• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 50
  • 22
  • 14
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 440
  • 440
  • 172
  • 67
  • 47
  • 43
  • 42
  • 40
  • 37
  • 37
  • 33
  • 31
  • 31
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Spectral and Spatial Quantum Efficiency of AlGaAs/GaAs and InGaAs/InP PIN Photodiodes

Tabor, Steven Alan 03 December 1991 (has links)
This thesis reports a novel system capable of testing both the spectral responsivity and the spatial quantum efficiency uniformity of heterostructure photodiodes using optical fiber coupled radiation. Testing was performed to confirm device specifications. This study undertakes to quantify the spectral bandwidth of an AlGaAs I GaAs double heterostructure photodiode and two InGaAs I InP double heterostructure PIN photodiodes at D.C., through the use of spatial scanning. The spatial scanning was done using lasers at 670 nm, 780 nm, 848 nm, 1300 nm, and 1550 nm, coupled through singlemode optical fiber. The AlGaAs I GaAs material system covers the 600 - 870 nm wavelength region of research interest in the visible spectrum. The InGaAs I InP material system covers the 800 - 1650 nm region which contains the fiberoptic communications spectrum. The spatial measurement system incorporates a nearly diffraction limited spot of light that is scanned across the surf ace of nominally circular photodiodes using a piezoelectric driven stage. The devices tested range in size from 17 to 52 μin diameter. The smallest device scanned has a diameter approximately four times the diffraction limit of the radiation used for spatial scanning. This is the smallest diode yet reported as being spatially mapped. This is the first simultaneously reported spectral and spatial scans of the same heterostructure PIN photodiodes in the InGaAs I InP and AlGaAs I GaAs systems. The testing arrangement allows both spectral and spatial scans to be taken on the same stage. The diodes tested were taken from intermediate runs during their process development. All testing was performed at room temperature. This study describes the mechanical assembly, calibration and testing of a spatial quantum efficiency uniformity measurement system. The spectral quantum efficiency was measured with low power, incoherent broadband radiation coupled through multimode fiber from a tunable wavelength source to the device under test. The magnitude was corrected to the measured peak external quantum efficiency (Q.E.), determined during spatial scanning at a mid-spectral bandwidth wavelength using continuous wave (CW) higher power lasers. A procedure to improve the accuracy of the correction is recommended. This process has been automated through the use of National Instruments LabVIEW II software. The results from this procedure are plotted to show 2.5 D (pseudo 3D) and 2 D contour spatial quantum efficiency maps. These results give a quantified map of the relative homogeneity of the response. The non-homogeneity of the spatial scans on the smallest devices has not previously been reported. The Q.E. measurements made agree well with previously published results for similar device structures. The AlGaAs I GaAs device achieved a peak external Q.E. of 58.7% at 849 nm with -lOV bias. An InGaAs I InP device achieved 63.5% at 1300 nm with the same bias. The Q.E. results obtained are compared to theoretical calculations. The calculations were performed using the best optical constant data available in the literature at this time. The measured peak Q.E. was found to agree with the theoretical calculations to within 16% at longer wavelengths for both devices tested.
292

Simulation of nonlinear optic-fibre communication systems using Volterra series transfer function techniques

Chang, Ken Kai-fu, 1973- January 2002 (has links)
Abstract not available
293

Simulation of nonlinear optic-fibre communication systems using Volterra series transfer function techniques

Chang, Ken Kai-fu, 1973- January 2002 (has links)
For thesis abstract select View Thesis Title, Contents and Abstract
294

