• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 8
  • 8
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wave Propagation and Damage Characterization in Natural Fiber Hemp and LLDPE Composite

Hodkhasa, Sandip 02 October 2013 (has links)
Research in incorporating natural fibers in composites has been in progress for a few decades where the various mechanical, electrical and acoustic properties of such composites were explored. Natural fiber composites (NFCs) have few benefits over the traditional glass or carbon fiber composites such as light weight, low manufacturing cost and requiring less energy for production. NFC is also bio-degradable and recyclable. The primary objectives of this research are to explore the static and dynamic properties of the hemp and linear low density polyethylene (LLDPE) and determine impact absorbing capability using the above mentioned properties. LLDPE is surface-treated with maleic anhydride grafted polyethylene (MA-g-PE) and sodium hydroxide (NaOH). A melt-mixing process is employed where LLDPE is compounded with the hemp fibers in 10%, 20% and 30% vol. fraction. Tensile and flexural properties are measured. The material is characterized by propagating Lamb waves generated using a dropped dead weight. Time-frequency information is extracted from a thin disc-like specimen using the Gabor Wavelet Transform (GWT) so as to characterize the material. Detection of defect is also established using the generated waves and GWT. Using Gabor wavelet coefficients, the dispersion and attenuation of the specimen are determined in different material directions. Comparison of attenuation of the waveforms is observed at different locations providing the knowledge of materials homogeneity, the materials behavior due to an impact and its impact absorbing character.
2

Nonlinear Mechanical and Actuation Characterization of Piezoceramic Fiber Composites

Williams, Robert Brett 23 April 2004 (has links)
The use of piezoelectric ceramic materials for structural actuation is a fairly well developed practice that has found use in a wide variety of applications. However, actuators with piezoceramic fibers and interdigitated electrodes have risen to the forefront of the intelligent structures community due to their increased actuation capability. However, their fiber-reinforced construction causes them to exhibit anisotropic piezomechanical properties, and the required larger driving voltages make the inherent piezoelectric nonlinearities more prevalent. In order to effectively utilize their increased performance, the more complicated behavior of these actuators must be sufficiently characterized. The current work is intended to provide a detailed nonlinear characterization of the mechanical and piezoelectric behavior of the Macro Fiber Composite actuator, which was developed at the NASA Langley Research Center. The mechanical behavior of this planar actuation device, which is both flexible and robust, is investigated by first developing a classical lamination model to predict its short-circuit linear-elastic properties, which are then verified experimentally. The sensitivity of this model to variations in constituent material properties is also studied. Phenomenological models are then used to represent the measured nonlinear short-circuit stress-strain response to various in-plane mechanical loads. Piezoelectric characterization begins with a nonlinear actuation model whose material parameters are determined experimentally for monotonically increasing electric fields. Next, the response of the actuator to a sinusoidal electric field input is measured under various constant mechanical loads and field amplitudes. From this procedure, the common linear piezoelectric strain coefficients are presented as a function of electric field amplitude and applied stress. In addition, a Preisach model is developed that uses the collected data sets to predict the hysteretic piezoelectric behavior of the MFC. Lastly, other related topics, such as manufacturing, cure kinetics modeling and linear thermoelasticity of the Macro Fiber Composite, are covered in the appendices. / Ph. D.
3

Short phosphate glass fiber - PLLA composite to promote bone mineralization

Melo, P., Tarrant, E., Swift, Thomas, Townshend, A., German, M., Ferreira, A-M., Gentile, P., Dalgarno, K. 01 July 2019 (has links)
Yes / The clinical application of composites seeks to exploit the mechanical and chemical properties of materials which make up the composite, and in researching polymer composites for biomedical applications the aim is usually to enhance the bioactivity of the polymer, while maintaining the mechanical properties. To that end, in this study medical grade Poly(L-lactic) acid (PLLA) has been reinforced with short phosphate-based glass fibers (PGF). The materials were initially mixed by melting PLLA granules with the short fibers, before being extruded to form a homogenous filament, which was pelletized and used as feedstock for compression moulding. As made the composite materials had a bending strength of 51 MPa ± 5, and over the course of eight weeks in PBS the average strength of the composite material was in the range 20–50 MPa. Human mesenchymal stromal cells were cultured on the surfaces of scaffolds, and the metabolic activity, alkaline phosphatase production and mineralization monitored over a three week period. The short fiber filler made no significant difference to cell proliferation or differentiation, but had a clear and immediate osteoinductive effect, promoting mineralization by cells at the material surface. It is concluded that the PLLA/PGF composite material offers a material with both the mechanical and biological properties for potential application to bone implants and fixation, particularly where an osteoinductive effect would be valuable. / funded in part by the EPSRC Centre for Doctoral Training in Additive Manufacturing and 3D Printing (EP/L01534X/1), the EPSRC Centre for Innovative Manufacture in Medical Devices (EP/K029592/1), and Glass Technology Services Ltd., Sheffield, UK.
4

