• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 8
  • 8
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Avalia??o da estrutura de tecidos t?cnicos como elemento refor?ante em comp?sitos polim?ricos sistema poli?ster isoft?lico

Melo, Alan Jones Lira de 23 July 2013 (has links)
Made available in DSpace on 2014-12-17T14:58:20Z (GMT). No. of bitstreams: 1 AlanJLM_DISSERT.pdf: 1835050 bytes, checksum: 47bf4fbd76665d11995bd7eb5bd3522a (MD5) Previous issue date: 2013-07-23 / Materials known as technical textiles can be defined as structures designed and developed to meet specific functional requirements of various industry sectors, which is the case in automotive and aerospace industries, and other specific applications. Therefore, the purpose of this work presents the development and manufacture of polymer composite with isophthalic polyester resin. The reinforcement of the composite structure is a technical textile fabric made from high performance fibers, aramid (Kevlar 49) and glass fiber E. The fabrics are manufactured by the same method, with the aim of improving the tensile strength of the resulting polymer composite material. The fabrics, we developed some low grammage technical textile structures in laboratory scale and differentiated-composition type aramid (100%), hybrid 1 aramid fiber / glass (65/35%) and hybrid 2 aramid fiber / glass (85/15% ) for use as a reinforcing element in composite materials with unsaturated isophthalic polyester matrix. The polymer composites produced were tested in uniaxial tensile fracture surface and it?s evaluated by SEM. The purpose of this work characterize the performance of polymer composites prepared, identifying changes and based on resistance to strain corresponding to the mechanical behavior. The objectives are to verify the capability of using this reinforcement structure, along with the use of high performance fibers and resin in terms of workability and mechanical strength; verify the adherence of the fiber to the matrix and the fracture surface by electron microscopy scanning and determination of tensile strength by tensile test. The results indicate that, in a comparative study to the response of uniaxial tensile test for tensile strength of the composites and the efficiency of the low percentage of reinforcement element, being a technical textile fabric structure that features characteristic of lightness and low weight added in polymer composites / Os materiais denominados de tecidos t?cnicos podem ser definidos como estruturas projetadas e desenvolvidas com a fun??o de atender a requisitos funcionais espec?ficos de diversos setores da ind?stria com aplica??es espec?ficas. Nesse sentido, este trabalho apresenta o desenvolvimento e a fabrica??o de comp?sito polim?rico com resina poli?ster isoft?lico. O refor?o do comp?sito ? uma estrutura de tecido t?xtil t?cnico confeccionado com fibras de alto desempenho de aramida (Kevlar 49) e fibra de vidro E. Os tecidos s?o fabricados pelo mesmo m?todo, com o objetivo do aprimorar a resist?ncia a tra??o do material comp?sito polim?rico resultante. Os tecidos, foram desenvolvidos em escala laboratorial com baixa gramatura e composi??o diferenciada de aramida (100%), h?brido 1 fibra de aramida/vidro (65/35%) e h?brido 2 fibra de aramida/vidro (85/15%) para utiliza??o como elemento refor?ante em comp?sitos com matriz de poli?ster insaturada isoft?lico. Os comp?sitos polim?ricos produzidos foram ensaiados em tra??o uniaxial e sua superf?cie de fratura avaliada por MEV. A proposta do trabalho ? caracterizar o desempenho dos comp?sitos polim?ricos elaborados, identificando as altera??es e baseando-se na resist?ncia ao ensaio de tra??o correspondente a comportamento mec?nico. Os objetivos s?o verificar a potencialidade da utiliza??o desta estrutura de refor?o, juntamente com a utiliza??o das fibras de alto desempenho e a resina, em termos de trabalhabilidade e resist?ncia mec?nica; verificar a ader?ncia da fibra ? matriz e a superf?cie de fratura atrav?s de microscopia eletr?nica de varredura e determina??o de resist?ncia ? ruptura por ensaio de tra??o. Os resultados indicam que, em um estudo comparativo para a resposta dos ensaios mec?nicos de tra??o uniaxial h? resist?ncia ? ruptura dos comp?sitos e a efici?ncia da baixa porcentagem do elemento de refor?o, sendo uma estrutura de tecido t?xtil t?cnico que apresenta caracter?stica de leveza e baixa gramatura adicionada nos comp?sitos polim?ricos
32

Otimização topológica de cascas compostas laminadas com atuador piezelétrico para o controle de vibrações

