ser utilizado em subestações de usinas de geração, transmissão e distribuição. Neste sentido, mudanças recentes ocorridas no sistema elétrico brasileiro, causadas principalmente pelo aumento considerável de carga e pelo desenvolvimento tecnológico tem proporcionado a fabricação de um transformador com a aplicação de alta tecnologia, aumentando a confiabilidade deste equipamento e, em paralelo, a redução do seu custo global. Tradicionalmente, os transformadores são fabricados com um sistema de isolação que associa isolantes sólidos e celulose, ambos, imersos em óleo mineral isolante, constituição esta que define um limite à temperatura operacional contínua. No entanto, ao se substituir este sistema de isolação formado por papel celulose e óleo mineral isolante por um sistema de isolação semi- híbrida - aplicação de papel NOMEX e óleo vegetal isolante, a capacidade de carga do transformador pode ser aumentada por suportar maiores temperaturas. Desta forma, o envelhecimento do sistema de isolação poderá ser em longo prazo, significativamente reduzido. Esta técnica de aumentar os limites térmicos do transformador pode eliminar, essencialmente, as restrições térmicas associadas à isolação celulósica, provendo uma solução econômica para aperfeiçoar o uso de transformadores de potência, aumentando a sua confiabilidade operacional. Adicionalmente, à aplicação de sensores de fibra óptica, em substituição aos sensores de imagem térmica no monitoramento das temperaturas internas do transformador, se apresentam como importante opção na definição do equacionamento do comportamento do transformador sob o ponto de vista térmico. / The power transformer is important equipment used in electric power system, which is responsible for transmitting electricity or electric power from one circuit to another, transforms voltage and current in an electrical circuit. Moreover, it has wide application and can be used in substations of power plants, transmission and distribution. Recent changes in the electrical system caused mainly by the considerable increase in load and technological development provided by the manufacture of a transformer with the application of high technology, increasing the reliability of this equipment and, in parallel, reducing their overall cost. Traditionally, transformers are manufactured with a solid insulation system that combines solid insulation and cellulose, both immersed in oil, this constitution which limits the continuous operating temperature. However, when replacing this insulation system consisting of paper and cellulose insulating oil by a hybrid system consisting - application paper NOMEX and vegetable oil, the capacity of the transformer can be substantially increased. Thus, the aging of the insulation system may be at long term, significantly reduced. This technique of increasing the thermal limits of the equipment can essentially eliminate thermal constraints associated with conventional insulation, providing an economical solution for the optimization of power transformers, increasing their operational reliability. Additionally, the application of fiber-optic sensors, replacing the thermal imaging sensors to monitor the internal temperature of the transformer is presented as an important option in the definition of the equation of transformer behavior under the thermal point of view.
138

Lesões laríngeas agudas pós-extubação : fatores de risco e associação com estridor

Netto, Cátia de Souza Saleh January 2014 (has links)
Objetivos: Descrever a incidência de lesões laríngeas agudas após extubação em unidade de terapia intensiva pediátrica (UTIP), e avaliar os seus fatores de risco e sua relação com a presença de estridor pós-extubação. Delineamento: Coorte Prospectiva. Métodos: Foram elegíveis todas as crianças de zero a cinco anos incompletos internadas na UTIP do Hospital de Clínicas de Porto Alegre que necessitaram de intubação endotraqueal por mais de 24 horas. Foram excluídas aquelas com história de intubação, patologia laríngea prévia, presença de traqueostomia atual ou no passado, presença de malformações craniofaciais e consideradas terminais pela equipe assistente. As crianças incluídas foram acompanhadas diariamente e, após a extubação, foram submetidas à fibronasolaringoscopia (FNL). Resultados: Foram acompanhadas 202 pacientes entre novembro de 2005 e dezembro de 2012. Na FNL após a extubação, 88 pacientes (43,6%) apresentaram lesões laríngeas agudas moderadas ou graves. Após análise multivariada dos fatores de risco, verificamos que tais lesões estão associadas com a presença de balonete no tubo endotraqueal (TET), risco relativo de 1,42 (IC 95%: 1,02-1,97; P=0,039). Dos pacientes com lesões moderadas a graves, 21 (23.9%) tiveram estridor por mais de 72 horas (P<0,001). Houve associação estatisticamente significativa entre a persistência de estridor após 72horas e a presença de balonete no TET (P=0,036). Conclusões: Este estudo encontrou uma alta frequência de lesões laríngeas agudas após a extubação, que foram associadas com o uso de TET com balonete. Além disso, o estridor persistente após 72 horas da extubação foi mais frequente em pacientes que apresentaram lesões laríngeas e naqueles que usaram TET com balonete. / Objectives: To describe acute laryngeal injuries after extubation in a pediatric intensive care unit (PICU) and to assess risk factors and their association with post-extubation stridor. Design: Prospective cohort. Methods: Children aged zero to five years admitted to the PICU of Hospital de Clínicas de Porto Alegre who required endotracheal intubation for more than 24 hours were eligible for study. Patients with previous intubation, history of laryngeal disease, current or past tracheostomy, presence of craniofacial malformations and those considered terminal by the staff were excluded from the study. Children were monitored daily and underwent flexible fiber-optic laryngoscopy (FFL) after extubation. Results: We followed 202 children between November 2005 and December 2012. In the FFL after extubation, 88 children (43,6%) had moderate to severe laryngeal lesions. After multivariate analysis of potential risk factors, it was found acute lesions were associated with the presence of cuffed endotracheal tube (ETT), relative risk of 1,42 (CI 95%: 1,02-1,97; P=0,039). Among patients with moderate to severe laryngeal lesions, 21 (23,9%) had stridor for more than 72 hours (P<0,001). There was a statistically significant association between persistent stridor after 72 hours and the presence of the cuffed ETT (P=0,036). Conclusions: This study found high frequency of acute laryngeal injuries after extubation, which were associated with cuffed ETT. Moreover, persistent stridor after 72 hours of extubation was more frequent in patients with laryngeal lesions and in those who used cuffed ETT.
139