Desenvolvimento de uma metodologia computacional para determinar coeficientes efetivos de compósitos inteligentes / Development of a computational methodology for determining effective coefficients of the smart composites

Medeiros, Ricardo de 15 February 2012 (has links)
O presente trabalho visa empregar uma metodologia numérica para determinar as propriedades macro mecânica de compósitos ativos (AFC - Active Fiber Composite ou MFC - Macro Fiber Composite), combinando o conceito de Volume Elementar Representativo (VER) com o Método dos Elementos Finitos (MEF). Inicialmente, apresenta-se a fundamentação teórica associada à abordagem numérica empregada. Posteriormente, os modelos numéricos desenvolvidos são aplicados na determinação dos coeficientes efetivos de materiais compósitos inteligentes transversalmente isotrópicos com fibras piezelétricas de seção com forma circular e quadrada, respectivamente. Finalmente, os resultados numéricos obtidos pela metodologia proposta são, então, comparados com resultados da literatura. Constata-se que os resultados obtidos são muito semelhantes aos resultados relatados pela literatura para arranjo quadrático e hexagonal com fibra de geometria circular, sendo que neste caso, compararam-se os resultados numéricos com analíticos obtidos através do Método de Homogeneização Assintótica. Em seguida, a metodologia é aplicada para determinação dos coeficientes efetivos para arranjo quadrático e hexagonal com fibra de geometria quadrada. Empregando diferentes frações volumétricas de fibras, os resultados via MEF foram comparados aos resultados analíticos obtidos através do Método dos Campos Uniformes (Uniform Field Method). Após a avaliação das limitações e potencialidades da metodologia, de forma direta, através de resultados analíticos, realizou-se a avaliação da mesma de forma indireta. Para tal, foram realizadas análises dinâmicas visando comparar as Funções de Resposta em Frequência (FRF) experimentais com as obtidas computacionalmente. Dessa forma, utilizou-se uma viga de alumínio estrutural engastada-livre, onde foram colados duas pastilhas piezelétricas, sendo uma para realizar a excitação da estrutura e, a outra para fazer a aquisição dos dados. Os modelos computacionais via MEF empregaram para o domínio das pastilhas, as propriedades efetivas determinadas através da metodologia desenvolvida. Os resultados obtidos demonstraram mais uma vez as potencialidades da metodologia proposta. Assim, conclui-se que a metodologia numérica não é somente uma boa alternativa para o cálculo de coeficientes efetivos de compósitos inteligentes, mas também uma ferramenta para o projeto de estruturas inteligentes monitoradas por materiais piezelétricos. / This work presents the development a numerical methodology to determine the mechanical properties of active macro composites (AFC - Active Fiber Composite, or MFC - Macro Fiber Composite), combining the concept of Representative Elementary Volume (REV) with the Finite Element Method (FEM). In the first instance, the theoretical framework associated with the numerical approach employed is presented. Later, numerical models based on unit cell are applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. Finally, numerical results obtained by the proposed methodology are compared to other methods reported in the literature. It appears that the results are very similar to the literature results for square and hexagonal arrangement of fibers with circular geometry, in which case, it was compared numerical with analytical results calculated by Asymptotic Homogenization Method (AHM). After that, the methodology is applied to determine the effective coefficients for square and hexagonal array with square fiber geometry. Employing different fiber volume fractions, it follows that the results obtained by the proposed methodology were compared to analytical results calculated by the Uniform Field Method (UFM). After assessing the potential and limitations of the methodology, either directly, through analytical results, the evaluation took place in the indirect approach. Then, dynamic analyses were performed in order to compare the Frequency Response Functions (FRFs) determined by experimental tests with computational results. Thus, it was used a cantilever beam aluminum structure, which were bonded two piezoelectric patches, one to carry the excitement of the structure and the second to perform the data acquisition. The effective properties determined by the proposed methodology were applied for the dominium established by the piezoelectric patches. The results showed, again, the potential of the proposed methodology. Therefore, the numerical methodology is not only a good alternative for the calculation of effective coefficients of smart composite, but also a tool for the design of smart structures monitored by piezoelectric materials.
5