Padoin, Eduardo January 2014 (has links)
Este trabalho apresenta uma metodologia de otimização topológica de atuadores piezelétricos em estruturas compostas laminada com o objetivo de atenuar as vibrações estruturais induzidas por excitações externas. Para isso, utiliza-se técnicas de controle ótimo, como o regulador linear quadrático (LQR) e o controlador linear quadrático gaussiano (LQG). Os estados não mensuráveis são estimados através do uso de observadores de estados de ordem completa, usando o filtro de Kalman para a escolha ótima da matriz de ganhos do observador de estados. O problema de otimização topológica é formulado para a localização ótima do atuador piezelétrico composto MFC (Macro Fiber Composite) na camada ativa da placa, determinando a localização mais vantajosa do material MFC através da maximização do índice de controlabilidade. Para o modelo estrutural, é proposto neste trabalho um modelo para a interação entre o atuador MFC e a estrutura. Assume-se que o MFC é uma das lâminas de material ortotrópico que sofre uma deformação inicial a partir da aplicação de um potencial elétrico e que essa deformação terá efeitos sobre o restante da estrutura. Dessa maneira, não é necessário modelar o campo elétrico gerado através dos eletrodos, uma vez que o efeito eletromecânico é considerado analiticamente. A rigidez e a massa do atuador MFC são considerados no modelo estrutural. Os resultados numéricos mostram que o modelo estrutural proposto para representar a interação entre o atuador MFC e a estrutura apresenta boa concordância com resultados experimentais e numéricos encontrados. Além disso, os resultados mostram que a partir do posicionamento ótimo do atuador MFC na estrutura, a técnica de controle implementada permite atenuar as vibrações estruturais. As simulações para uma força de um degrau unitário permitem concluir que a estratégia de controle usando o controlado LQG apresenta melhor desempenho em termos de tempo de assentamento, sobre resposta, amortecimento e sinal de controle, quando comparado com o controlador LQR. / This work presents a topologic optimization methodology of piezoelectric actuators in laminated composite structures with the objective of controlling external perturbation induced by structural vibrations. The Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) optimal control techniques are used. The states are estimated through of the full order state observers, using the Kalman filter to the observer gain matrix. The topology optimization is formulated to find the optimum localization of the Macro Fiber Composite (MFC) active piezoelectric patch, determining the most advantageous location of the MFC, through of the maximization of the controllability index. For the structural model, this work proposes a simplified MFC/structure interaction model. It is assumed that the MFC is one of the orthotropic material layers which has an initial strain arising from the application of an electric potential; this strain acts on the remainder of the structure. This way, modeling the electromechanical interaction between the piezoelectric material and the electric field is unnecessary because this effect is considered analytically. Both the stiffness and the mass of the MFC are taken into account in the structural model. Numerical results show that proposed MFC-structure interaction model presents good agreement with experiments and numerical simulations of models that uses the electromechanical effect. Actuator location optimization results show that the technique implemented improves the structural vibration damping. The response simulations to an unit step force allows to conclude that the control strategy using the LQG controller presents better performance in terms of settling time, overshoot, damping and control signal energy when compared to the LQR controller.
33

Otimização topológica de cascas compostas laminadas com atuador piezelétrico para o controle de vibrações

Padoin, Eduardo January 2014 (has links)
Este trabalho apresenta uma metodologia de otimização topológica de atuadores piezelétricos em estruturas compostas laminada com o objetivo de atenuar as vibrações estruturais induzidas por excitações externas. Para isso, utiliza-se técnicas de controle ótimo, como o regulador linear quadrático (LQR) e o controlador linear quadrático gaussiano (LQG). Os estados não mensuráveis são estimados através do uso de observadores de estados de ordem completa, usando o filtro de Kalman para a escolha ótima da matriz de ganhos do observador de estados. O problema de otimização topológica é formulado para a localização ótima do atuador piezelétrico composto MFC (Macro Fiber Composite) na camada ativa da placa, determinando a localização mais vantajosa do material MFC através da maximização do índice de controlabilidade. Para o modelo estrutural, é proposto neste trabalho um modelo para a interação entre o atuador MFC e a estrutura. Assume-se que o MFC é uma das lâminas de material ortotrópico que sofre uma deformação inicial a partir da aplicação de um potencial elétrico e que essa deformação terá efeitos sobre o restante da estrutura. Dessa maneira, não é necessário modelar o campo elétrico gerado através dos eletrodos, uma vez que o efeito eletromecânico é considerado analiticamente. A rigidez e a massa do atuador MFC são considerados no modelo estrutural. Os resultados numéricos mostram que o modelo estrutural proposto para representar a interação entre o atuador MFC e a estrutura apresenta boa concordância com resultados experimentais e numéricos encontrados. Além disso, os resultados mostram que a partir do posicionamento ótimo do atuador MFC na estrutura, a técnica de controle implementada permite atenuar as vibrações estruturais. As simulações para uma força de um degrau unitário permitem concluir que a estratégia de controle usando o controlado LQG apresenta melhor desempenho em termos de tempo de assentamento, sobre resposta, amortecimento e sinal de controle, quando comparado com o controlador LQR. / This work presents a topologic optimization methodology of piezoelectric actuators in laminated composite structures with the objective of controlling external perturbation induced by structural vibrations. The Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) optimal control techniques are used. The states are estimated through of the full order state observers, using the Kalman filter to the observer gain matrix. The topology optimization is formulated to find the optimum localization of the Macro Fiber Composite (MFC) active piezoelectric patch, determining the most advantageous location of the MFC, through of the maximization of the controllability index. For the structural model, this work proposes a simplified MFC/structure interaction model. It is assumed that the MFC is one of the orthotropic material layers which has an initial strain arising from the application of an electric potential; this strain acts on the remainder of the structure. This way, modeling the electromechanical interaction between the piezoelectric material and the electric field is unnecessary because this effect is considered analytically. Both the stiffness and the mass of the MFC are taken into account in the structural model. Numerical results show that proposed MFC-structure interaction model presents good agreement with experiments and numerical simulations of models that uses the electromechanical effect. Actuator location optimization results show that the technique implemented improves the structural vibration damping. The response simulations to an unit step force allows to conclude that the control strategy using the LQG controller presents better performance in terms of settling time, overshoot, damping and control signal energy when compared to the LQR controller.
34