Automatic trimming of ultrasonic pulse in fiber-optical power spectrometer

Forsslund, Ola January 2009 (has links)
<p>The aim of this master's thesis is to develop a method that fully automates a trimming step in the production of a fiber-optical power spectrometer, based on a unique Acusto-Optical Scanning Filter.</p><p>The filter is created by letting an ultrasonic mechanical pulse pass through a chirped Fiber Bragg Grating. The pulse introduces a disturbance in the grating, creating a thin optical transmission window in the otherwise reflective bandwidth. The high demands on the window requires a precise, unit dependent pulse form with unknown properties. Thus each unit needs to be trimmed to reach required performance.</p><p>The manual trimming is largely a trial and error process, that contains two performance tests. We redefine one, eliminating the need to reroute the optical path and reducing the number of fiber weldings. The tests are then quantified, allowing a figure of merit to be based on weighted performance values.</p><p>A brute force method, testing a large set of pulses, is implemented. The set is defined by the parameter space spanned by previously produced units. Due to the large space, the method is too time consuming. Instead it is used to measure the performance spaces of three units. An attempt to largely reduce the parameter space using PCA failed.</p><p>An alternating variables method that finds local performance optima in the parameter space is developed. By using a set of several starting points, the method tends to find several qualified pulses. The method is implemented and successfully verified by trimming new units.</p><p>Finally we propose where to focus improvements of the method in a production ramp up.</p>
295

Utilisation de l'optique fibrée pour la manipulation et la génération d'états quantiques: pile ou face quantique et paires de photons/ Fiber optics for the manipulation and the generation of quantum states of light: quantum coin tossing and photon pairs.