Desenvolvimento de uma metodologia computacional para determinar coeficientes efetivos de compósitos inteligentes / Development of a computational methodology for determining effective coefficients of the smart composites

Ricardo de Medeiros 15 February 2012 (has links)
O presente trabalho visa empregar uma metodologia numérica para determinar as propriedades macro mecânica de compósitos ativos (AFC - Active Fiber Composite ou MFC - Macro Fiber Composite), combinando o conceito de Volume Elementar Representativo (VER) com o Método dos Elementos Finitos (MEF). Inicialmente, apresenta-se a fundamentação teórica associada à abordagem numérica empregada. Posteriormente, os modelos numéricos desenvolvidos são aplicados na determinação dos coeficientes efetivos de materiais compósitos inteligentes transversalmente isotrópicos com fibras piezelétricas de seção com forma circular e quadrada, respectivamente. Finalmente, os resultados numéricos obtidos pela metodologia proposta são, então, comparados com resultados da literatura. Constata-se que os resultados obtidos são muito semelhantes aos resultados relatados pela literatura para arranjo quadrático e hexagonal com fibra de geometria circular, sendo que neste caso, compararam-se os resultados numéricos com analíticos obtidos através do Método de Homogeneização Assintótica. Em seguida, a metodologia é aplicada para determinação dos coeficientes efetivos para arranjo quadrático e hexagonal com fibra de geometria quadrada. Empregando diferentes frações volumétricas de fibras, os resultados via MEF foram comparados aos resultados analíticos obtidos através do Método dos Campos Uniformes (Uniform Field Method). Após a avaliação das limitações e potencialidades da metodologia, de forma direta, através de resultados analíticos, realizou-se a avaliação da mesma de forma indireta. Para tal, foram realizadas análises dinâmicas visando comparar as Funções de Resposta em Frequência (FRF) experimentais com as obtidas computacionalmente. Dessa forma, utilizou-se uma viga de alumínio estrutural engastada-livre, onde foram colados duas pastilhas piezelétricas, sendo uma para realizar a excitação da estrutura e, a outra para fazer a aquisição dos dados. Os modelos computacionais via MEF empregaram para o domínio das pastilhas, as propriedades efetivas determinadas através da metodologia desenvolvida. Os resultados obtidos demonstraram mais uma vez as potencialidades da metodologia proposta. Assim, conclui-se que a metodologia numérica não é somente uma boa alternativa para o cálculo de coeficientes efetivos de compósitos inteligentes, mas também uma ferramenta para o projeto de estruturas inteligentes monitoradas por materiais piezelétricos. / This work presents the development a numerical methodology to determine the mechanical properties of active macro composites (AFC - Active Fiber Composite, or MFC - Macro Fiber Composite), combining the concept of Representative Elementary Volume (REV) with the Finite Element Method (FEM). In the first instance, the theoretical framework associated with the numerical approach employed is presented. Later, numerical models based on unit cell are applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. Finally, numerical results obtained by the proposed methodology are compared to other methods reported in the literature. It appears that the results are very similar to the literature results for square and hexagonal arrangement of fibers with circular geometry, in which case, it was compared numerical with analytical results calculated by Asymptotic Homogenization Method (AHM). After that, the methodology is applied to determine the effective coefficients for square and hexagonal array with square fiber geometry. Employing different fiber volume fractions, it follows that the results obtained by the proposed methodology were compared to analytical results calculated by the Uniform Field Method (UFM). After assessing the potential and limitations of the methodology, either directly, through analytical results, the evaluation took place in the indirect approach. Then, dynamic analyses were performed in order to compare the Frequency Response Functions (FRFs) determined by experimental tests with computational results. Thus, it was used a cantilever beam aluminum structure, which were bonded two piezoelectric patches, one to carry the excitement of the structure and the second to perform the data acquisition. The effective properties determined by the proposed methodology were applied for the dominium established by the piezoelectric patches. The results showed, again, the potential of the proposed methodology. Therefore, the numerical methodology is not only a good alternative for the calculation of effective coefficients of smart composite, but also a tool for the design of smart structures monitored by piezoelectric materials.
6

Nonlinear Modeling of a Sustainable Material

Baza, Jorien Gill 01 December 2010 (has links)
This study developed a nonlinear constitutive model for a sustainable orthotropic material. Existing methods for constitutive models of wood were improved upon to include the nonlinear stress-strain response not only in the two orthogonal axes but at any orientation to the strong axis of the material. This method also simplifies the nonlinear stress-strain relationships into bilinear stress-strain curves which can be valuable in hand calculations as well as finite-element analyses. The effectiveness of the proposed constitutive model is demonstrated by comparing bilinear stress-strain predictions to experimental data.
7