Durabilidade de argamassas modificadas por polimeros e reforçadas com fibras vegetais / Durability of fiber-cement polimer modify

Pimentel, Lia Lorena 22 December 2004 (has links)
Orientadores: Antonio Ludovico Beraldo, Holmer Savastano Jr / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola / Made available in DSpace on 2018-08-04T18:06:06Z (GMT). No. of bitstreams: 1 Pimentel_LiaLorena_D.pdf: 8380973 bytes, checksum: ef3487c321678b6667f0d10a5d68da33 (MD5) Previous issue date: 2004 / Resumo: A grande quantidade de resíduos agro-industriais, aliada à proibição do uso do amianto e à necessidade de solucionar problemas ambientais decorrentes do depósito e/ou queima destes resíduos, impulsionam a pesquisa para o desenvolvimento de compósitos fibro-vegetais-cimento. A durabilidade desses compósitos é um dos fatores mais importantes para a colocação deste material no mercado consumidor. Existem várias pesquisas desenvolvidas ou em andamento, algumas propondo o tratamento químico das fibras vegetais, outras fazendo uso de produtos que alterem a composição da matriz cimentícia. A utilização de polímeros em concreto e argamassa, com o objetivo de melhorar sua durabilidade é cada vez mais freqüente e a característica de certos polímeros de melhorar a aderência entre fibra e matriz, além de reduzir a capacidade de absorção de água, pode vir a melhorar a durabilidade desses compósitos. Este estudo visou a caracterização de propriedades físicas e mecânicas de compósito biomassa vegetal-cimento modificado com polímeros e a análise da durabilidade desse compósito. Foi testado um polímero de base acrílica em dois tipos de compósitos: um executado com polpas celulósicas (de Eucalipto e da reciclagem de papel jornal) e outro executado com resíduo de Pinus caribaea. Foram realizados ensaios de envelhecimento acelerado por meio de ciclos de imersão em água e secagem, e por imersão em água quente, além do processo de envelhecimento natural, por exposição dos corpos-de-prova às intempéries. As propriedades físicas do compósito avaliadas foram: a massa específica, a absorção total de água por imersão e o índice de vazios. As propriedades mecânicas avaliadas foram determinadas por meio de ensaios de resistência à tração na flexão analisando-se a tensão e a energia de ruptura; também foi determinado o módulo de deformação dinâmico, com auxílio de ultra-som. O microscópio eletrônico de varredura permitiu constatar a modificação da característica morfológica do compósito com a adição do polímero e o estado das fibras dentro do compósito ao longo do tempo. O uso do polímero melhorou o desempenho mecânico do compósito nas primeiras idades, além de promover uma significativa redução da capacidade de absorção de água, denotando sua adequação para aumentar a durabilidade do compósito / Abstract: Several researches on vegetal-fiber-cement composites have been developed aiming to solve problems related to the banishment of asbestos and environmental damages due to deposition or burnirng of agro-industry residues. The durability of the cellulose-cement composites is a key factor to introduce such material in the market. Several researches have been developed aiming to avoid the degradation of vegetable fiber-cement, some of them using chemically treated fibers and others modifying the matrix. Polymers have been used in concrete and mortar production to increase the durability. Composite degradation can be controled by polymers that modify the fiber-matrix bond and the amount of water absorption. The goal of this work was to characterize the physical and the mechanical properties of cellulose-cement composites modified by a polymer and to evaluate the subsequent durability of these materials. The dispersion of an acrylic based polymer was evaluated with two types of composites: one with cellulose pulps (Eucalyptus and wastepaper) and another with Pinus caribaea particles. The physical properties under observation were water absorption by immersion, apparent void volume and bulk density. The mechanical properties of toughness and modulus of rupture were determined by flexural test. The dynamic elasticity modulus was obtained by ultrasonic method. Samples were subjected to natural aging tests and to accelerated-aging tests by repeated soak and dry cycles and warm-water immersion. By the range of composites analyzed, the use of the polymer improves the initial mechanical properties of composites and promotes a significant decrease of the water absorption. The scanning electron microscopy (SEM) allowed to verify the modification of the morphologic characteristic of the composite with the polymeric addition and the preservation of the fibers along the time. The use of the polymer improved the mechanical performance of the composite in the first ages, besides promoting a significant reduction of the capacity of absorption of water, denoting its adaptation to increase the durability of the composite / Doutorado / Construções Rurais e Ambiencia / Doutor em Engenharia Agrícola
35