Nguyen, Anh Tuan A.T. 07 November 2008 (has links)
La physique quantique fut introduite au début du 20e siècle. Elle apporte une nouvelle description du monde qui nous entoure et en particulier de ce qu'on appelle le monde de l'infiniment petit. Cette nouvelle théorie permet une description adéquate notamment de l'effet photoélectrique, des niveaux énergétiques des atomes, des réactions nucléaires, ... Elle apporte également une réponse à de nombreuses problématiques telles que la catastrophe ultraviolette. Néanmoins aussi séduisante que soit cette théorie, les prédictions pour le moins contre-intuitives qu'elle apporte, amène rapidement la controverse. Par exemple, en 1935, A. Einstein, B. Podolski et N. Rosen en arrivent à mettre en doute la physique quantique à cause d'une particularité que l'on y rencontre, à savoir l'enchevêtrement. Il s'en suit le célèbre débat avec N. Bohr et l'école de Copenhagen. Parmi les autres aspects propres au monde quantique on peut encore citer la superposition des états, le postulat de la mesure, le principe d'incertitude d'Heisenberg, la dualité onde-corpuscule, le théorème de non clonage, ... Toutes ces spécificités font de la physique quantique un monde passionnant dans lequel, à l'instar du pays des merveilles d'Alice, l'intuition est souvent dépassée. Cette thèse est le fruit de quatre années de travail au cours desquelles nous avons tenté d'observer et d'étudier certains des effets intrigants que nous propose la physique quantique. Plus précisément nous avons utilisé des états particuliers de la lumière afin d'explorer une partie de ce qu'on appelle l'optique quantique. Dans un premier temps nous nous sommes intéressés aux possibilités offertes par l'utilisation d'états cohérents de la lumière. En utilisant ces états particuliers nous nous sommes penchés sur l'étude ainsi que sur la réalisation expérimentale d'une tâche qui se révèle impossible classiquement sans hypothèse computationelle. Cette tâche consiste à réaliser un pile ou face entre deux joueurs éloignés l'un de l'autre, par exemple deux joueurs communiquant par téléphone. En effet, classiquement, un des deux joueurs pourra toujours tricher de manière à avoir 100% de chance de gagner le pile ou face. Au contraire, si on utilise les ressources offertes par la communication quantique, il est possible de construire des protocoles ne permettant plus à aucun des deux joueurs de tricher parfaitement et ce, sans aucune hypothèse supplémentaire. Même si aucun protocole quantique ne peut empêcher totalement toute tricherie, leur démonstration constitue une preuve de principe quant aux possibilités offertes par la physique quantique dans la réalisation de tâches classiquement impossibles. Lors de notre étude du problème, nous avons développé un protocole de pile ou face quantique et étudié ses performances. Nous avons montré que les tentatives de tricherie des deux joueurs avaient une probabilité de succès limitée à 99,7%<100% (biais inférieur à 0,497). L'originalité de cette étude se situe dans le fait que les imperfections expérimentales (efficacité des détecteurs, pertes de transmission, visibilité réduite, ...) furent prises en compte, ce qui à notre connaissance n'avait jamais été réalisé. En outre nous avons réalisé une implémentation en optique fibrée de notre protocole et démontré la réalisation d'un pile ou face unique au cours duquel aucun des deux joueurs ne pouvait influencer parfaitement le résultat, ce qui à notre connaissance n'avait également jamais été démontré. L'emploi d'états cohérents de la lumière fortement atténués nous a donc permis de concevoir un protocole de pile ou face quantique et de réaliser une démonstration expérimentale en optique fibrée, d'une tâche impossible à réaliser classiquement. Après avoir travaillé avec des états cohérents fortement atténués, nous nous sommes intéressés à un autre état quantique de la lumière, à savoir les paires de photons. Ces états constituent non seulement une ressource essentielle pour sonder les effets quantiques de la lumière mais également une ressource incontournable pour l'information et la communication quantique. Nous nous sommes donc attelés à la réalisation d'une source produisant ces paires de photons. Les premières sources de paires de photons furent basées sur l'utilisation de cristaux dans lesquels il existe une interaction non linéaire entre la lumière et le matériau du cristal. Malheureusement le désavantage majeur de ces sources est la difficulté à collecter les paires de photons générées. Nous avons donc étudié la possibilité de générer des paires de photons directement dans une fibre optique, la collection des paires y étant réalisée de facto. La première solution que nous avons envisagée consiste à utiliser la non-linéarité du troisième ordre de la silice composant les fibres optiques. Plus précisément le phénomène utilisé est appelé l'instabilité de modulation. Ce phénomène permet de détruire deux photons de pompe afin de générer une paire de photons vérifiant les conservations de l'énergie et de l'impulsion. En outre nous avons choisi d'utiliser une fibre optique microstructurée. Ces fibres permettent en effet un plus grand confinement de la lumière que les fibres standards. Il en résulte une interaction non linéaire plus importante, permettant ainsi de générer des paires de photons de manière plus efficace. La fibre utilisée est en outre biréfringente, ce qui permet d'avoir accès à deux types particuliers d'instabilité de modulation: l'instabilité scalaire et l'instabilité vectorielle. Dans un premier temps, nous avons observé le processus d'instabilité de modulation dans un régime classique. Les paramètres