MODELING AND FABRICATION OF LIGHTWEIGHT, DEFORMABLE MIRRORS SUBJECTED TO DISCRETE LOADING

Roche, Michael E. 01 January 2001 (has links)
The push towards larger diameter space telescope mirrors has caused the space industry to look at lightweight, deformable alternatives to the traditional monolithic mirror. One possible solution to the dilemma is to use the piezoelectric properties of certain materials to create a lightweight, deformable mirror. Current piezoelectric deformable mirror designs use individual actuators, creating an immensely complex system as the mirrors increase in size. The objective of this thesis is to aid in the design and development of lightweight, deformable mirrors for use in space based telescopes. Two topics are considered to aid this development. A doubly curved, lightweight, bimorph mirror is investigated. The fabrication method entails forming a thin film piezoelectric polymer into a doubly curved shape using a specially designed forming machine. The second topic entails the finite element modeling of a composite mirror substrate with a piezoceramic actuator backing. The model is generated using a meshing program designed to generate off-centered spot loads of electric potential. These spot loads simulate the actuation due to an electron gun. The effects of spot location and size on mirror deformation are examined.
8

Aerodynamic and Electromechanical Design, Modeling and Implementation Of Piezocomposite Airfoils

Bilgen, Onur 02 September 2010 (has links)
Piezoelectrics offer high actuation authority and sensing over a wide range of frequencies. A Macro-Fiber Composite is a type of piezoelectric device that offers structural flexibility and high actuation authority. A challenge with piezoelectric actuators is that they require high voltage input; however the low power consumption allows for relatively lightweight electronic components. Another challenge, for piezoelectric actuated aerodynamic surfaces, is found in operating a relatively compliant, thin structure (desirable for piezoceramic actuators) in situations where there are relatively high external (aerodynamic) forces. Establishing an aeroelastic configuration that is stiff enough to prevent flutter and divergence, but compliant enough to allow the range of available motion is the central challenge in developing a piezocomposite airfoil. The research proposed here is to analyze and implement novel electronic circuits and structural concepts that address these two challenges. Here, a detailed theoretical and experimental analysis of the aerodynamic and electromechanical systems that are necessary for a practical implementation of a piezocomposite airfoil is presented. First, the electromechanical response of Macro-Fiber Composite based unimorph and bimorph structures is analyzed. A distributed parameter electromechanical model is presented for interdigitated piezocomposite unimorph actuators. Necessary structural features that result in large electrically induced deformations are identified theoretically and verified experimentally. A novel, lightweight electrical circuitry is proposed and implemented to enable the peak-to-peak actuation of Macro-Fiber Composite bimorph devices with asymmetric voltage range. Next, two novel concepts of supporting the piezoelectric material are proposed to form two types of variable-camber aerodynamic surfaces. The first concept, a simply-supported thin bimorph airfoil, can take advantage of aerodynamic loads to reduce control input moments and increase control effectiveness. The structural boundary conditions of the design are optimized by solving a coupled fluid-structure interaction problem by using a structural finite element method and a panel method based on the potential flow theory for fluids. The second concept is a variable-camber thick airfoil with two cascading bimorphs and a compliant box mechanism. Using the structural and aerodynamic theoretical analysis, both variable-camber airfoil concepts are fabricated and successfully implemented on an experimental ducted-fan vehicle. A custom, fully automated low-speed wind tunnel and a load balance is designed and fabricated for experimental validation. The airfoils are evaluated in the wind tunnel for their two-dimensional lift and drag coefficients at low Reynolds number flow. The effects of piezoelectric hysteresis are identified. In addition to the shape control application, low Reynolds number flow control is examined using the cascading bimorph variable-camber airfoil. Unimorph type actuators are proposed for flow control in two unique concepts. Several electromechanical excitation modes are identified that result in the delay of laminar separation bubble and improvement of lift. Periodic excitation to the flow near the leading edge of the airfoil is used as the flow control method. The effects of amplitude, frequency and spanwise distribution of excitation are determined experimentally using the wind tunnel setup. Finally, the effects of piezoelectric hysteresis nonlinearity are identified for Macro-Fiber Composite bimorphs. The hysteresis is modeled for open-loop response using a phenomenological classical Preisach model. The classical Preisach model is capable of predicting the hysteresis observed in 1) two cantilevered bimorph beams, 2) the simply-supported thin airfoil, and 3) the cascading bimorph thick airfoil. / Ph. D.
9