Faserverbundleichtbau in der Großserie: Chancen und Herausforderungen für den Produktentwickler

Helms, Olaf January 2016 (has links)
Im Luftfahrtbereich haben sich kohlenstofffaserverstärkte Kunststoffe (CFK) wegen ihrer hohen spezifischen Festigkeiten und Steifigkeiten längst als Konstruktionswerkstoffe etabliert. In der Großserienfertigung von Automobilkarosserien kommt diese Materialgruppe jedoch nur zögerlich zum Einsatz. Offensichtlich sprechen noch viele Argumente für den Einsatz von metallischen Werkstoffen: Denn auch Leichtmetalle und pressgehärtete Stähle ermöglichen immer höhere Leichtbaugrade, ohne dabei signifikante Kostensteigerungen zu generieren. Zudem sind Fertigungs- und Montageabläufe für Metallkarosserien etabliert und weitgehend frei von Entwicklungsrisiken. Vor diesem Hintergrund erscheint es schwer, mit neuen Leichtbaumaterialien und den zugehörigen Bauweisen einen Durchbruch erzielen zu können. Dabei zeigt das Produktsegment der Supersportwagen schon deutlich, dass zusätzliche Leichtbaupotentiale durch beanspruchungsgerecht gestaltete und optimierte CFK-Strukturen für den Automobilbau eröffnet werden. Bislang lassen sich derartig optimierte CFK-Strukturen jedoch kaum wettbewerbsfähig in Großserie realisieren. An dieser Stelle ergeben sich Chancen und zugleich neue Herausforderungen für die Produktentwickler: Zum einen sind Faserverbundbauweisen zu erarbeiten, mit denen die Leichtbaupotentiale von CFK weitgehend ausgereizt werden. Zum anderen ist die automatisierte Fertigung bei hohen Taktraten zu ermöglichen. Die Lösung beider Teilaufgaben setzt den Einsatz geeigneter materialspezifischer Konstruktionsmethoden voraus.
36