Design And Analysis Of An Open Loop Fiber-optic Gyroscope

Ozdemir, Murat 01 February 2012 (has links) (PDF)
Sensing rotation has been an essential topic in navigation and many other applications. Gyroscopes based on propagation of light beams over fixed distances have gained interest with the development of the laser. Since the 1970s, with the development of fiber optics these laser based gyroscopes have developed into compact devices, which can fit in the palm of your hand. In this thesis, we describe and analyze the development of a fiber-optic gyroscope. Fiber optic gyroscopes (also called fiber gyro or FOG) have been under development for different types of applications for more than 30 years all around the world. The physical basis of the fiber gyro is the Sagnac effect that was discovered in the early 1900s and is named after its discoverer. In this work, we first explain the principle of operation of the Sagnac effect and we derive the fundamental formulations in order to have an analytical understanding of the theory. Then, we examine the fiber optic gyro configuration component by component, starting with the laser diode pumped broadband light emitting Erbium-doped superfluorescent source. In addition, the principle of phase modulation, electro-optic phase modulators, fiber optic cables and fiber winding techniques, such as quadrupolar winding is explained within the context of development of the FOG. v The FOG that was assembled was based on circulation and sensing of broadband light centered around 1550nm. The fiber coil was 5km long in order to increase sensitivity in the FOG device. Since single-mode fibers were used steps were taken to ensure successful operation even with polarization dependent errors. The constructed system demonstrated a low sensitivity with a large uncertainty while sensing typical rotation rates. Reasons behind the errors and low sensitivity, as well as improvements that can be made are discussed.
140

Evaluation of AASHTO design specifications for cast-in-place continuous bridge deck using remote sensing technique

Mehranipornejad, Ebrahim 01 June 2006 (has links)
This research project concerns the construction, testing, and remote health monitoring of the first smart bridge structure in Florida, the East Bay bridge in Gibsonton, Hillsborough County. The East Bay Bridge is a four span, continuous, deck-type structure with a total length of 120' and width of 55'. The superstructure consists of an 18'' cast-in-place reinforced concrete slab, and is supported on pre-stressed pile bents, each consisting of 5 piles. The smart sensors used for remote health monitoring are the newly emerged Fabry --Perot (FP) Fiber Optic Sensors, and are both surface-mounted and embedded in the concrete deck.Static and Dynamic testing of the bridge were performed using loaded SU-4 trucks, and a finite element model for the bridge was developed for the test cases using commercial software packages. In addition, the smart sensors were connected to a data acquisition system permanently installed on-site. This system could be accessed through regular phone lin es, which permits the evaluation of the bridge behavior under live traffic loads.Currently, these live structural data under traffic loading are transmitted to Hillsborough County's bridge maintenance office to assist in the health evaluation and maintenance of the bridge.AASHTO LRFD Design Code has been investigated using analytical and laboratory test but no attempt has been made to verify its relative outlook with respect to Allowable Strength Design (ASD) and AASHTO Standard Specifications (LFD) in a real field test. The likely reason for could have been the lack of accurate and reliable sensing systems.The data collected as well as the analytical studies through out this research, suggest that current LRFD design specifications for deck-type bridges are conservative. The technology developed under this work will enable practical, cost-effective, and reliable systematic maintenance of bridge structures, and the study will provide a unique opportunity for future growth of this tech nology in the state of Florida and in other states and finally, long term collected data can be used to keep the design codes in check.

Page generated in 0.0506 seconds