MEMS Technologies for Energy Harvesting and Sensing

Varghese, Ronnie Paul 20 September 2013 (has links)
MEMS devices are finding application in diverse fields that include energy harvesting, microelectronics and sensors. In energy harvesting, MEMS scale devices are employed due to its efficiencies of scale. The miniaturization of energy harvesters permit them to be integrated as the power supply for sensors often in the same package and also extends their use to remote and extreme ambient applications. Unlike inductive harvesting, piezoelectric and magnetoelectric devices lend easily to MEMS scaling. The processing of such Piezo-MEMS devices often requires special fabrication, characterization and testing techniques. Our research work has focused on the development of the various technologies for a) the better characterization of the constituent materials that make up these devices, b) the conceptualization and structural design of unique MEMS energy harvesters and finally c) the development of the unit operations (many novel) for fabrication and the mechanical and electrical testing of these devices. In this research work, we have pioneered some new approaches to the characterization of thin films utilized in Piezo-MEMS devices: (1) Temperature-Time Transformation (TTT) diagrams are used to document texture evolution during thermal treatment of ceramics. Multinomial and multivariate regression techniques were utilized to create the predictor models for TTT data of Pb(Zr0.60Ti0.40 O3) sol-gel thin films. (2) We correlated the composition (measured using Energy Dispersive X-ray analysis (EDX) and Electron Probe Micro Analysis (EPMA)) of Pb(Zr0.52Ti0.48 O3) RF sputtered thin films to its optical dispersion properties measured using Variable Angle Spectroscopic Ellipsometry (VASE). Wemple-DiDomenico, Jackson-Amer, Tauc and Urbach optical dispersion factors and Lorentz Lorenz polarizability relationships were combined to realize a model for predicting the elemental content of any thin film system. (3) We developed in house capability for strain analysis of magnetostrictive thin films using laser Doppler Vibrometry (LDV). We determined a methodology to convert the displacements measurements of AC magnetic field induced vibrations of thin film samples into magnetostriction values. (4) Finally, we report the novel use of a thermo-optic technique, Time Domain Thermoreflectance (TDTR) in the study of Pb(Zr,Ti)O3 (PZT) thin film texturing. Time Domain Thermoreflectance (TDTR) has been proved to be capable of measuring thermal properties of atomic layers and interfaces. Therefore, we utilized TDTR to analyze and model the heat transport at the nano scale and correlate with different PZT crystalline orientations. To harvest energy at the low frequency (<100Hz) of ambient vibrations, MEMS energy harvesters require special structures. Extensive research has led us to the development of Circular Zigzag structure that permits inertial mass free attainment of such low frequencies. In addition to Si micromachining, we have fabricated such structures using a new Micro water jet micromachining of thin piezo sheets, unimorphs and bimorphs. For low frequency magnetic energy harvesting, we also fabricated the first magnetoelectric macro fiber composite. This device also employs a novel low temperature metallic bonding technique to fuse the magnetostrictive layer to the piezoelectric layers. A special low viscosity epoxy enabled the joining of the flexible circuit to the magnetoelectric fibers. Lastly, we developed a nondimensional tunable Piezo harvester, called PiezoCap, which decouples the energy harvesting component of the device from the resonant vibration component. We do so by using magnets loaded on piezo harvester strips, thereby making them piezomagnetoelastic and vary the spacing between 2 magnet+piezoelectric pairs to eliminate dimensionality and permit active tunability of the harvester's resonant frequency. / Ph. D.
10

Characterization of Oscillatory Lift in MFC Airfoils

Lang Jr, Joseph Reagle 25 November 2014 (has links)
The purpose of this research is to characterize the response of an airfoil with an oscillatory morphing, Macro-fiber composite (MFC) trailing edge. Correlation of the airfoil lift with the oscillatory input is presented. Modal analysis of the test airfoil and apparatus is used to determine the frequency response function. The effects of static MFC inputs on the FRF are presented and compared to the unactuated airfoil. The transfer function is then used to determine the lift component due to cambering and extract the inertial components from oscillating airfoil. Finally, empirical wind tunnel data is modeled and used to simulate the deflection of airfoil surfaces during dynamic testing conditions. This research serves to combine modal analysis, empirical modeling, and aerodynamic testing of MFC driven, oscillating lift to formulate a model of a dynamic, loaded morphing airfoil. / Master of Science

Page generated in 0.0615 seconds