Mineral-impregnated carbon fiber (MCF) reinforcements based on geopolymer

Zhao, Jitong 29 February 2024 (has links)
Carbon concrete composites (C³) hold promise as a material class for constructing lightweight, durable, and sustainable structures. State-of-the-art carbon fiber-reinforced polymer (CFRP) reinforcement comprises infinite multifilament bundles embedded in a polymeric matrix, en-suring adequate load transfer and process robustness, yet it undergoes considerable degrada-tion under elevated temperatures or harsh service conditions. Instead, the success of mineral-impregnated carbon fibers (MCFs) stems from their structural flexibility, inherent heat re-sistance, and outstanding compatibility with cementitious substrates. Geopolymers (GPs) have recently emerged as a viable coating alternative due to a unique combination of many advantages, e.g., sustainability, source diversity, long early-age processing time, synthesis by controlled low-temperature activation and a wide range of temperature resistance. This work aims to develop and test fast-setting MCF composites and associated processing technologies, which hold significant importance for industrial applications and structural fire safety. As a result of the novelty of mineral impregnation technology, challenges regarding the process chain and mixture must be mastered to explore the full material potential before the technology is translated to key markets. The introductory chapter offers a comprehensive review of fiber-reinforced geopolymer (FRG) systems in response to temperature influences. The concept development is grounded in a systematic investigation of several interrelated, critical processing aspects of GP impregnation, focusing on processing quality and strength evolution. This investigation is conducted alongside an automated and continuous impregna-tion technology. Findings from numerous experiments revealed that targeted thermal curing profoundly influ-enced the mechanical properties and microstructure of the GP matrices and resulting MCFs. Hereby, rapid setting and high early-age strength of MCF, comparable to conventional CFRPs, were achieved within the first several hours of heat curing. The ability of aluminosili-cate particles to penetrate a dense fiber bundle was studied by applying fly ash (FA) with a systematically varied particle size distribution. Thereby, the max. particle size close to the same range of diameter of individual filament proved to be the most efficient, improving both the mechanical performance of MCF and its bond to concrete. Furthermore, an experimental campaign on the role of fiber sizing agents in processing quality and final composite perfor-mance was conducted. The respective impregnation quality and quantity were comprehen-sively explained by varied yarn spreading behavior and wettability, resulting in apparent dif-ferences in filament-matrix morphology and mechanical performance of MCF. To achieve high shape stability, packing density, and tailor-bond characteristics, the effect of surface pro-filing and prototypical winding technology on MCF was investigated. Finally, the bond quality of the MCF was validated through yarn pull-out tests in GP concrete at elevated temperatures and compared with available CFRP. These tests generated parame-ters related to bond behavior, which were then used to construct a three-dimensional numeri-cal model. Based on proper parametric calibrations, good agreement between numerical and experimental characterizations was achieved to predict the material's performance for future applications.:1 Introduction 1 1.1 Motivation 1 1.2 Objectives of the thesis 5 1.3 Thesis structure 7 2 Publications 11 2.1 A review of the role of elevated temperatures on the mechanical properties of fiber-reinforced geopolymer (FRG) composites 12 2.2 Development and testing of fast curing, mineral-impregnated carbon fiber (MCF) reinforcements based on metakaolin-made geopolymers 37 2.3 Mineral-impregnated carbon-fiber (MCF) composites made with differently sized fly-ash geopolymers for durable light weight and high temperature applications. 50 2.4 Role of sizing agent on the microstructure morphology and mechanical properties of mineral-impregnated carbon-fiber (MCF) reinforcement made with geopolymers 66 2.5 Effect of surface profiling on the mechanical properties and bond behaviour of mineral-impregnated, carbon-fibre (MCF) reinforcement based on geopolymer 80 2.6 Temperature-dependent pull-out behavior of geopolymer concrete reinforced with polymer- or mineral-impregnated carbon fiber composites: an experimental and numerical study. 94 3 Summary and Outlook 108 3.1 Summary of the research work 108 3.2 Outlook 113 References 119 Appendix A IV Appendix B VI / Der Verbundwerkstoff Carbonbeton ist eine vielversprechende Materialklasse für den Bau von leichtgewichtigen, langlebigen und nachhaltigen Strukturen. Hochmoderne Bewehrungen aus Carbonfaser-verstärkte Kunststoffen (CFK) werden durch die Imprägnierung von Endlos-faserbündeln mit einer Polymermatrix hergestellt, was ausreichende Lastübertragungskapazi-tät und Prozessrobustheit gewährleistet, und jedoch durch hohe Temperaturen oder raue Um-gebungen erheblich zerstört wird. Stattdessen resultiert der Erfolg mineralimprägnierter Car-bonfasern (MCFs) aus ihrer strukturellen Flexibilität, inhärenten Wärmebeständigkeit und hervorragenden Kompatibilität mit zementären Substraten. Geopolymere (GPs) haben sich kürzlich als praktikable Beschichtungsalternative herausgestellt, aufgrund einer einzigartigen Kombination vieler Vorteile, wie Nachhaltigkeit, Quellenvielfalt, ausreichendes Verarbei-tungsfenster, Synthese durch kontrollierte thermische Aktivierung bei niedrigen Temperatu-ren und Hitzebeständigkeit. Die vorliegende Arbeit zielt auf die Entwicklung und Erprobung schnell abbindender MCF-Verbundwerkstoffe und zugehöriger Verarbeitungstechnologien ab, was für industrielle An-wendungen und den baulichen Brandschutz von großer Bedeutung ist. Aufgrund der Neuar-tigkeit der mineralischen Imprägnierungstechnologie müssen Herausforderungen in Bezug auf die Prozesskette und Mischung gemeistert werden, um das volle Materialpotenzial zu erkunden, bevor die Technologie auf Schlüsselmärkte übertragen wird. Dementsprechend gibt das einleitende Kapitel einen umfassenden Überblick über faserverstärkte Geopolymer (FRG)-Systeme unter Temperatureinwirkung. Das Entwicklungskonzept baut auf einer sy-stematischen Untersuchung mehrerer zusammenhängender, wichtiger Verarbeitungsaspekte der GP-Imprägnierung in Bezug auf Verarbeitungsqualität und Festigkeitsentwicklung von der Mikro- bis zur Makroskala und in Verbindung mit einer automatisierten und kontinuierli-chen Fertigungstechnologie auf. Ergebnisse zahlreicher Experimente zeigten, dass gezielte Wärmehärtung die mechanischen Eigenschaften und Mikrostruktur der GP-Matrizen und resultierenden MCFs nachhaltig be-einflußt. Hierdurch wurde eine schnelle Aushärtung und hohe Festigkeit von MCF innerhalb der ersten Stunden der Wärmebehandlung erreicht, und zwar vergleichbar mit konventionel-len CFRPs. Die Eindringfähigkeit von Aluminosilikatpartikeln in ein dichtes Faserbündel wurde durch die Anwendung von Flugasche (FA) mit systematisch variierter Partikelgrößen-verteilung untersucht. Dabei erwies sich die maximale Partikelgröße, die nahe dem Durch-messer einzelner Filamente liegt, als am effizientesten. Sie verbesserte sowohl die mechani-sche Leistung von MCF als auch seine Bindung an Beton. Darüber hinaus wurde eine expe-rimentelle Kampagne zur Rolle der Faserschlichte auf die Verarbeitungsqualität und die end-gültige Verbundleistung durchgeführt. Die jeweilige Imprägnierungsqualität wurde umfas-send durch ein unterschiedliches Spreizungsverhalten und Benetzbarkeit des Garns erklärt, was zu deutlichen Unterschieden in der Filament-Matrix-Verteilung und mechanischen Ei-genschaften von MCF führte. Zur Verbesserung der Formstabilität, Packungsdichte und ge-zielten Abstimmung der Verbundeigenschaften im Beton wurde der Effekt der Oberflächen-profilierung und prototypischen Wickeltechnik auf MCF untersucht. Schließlich wurde die Verbundqualität der MCF durch den Garnauszugversuch in GP-Beton bei erhöhten Temperaturen validiert und mit einer verfügbaren CFK-Bewehrung verglichen. Diese Tests generierten auf das Verbundverhalten bezogene Parameter, die dann zur Formu-lierung eines dreidimensionalen numerischen Modells verwendet wurden. Durch angemesse-ne parametrische Kalibrierungen wurde eine gute Übereinstimmung zwischen numerischen und experimentellen Charakterisierungen erreicht, um die Leistung des Materials für zukünf-tige Anwendungen vorherzusagen.:1 Introduction 1 1.1 Motivation 1 1.2 Objectives of the thesis 5 1.3 Thesis structure 7 2 Publications 11 2.1 A review of the role of elevated temperatures on the mechanical properties of fiber-reinforced geopolymer (FRG) composites 12 2.2 Development and testing of fast curing, mineral-impregnated carbon fiber (MCF) reinforcements based on metakaolin-made geopolymers 37 2.3 Mineral-impregnated carbon-fiber (MCF) composites made with differently sized fly-ash geopolymers for durable light weight and high temperature applications. 50 2.4 Role of sizing agent on the microstructure morphology and mechanical properties of mineral-impregnated carbon-fiber (MCF) reinforcement made with geopolymers 66 2.5 Effect of surface profiling on the mechanical properties and bond behaviour of mineral-impregnated, carbon-fibre (MCF) reinforcement based on geopolymer 80 2.6 Temperature-dependent pull-out behavior of geopolymer concrete reinforced with polymer- or mineral-impregnated carbon fiber composites: an experimental and numerical study. 94 3 Summary and Outlook 108 3.1 Summary of the research work 108 3.2 Outlook 113 References 119 Appendix A IV Appendix B VI
37