particuliers de notre fibre microstructurée - forte dispersion anormale et biréfringence modérée - nous ont permis d'observer un régime d'instabilité dans lequel l'instabilité de modulation vectorielle se produit à des fréquences proches de la fréquence de pompe ($Omegasim 1$THz). Il en résulte que les bandes de gain liées à l'instabilité de modulation vectorielle sont très proches des bandes de gain liées à l'instabilité de modulation scalaire. Nous avons observé que dans ce régime particulier, les densités d'énergie générées par instabilité de modulation vectorielle sont supérieures à celles générées par instabilité de modulation scalaire. A notre connaissance, il s'agit de la première observation expérimentale permettant de mettre en évidence un gain vectoriel supérieur au gain scalaire. La génération de paires de photons grâce à ce processus nécessite de diminuer la puissance de pompe envoyée dans la fibre. Malheureusement nous avons mesuré que dans ce régime de faible puissance (régime quantique), la qualité des paires de photons générées était fortement dégradée par la présence de photons parasites générés par diffusion Raman spontanée. Nous avons estimé que lorsque la puissance de pompe est abaissée suffisamment pour générer en moyenne 0,1~photons dans la bande de gain d'instabilité de modulation vectorielle ($sim$1543 nm), environ 75% des photons détectés auront été générés par diffusion Raman spontanée. Afin de mettre en oeuvre des expériences d'optique quantique utilisant des paires de photons, des solutions doivent donc être appliquées à notre source afin de réduire le nombre de photons générés par diffusion Raman spontanée. Parmi ces solutions nous pouvons citer la discrimination en polarisation des photons générés ainsi que le refroidissement de la fibre grâce à de l'azote liquide. Ces solutions permettraient de réduire le nombre de photons Raman anti-Stokes d'un facteur 18 et le nombre de photons Raman Stokes d'un facteur 4. Malheureusement la tenue de la fibre microstructurée à de très basses températures reste incertaine et l'implémentation de ces solutions rendrait la source difficilement utilisable. Notre première tentative pour générer des paires de photons dans une fibre optique nous a montré que les paires de photons générées grâce à un processus d'interaction non linéaire du troisième ordre étaient polluées par des photons générés par diffusion Raman spontanée. Une source de paires de photons efficace ne pouvait donc pas être obtenue sans l'aide de solutions technologiques assez lourdes à mettre en oeuvre. Nous avons donc investigué une deuxième solution afin de réaliser une source produisant des paires de photons dans une fibre optique. Puisque les non-linéarités du troisième ordre semblent être peu adaptées pour la génération de paires de photons, nous sommes revenus à une non-linéarité du second ordre. Dans ces processus c'est un photon de pompe qui est détruit afin de générer une paire de photons, tout en respectant les conservations de l'énergie et de l'impulsion. Malheureusement les fibres optiques ne permettent pas l'apparition de non-linéarités du second ordre et ce, à cause de la centrosymétrie macroscopique du verre de silice qui compose ces fibres. Afin d'induire une non-linéarité du second ordre dans une fibre optique nous avons travaillé en collaboration avec l'équipe du Prof. P. G. Kazansky de l'université de Southampton. En utilisant les techniques de poling thermique et d'effacement par illumination UV, ils réalisèrent une fibre optique twin-hole périodiquement polée dans laquelle les non-linéarités du second ordre furent possibles. Grâce à cette fibre nous avons réalisé une source de paires de photons combinant les avantages des effets non linéaires du second ordre, i.e. la puissance de pompe nécessaire est moindre que dans le cas d'une non-linéarité du troisième ordre, la diffusion Raman spontanée n'influence aucunement les paires de photons générées, et les avantages de la fibre optique, i.e. la collection des paires de photons y est réalisée de facto, le mode spatial transverse des paires de photons est bien défini. La mesure du pic de coïncidences de notre source fournit un rapport entre le sommet du pic et le niveau des coïncidences accidentelles de 7,5. Une efficacité conversion $P_s/P_p=1,2,10^{-11}$ fut obtenue en utilisant 43~mW de puissance de pompe. En outre les paires de photons générées possèdent une longueur d'onde de 1556~nm se trouvant ainsi dans la bande C des télécommunications optiques (1530-1565~nm). Elles sont donc bien adaptées à une éventuelle application en communication quantique, dans les réseaux de fibres optiques actuellement utilisés pour les télécommunications optiques. Enfin nous avons utilisé ces paires de photons afin de réaliser l'expérience de Hong-Ou-Mandel permettant de mettre en évidence un effet propre à la physique quantique, à savoir le photon bunching. Une visibilité nette de 40% fut obtenue pour le Mandel dip dans une configuration où la visibilité maximale vaut 50%. En outre cette expérience nous a permis de développer une expertise dans la réalisation d'interféromètres fibrés, stabilisés et contrôlés en température. La source de paires de photons que nous avons réalisée constitue une démonstration de principe quant à la faisabilité d'une telle source. A l'époque de ce travail, la fibre dont nous disposions était l'une des premières fibres twin-hole périodiquement polées. Aujourd'hui de nombreux paramètres de la fibre ont été améliorés et permettent la réalisation d'une source de paires de photons tout à fait compétitive avec les autres sources existantes. Ainsi l'équipe du Prof. Kazansky est