Development and testing of fast curing, mineral-impregnated carbon fiber (MCF) reinforcements based on metakaolin-made geopolymers

Zhao, Jitong, Liebscher, Marco, Michel, Albert, Junger, Dominik, Trindade, Ana Carolina Constâncio, Silva, Fláviode Andrade, Mechtcherine, Viktor 28 November 2022 (has links)
Mineralisch getränkte Carbonfasern (MCF) stellen eine vielversprechende Alternative zu herkömmlichen Stahlbewehrung in Beton dar. Für eine effiziente industrielle Herstellung von MCF muss eine ausreichende Verarbeitungszeit für die Imprägniersuspension gewährleistet sein. In der vorliegenden Untersuchung wurde zu diesem Zweck ein aus Metakaolin hergestelltes Geopolymer (GP) entwickelt und getestet. Die Tränkung von Carbonfasergarnen wurde kontinuierlich und automatisiert durchgeführt. Anschließend wurden die MCF bei 75 °C wärmebehandelt, um die Reaktionsprozesse zu beschleunigen. Die mechanische Leistung von MCF nahm im Verlauf des Aushärtungsprozesses von 2 auf 8 Stunden allmählich zu, was auf das größere Ausmaß der Geopolymerisation zurückzuführen ist. Bei einer solchen verlängerten Aushärtung zeigten thermogravimetrische und mikroskopische Analysen zwar eine stärkere 'reagierte' Mikrostruktur, aber auch einen höheren Gehalt an Hohlräumen. Nach 8-stündigen Erhitzen erreichten die Zugfestigkeit und der Young-Modul von MCF 2960 MPa bzw. 259 GPa, bezogen auf die Garnquerschnittsfläche.:Abstract Schlagwörter 1. Einleitung 2. Experimentelles Programm 2.1. Materialien 2.2. Herstellung von MCF 2.3. Testen der Geopolymermatrix 2.4. Mechanische Prüfung von MCF 2.5. Morphologische Charakterisierung 3. Ergebnisse und Diskussion 3.1. Charakterisierung der Geopolymermatrix 3.2. Hergestellte MCF mit Geopolymer und Wärmebehandlung bei 75 °C. 3.3. Chemische und morphologische Analyse 4. Schlussfolgerung Erklärung des konkurrierenden Interesses Literaturen / Mineral-impregnated, carbon fiber composites (MCF) are a promising alternative to conventional concrete reinforcements. For the efficient industrial production of MCF, sufficient processing time for the impregnation suspension must be ensured. In the present investigation, a metakaolin-made geopolymer (GP) has been developed and tested for this purpose. The impregnation of carbon-fiber yarns was performed continuously and automated. Subsequently, the MCF were heat-treated at 75 °C to accelerate the reaction processes. The mechanical performance of MCF gradually increased in the advancement of the curing process from 2 to 8 h, which is attributed to the greater extent of geopolymerization. In such extended curing, thermogravimetric and microscopic analysis showed indeed a more “reacted” microstructure but also a higher content of voids. After heating for 8 h, the tensile strength and Young's modulus of MCF reached 2960 MPa and 259 GPa, respectively, when related to the yarn cross-sectional area.:Abstract Schlagwörter 1. Einleitung 2. Experimentelles Programm 2.1. Materialien 2.2. Herstellung von MCF 2.3. Testen der Geopolymermatrix 2.4. Mechanische Prüfung von MCF 2.5. Morphologische Charakterisierung 3. Ergebnisse und Diskussion 3.1. Charakterisierung der Geopolymermatrix 3.2. Hergestellte MCF mit Geopolymer und Wärmebehandlung bei 75 °C. 3.3. Chemische und morphologische Analyse 4. Schlussfolgerung Erklärung des konkurrierenden Interesses Literaturen
38

Naturanaloge Optimierungsverfahren zur Auslegung von Faserverbundstrukturen / Natural analog optimization methods for the design of fiber composite structures

Ulke-Winter, Lars 18 April 2017 (has links) (PDF)
Die vollständige Ausnutzung des Leichtbaupotentials bei der Dimensionierung von mehrschichtigen endlosfaserverstärkten Strukturbauteilen erfordert die Bereitstellung von geeigneten Optimierungswerkzeugen, da bei der Auslegung eine große Anzahl von Entwurfsvariablen zu berücksichtigen sind. In dieser Arbeit werden Optimierungsalgorithmen und -strategien zur Lösung wissenschaftlicher Fragestellungen für industrielle Anwendungen bei der Konstruktion von entsprechenden Faserkunststoffverbunden entwickelt und bewertet. Um das breite Anwendungsspektrum aufzuzeigen, werden drei unterschiedliche repräsentative Problemstellungen bearbeitet. Dabei wird für Mehrschichtverbunde die Festigkeitsoptimierung hinsichtlich eines bruchtypbezogenen Versagenskriteriums vorgenommen, ein Dämpfungsmodell zur Materialcharakterisierung entworfen sowie eine bivalente Optimierungsstrategie zur Auslegung von gewickelten Hochdruckbehältern erstellt. Die Grundlage der entwickelten Methoden bilden dabei jeweils stochastische naturanaloge Optimierungsheuristiken, da die betrachteten Aufgabenstellungen nicht konvex sind und derartige Verfahren flexibel eingesetzt werden können. / The full utilization of the light weight potential in the dimensioning of multilayer fiber reinforced composites requires suitable optimization tools, since a large number of design variables has to be taken into account. In this work, optimization algorithms and strategies for the solution of scientific questions for industrial applications are developed and evaluated in the design of corresponding fiber-plastic composites. In order to show the wide range of applications, three different representative topics have been chosen. It will carry out a strength optimization for multilayer composites with regard to a type-related failure criterion, devolop a damping model for material characterization and established a bivalent optimization strategy for the design of wound high-pressure vessels. The developed methods are based on stochastic natural-analog optimization heuristics, since the considered tasks are not convex and such methods can be used in a very flexible manner.
39