capable de réaliser des fibres périodiquement polées de 20 cm de long possédant une efficacité de conversion normalisée de seconde harmonique de $eta_{SH}=8;10^{-2}$\%/W. Si l'on suppose toujours une puissance de pompe de 43 mW, cela mène à une efficacité de conversion de $1,0;10^{-9}$ pour le processus de fluorescence paramétrique, soit une amélioration de deux ordres de grandeurs par rapport à notre démonstration. La réalisation d'une source de paires de photons dans une fibre optique périodiquement polée qui serait non seulement utilisable dans des expériences de physique fondamentale mais également dans des applications en communication quantique, est donc tout à fait envisageable dans un futur proche. Pour résumer, nous avons, au cours de cette thèse, réalisé, dans un premier temps, la tâche classiquement impossible qui consiste à jouer à pile ou face à distance. Ensuite dans l'optique de générer des paires de photons, nous avons étudié le processus d'instabilité de modulation dans une fibre microstructurée. Nous avons ainsi observé un régime particulier dans lequel l'instabilité de modulation vectorielle possède un gain supérieur à celui de l'instabilité de modulation scalaire. Enfin toujours en quête d'une source de paires de photons, nous avons réalisé une source produisant des paires de photons par fluorescence paramétrique dégénérée au sein d'une fibre optique twin-hole périodiquement polée. Les trois principaux sujets abordés au cours de cette thèse ont donc en commun l'utilisation de l'optique fibrée pour la manipulation ou la génération d'états quantiques de la lumière. Il en a résulté l'obtention de trois résultats originaux qui nous ont ainsi permis d'explorer une partie du monde intrigant et fascinant de l'optique quantique. / Quantum physics was introduced early in the 20th century. It brings a whole new description of our world, mostly at the microscopic level. Since then, this new theory has allowed one to explain and describe lots of physical features like the photoelectric effect, the energy levels of atoms, nuclear reactions, ... It also brought an answer to lots of remaining unanswered questions like the so-called ultraviolet catastrophe. Though, as attractive as this new theory was at that time, some of its counter-intuitive predictions quickly gave rise to controversy. For instance, in 1935, due to one quantum physics feature called entanglement, A. Einstein, B. Podolski and N. Rosen asked the question: "Can quantum-mechanical description of physical reality be considered complete?". This led to the famous debate with N. Bohr and his Copenhagen interpretation. Amongst other particular features of quantum physics one can cite: the superposition principle, the wave function collapse, the Heisenberg uncertainty principle, the wave-particle duality, the no-cloning theorem, ... As in Alice in wonderland, all those features actually make quantum physics a fascinating world where intuition is most of the time useless. In this thesis we tried to observe and study some of the intriguing features of quantum physics. More precisely we tried to use specific light states to explore part of what is called quantum optics. First we studied the use of coherent states of light to perform tasks you can not perform using classical physics. For instance in 1984, Ch. Bennett and G. Brassard proposed the first quantum cryptography protocol which has an absolute security while classical protocol security still relies on some computational assumptions (the assumption is that today computers computational power is not sufficient to threaten the security of classical protocols. Though this means that classical protocols are not intrinsically secure). Since then quantum physics has been proven useful to perform lots of classically impossible tasks like bit commitment, quantum computation, random number generation, ... In this work we were interested in the problem of coin tossing by telephone introduced by M. Blum in 1981. In this problem two untrustful and distant players try to perform a coin flip. Classically one can show that, if no computational assumptions are made, one of the players can always force the outcome of the coin flip. On the opposite if one uses quantum communication resources, a protocol in which none of the players can cheat perfectly can be built, i.e. none of the players have 100\% chance of winning the protocol even by using the best possible cheating strategy. Moreover this is possible without any other assumption than the validity of the laws of physics. Though a quantum protocol for coin tossing can not completely prevent from cheating, the demonstration of such a protocol would be a proof of principle of the potential of quantum communication to implement classically impossible tasks. In our work, we have developed a quantum coin tossing protocol and studied its performances. We have shown that the success cheating probability of the players is bounded by 99,7%<100%, which is better than what is achieved in any classical protocol. One of the originalities of our work is that, for the first time to our knowledge, experimental imperfections (detectors efficiency, losses, limited interference visibility, ...) have been taken into account in the theoretical analysis. Moreover, using coherent states of light, we have demonstrated a fiber optic experimental implementation of our protocol and performed a single coin flip where none of the two players could perfectly influence the outcome. This is to our knowledge the first experimental demonstration of single quantum coin tossing. After coherent states of light, we wanted to work with a more complex quantum state: photon pairs. Not only those states are useful for fundamental physics tests but they also are an important resource for quantum communication. For those reasons our first objective was to build a source that would generate those photon pairs. First photon pairs sources were based on bulk nonlinear crystals. Unfortunately the main drawback of those sources is the low collection efficiency of the generated photon pairs. That's why we investigated the possibility of generating the photon pairs directly in a waveguiding structure where they would be readily collected. The first solution that we envisaged was to use the natural third order nonlinearity of silica fibers. More precisely the phenomenon we wanted to used is called modulation instability. In this process, two pump photons are destroyed and a photon pair is created with energy and momentum conservations. Moreover we decided to use this process in a photonic crystal fiber. The high confinement of light in this kind of fiber allows a higher nonlinearity and thus a more efficient generation of photon pairs. Finally the fiber we used was birefringent which enables both vectorial and scalar modulation instability to occur. As a first experiment, we decided to observe modulation instability in a classical regime where a lot of photons are created. The specific parameters of our photonic crystal fiber - high anomalous dispersion and moderate birefringence - allowed us to observe a regime where the vectorial instability gain band has a similar detuning from the pump as the scalar instability gain band. In this regime we also observed an enhancement of the vectorial gain above the scalar gain which has been confirmed theoretically. To our knowledge this was the first experimental observation of this particular regime of instability. To generate photon pairs with this instability process we need to lower down the pump power. Unfortunately we measured that, when pump power was sufficiently lowered to generate ~0,1 photon pairs per pump pulse sent in the fiber, about 75% of generated photons were created by spontaneous Raman scattering and not modulation instability. In order to build an efficient photon pair source, some technological solutions have to be found to reduce the number of photons generated by spontaneous Raman scattering. Amongst those solutions, one can cite polarization discrimination of the generated photons and cooling of the fiber with liquid nitrogen. Using those solutions one could hope to reduce anti-Stokes Raman photon and Stokes Raman photon by respectively a factor 18 and 4. Unfortunately the main concern is how the photonic crystal fiber will react to very low temperatures. So even if technological solutions exist to build a photon pair source based on modulation instability in photonic crystal fiber, those seem to be really hard to implement. Moreover such a photon pair source would be very inconvenient to use in any quantum applications. So our first attempt to build a fiber photon pair source showed that photon pairs generated by a third order nonlinearity were polluted by photons generated by spontaneous Raman scattering. Such an efficient source couldn't be realized without heavy technological solutions. We have thus investigated another solution to generate photon pairs in an optical fiber. As third order nonlinearities don't seem to be suitable, we decided to go back to a second order nonlinearity. In this process one photon from the pump is destroyed to create a photon pair with energy and momentum conservations. Unfortunately the macroscopic centro-symetry of silica glass prevents those second order nonlinearities to occur in optical fibers. In order to enable second order nonlinearities in silica optical fiber, we worked with the team of Prof. P. G. Kazansky from the Optoelectronics Research Center of the university of Southampton. By using thermal poling and UV erasure technics, they were able to induce a second order nonlinearity in a twin-hole optical fiber. Thanks to 8 cm of periodically poled twin-hole fiber, were able to build a fiber photon pair source combining advantages of a second order nonlinearity (less pump power needed than for a third order nonlinearity, no influence of Raman photons) and of the fiber waveguiding structure (photon pairs readily collected, transverse spatial mode of the photon pairs well defined). A coincidence measurement was performed resulting in a coincidence peak with a 7,5 ratio between the peak and the accidental coincidences level. A conversion efficiency $P_s/P_p=1,2,10^{-11}$ was obtained using 43 mW of pump power. Moreover photon pairs were generated around 1556~nm in the optical communications C-band, which makes them suitable for quantum communication applications using installed fiber optic networks. Finally using the generated photon pairs we performed the Hong-Ou-Mandel experiment highlighting the bosonic nature of photons. We obtained a Mandel dip with a net visibility of 40% in a configuration where the maximum visibility is 50%. The photon pair source that we realized is a proof of principle of the high potential of poled fibers in quantum applications. Indeed today, Prof. P. G. Kazansky's team is able to make a 20 cm poled fiber with a nonlinearity $eta_{SH}=8;10^{-2}$\%/W. If we still suppose 43~mW of pump power, this leads to a $1,0;10^{-9}$ conversion efficiency for parametric fluorescence, improving our result by two orders of magnitude. The realization of an efficient photon pair source based on parametric fluorescence in periodically poled twin-hole fiber suitable for quantum applications is thus absolutely possible in a very near future.
296

Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator

Hori, Takashi, Nishizawa, Norihiko, Nagai, Hiroyuki, Yoshida, Makoto, Goto, Toshio 01 1900 (has links)
No description available.
297

0.78-0.90-μm wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber

Nishizawa, Norihiko, Ito, Youta, Goto, Toshio 02 1900 (has links)
No description available.
298

Automatic trimming of ultrasonic pulse in fiber-optical power spectrometer

Forsslund, Ola January 2009 (has links)
The aim of this master's thesis is to develop a method that fully automates a trimming step in the production of a fiber-optical power spectrometer, based on a unique Acusto-Optical Scanning Filter. The filter is created by letting an ultrasonic mechanical pulse pass through a chirped Fiber Bragg Grating. The pulse introduces a disturbance in the grating, creating a thin optical transmission window in the otherwise reflective bandwidth. The high demands on the window requires a precise, unit dependent pulse form with unknown properties. Thus each unit needs to be trimmed to reach required performance. The manual trimming is largely a trial and error process, that contains two performance tests. We redefine one, eliminating the need to reroute the optical path and reducing the number of fiber weldings. The tests are then quantified, allowing a figure of merit to be based on weighted performance values. A brute force method, testing a large set of pulses, is implemented. The set is defined by the parameter space spanned by previously produced units. Due to the large space, the method is too time consuming. Instead it is used to measure the performance spaces of three units. An attempt to largely reduce the parameter space using PCA failed. An alternating variables method that finds local performance optima in the parameter space is developed. By using a set of several starting points, the method tends to find several qualified pulses. The method is implemented and successfully verified by trimming new units. Finally we propose where to focus improvements of the method in a production ramp up.
299

Simulation methods for the temporal and frequency dynamics of optical communication systems

Reimer, Michael Andrew January 2012 (has links)
I examine two methods for modeling the temporal dynamics of optical communication networks that rapidly and accurately simulate the statistics of unlikely but physically significant system configurations. First, I implement a fiber emulator based upon a random uniform walk over the Poincaré sphere that reproduces the expected polarization temporal autocorrelation statistics with a small number of emulator sections. While easy to implement numerically, the increased computational efficiency afforded by this approach allow simulations of the PMD temporal dynamics to be preferentially biased towards regions of low probability using standard multicanonical methods for the first time. Then, in a subsequent study, I present a general transition matrix formalism that additionally applies to other time-dependent communication systems. I compare the numerical accuracy of several transition matrix sampling techniques and show that straightforward modifications of the acceptance rule can significantly increase computational efficiency if the numerical parameters are chosen to ensure a small self-transition probability within each discretized histogram bin. The general applicability of the transition matrix method is then demonstrated by calculating the outage dynamics associated with the hinge model of polarization evolution and, separately, fading in wireless communication channels. Further, I develop a Magnus expansion formalism for the rapid and accurate estimation of the frequency dynamics of optical polarization that extends the work of Ref.[94] to systems with PMD and PDL. My approach reproduces the power-series expansion and differential equation solution techniques of previous authors while also preserving the required symmetries of the exact solution in every expansion order. This significantly improves the bandwidth of high estimation accuracy, making this method well-suited to the stochastic analysis of PMD and PDL induced system penalty while also yielding physically realizable operator expansions applicable to the joint compensation of PMD and PDL. Finally, I employ high-speed polarimetery to demonstrate experimentally that low-amplitude mechanical excitations of commercially available dispersion compensation modules can excite high-frequency, > 75,000 rotations/s, polarization transients that are nearly invariant between successive measurements. I extend this procedure to measurements of the transient evolution of PMD.
300

Spontaneous Synchronization of Josephson Junctions and Fiber Lasers

Tsygankov, Denis V. 20 July 2005 (has links)
The thesis is devoted to the study of spontaneous synchronization of coupled nonlinear oscillators. It consists of two major parts. The first describes synchronization of Josephson junctions embedded in a transmission line. I consider in detail a new phenomenon ??eation of inert oscillator pairs ??ich was observed in analytical studies. The second part of the thesis describes synchronization of an array of single mode fiber lasers, with special interest in the phenomenon of synchronization of subsets of fiber lasers in a two dimensional array through a specific arrangement of the under-pumped lasers.

Page generated in 0.0453 seconds