Multiscale Continuum Modeling of Piezoelectric Smart Structures

Ernesto Camarena (5929553) 10 June 2019 (has links)
Among the many active materials in use today, piezoelectric composite patches have enabled notable advances in emerging technologies such as disturbance sensing, control of flexible structures, and energy harvesting. The macro fiber composite (MFC), in particular, is well known for its outstanding performance. Multiscale models are typically required for smart-structure design with MFCs. This is due to the need for predicting the macroscopic response (such as tip deflection under a transverse load or applied voltage) while accounting for the fact that the MFC has microscale details. Current multiscale models of the MFC exclusively focus on predicting the macroscopic response with homogenized material properties. There are a limited number of homogenized properties available from physical experiments and various aspects of existing homogenization techniques for the MFC are shown here to be inadequate. Thus, new homogenized models of the MFC are proposed to improve smart-structure predictions and therefore improve device design. It is notable that current multiscale modeling efforts for MFCs are incomplete since, after homogenization, the local fields such as stresses and electric fields have not been recovered. Existing methods for obtaining local fields are not applicable since the electrodes of the MFC are embedded among passive layers. Therefore, another objective of this work was to find the local fields of the MFC without having the computational burden of fully modeling the microscopic features of the MFC over a macroscale area. This should enable smart-structure designs with improved reliability because failure studies of MFCs will be enabled. Large-scale 3D finite element (FE) models that included microscale features were constructed throughout this work to verify the multiscale methodologies. Note that after creating a free account on cdmhub.org, many files used to create the results in this work can be downloaded from https://cdmhub.org/projects/ernestocamarena.<br><br>First, the Mechanics of Structure Genome (MSG) was extended to provide a rigorous analytical homogenization method. The MFC was idealized to consist of a stack of homogeneous layers where some of the layers were homogenized with existing rules of mixtures. For the analytical model, the electrical behavior caused by the interdigitated electrodes (IDEs) was approximated with uniform poling and uniform electrodes. All other assumptions on the field variables were avoided; thus an exact solution for a stack of homogeneous layers was found with MSG. In doing so, it was proved that in any such multi-layered composite, the in-plane strains and the transverse stresses are equal in each layer and the in-plane electric fields and transverse electric displacement are constant between the electrodes. Using this knowledge, a hybrid rule of mixtures was developed to homogenize the entire MFC layup so as to obtain the complete set of effective device properties. Since various assumptions were avoided and since the property set is now complete, it is expected that greater energy equivalence between reality and the homogenized model has been made possible. The derivation clarified what the electrical behavior of a homogenized solid with internal electrodes should be—an issue that has not been well understood. The behavior was verified by large-scale FE models of an isolated MFC patch.<br> <br>Increased geometrical fidelity for homogenization was achieved with an FE-based RVE analysis that accounted for finite-thickness effects. The presented theory also rectifies numerous issues in the literature with the use of the periodic boundary conditions. The procedure was first developed without regard to the internal electrodes (ie a homogenization of the active layer). At this level, the boundary conditions were shown to satisfy a piezoelectric macrohomogeneity condition. The methodology was then applied to the full MFC layup, and modifications were implemented so that both types of MFC electrodes would be accounted for. The IDE case considered nonuniform poling and electric fields, but fully poled material was assumed. The inherent challenges associated with these nonuniformities are explored, and a solution is proposed. Based on the homogenization boundary conditions, a dehomogenization procedure was proposed that enables the recovery of local fields. The RVE analysis results for the effective properties revealed that the homogenization procedure yields an unsymmetric constitutive relation; which suggests that the MFC cannot be homogenized as rigorously as expected. Nonetheless, the obtained properties were verified to yield favorable results when compared to a large-scale 3D FE model.<br> <br>As a final test of the obtained effective properties, large-scale 3D FE models of MFCs acting in a static unimorph configuration were considered. The most critical case to test was the smallest MFC available. Since none of the homogenized models account for the passive MFC regions that surround the piezoelectric fiber array, some of the test models were constructed with and without the passive regions. Studying the deflection of the host substrate revealed that ignoring the passive area in smaller MFCs can overpredict the response by up to 20%. Satisfactory agreement between the homogenized models and a direct numerical simulation were obtained with a larger MFC (about a 5% difference for the tip deflection). Furthermore, the uniform polarization assumption (in the analytical model) for the IDE case was found to be inadequate. Lastly, the recovery of the local fields was found to need improvement.<br><br><br>
40

Effiziente und Robuste Entwicklung komplexer Faserverbund-Triebwerkstrukturen

Spitzer, Sebastian, Folprecht, Fabian, Dargel, Alrik, Klaus, Christoph, Langkamp, Albert, Gude, Maik 06 September 2021 (has links)
Steigende Anforderungen an die Leistungsfähigkeit und Effizienz von Triebwerken lassen sich durch den Einsatz von Metall-Faserverbund-Bauweisen erfüllen. Faser-Kunststoff-Verbunde (FKV) mit ihren herausragenden und einstellbaren mechanischen Eigenschaften bieten das Potential, die Masse strukturell hochbelasteter Komponenten zu reduzieren. Durch die richtungsabhängigen Eigenschaften kann der FKV zielgerichtet für die Anwendung angepasst werden. Die Vielzahl der einstellbaren Parameter in Kombination mit der Entwicklung von komplexen Triebwerkstrukturen führt zu einem interaktiven und interagierenden Entwicklungsprozess. Im Rahmen dieses Beitrages wird ein Ansatz zur kombiniert virtuell-reellen Entwicklung eines Triebwerk-Subsystems am Beispiel des Zwischengehäuses vorgestellt. Ein systematischer Prozess in Kombination mit virtuellen Methoden ermöglicht die effiziente Erarbeitung und modellhafte Abbildung des Gesamtsystems, bestehend aus relevanten Triebwerkselementen (System), dem darin integrierten Zwischengehäuse (Subsystem) und lastübertragenden Faserverbund-Leitschaufeln (Komponente). Durch Detaillierung im Entwicklungsprozess steigt kontinuierlich die Aussagegenauigkeit, wobei gleichzeitig auch der Aufwand erheblich zunimmt. Ein experimenteller Funktions- und Festigkeitsnachweis der Leitschaufel kann zur Reduktion des Entwicklungsrisikos beitragen. Die dafür benötigten Funktionsmuster lassen sich in einem kombinierten Verfahren, bestehend aus Additiver Fertigung und Resin Transfer Moulding, herstellen, wobei der 3D-Druck die Anpassung der realen Funktionsmuster an die Geometrie- und Werkstoffmodifikationen im Rahmen der virtuellen Entwicklung ermöglicht.

Page generated in 0.049 seconds