Spelling suggestions: "subject:"fibre"" "subject:"libre""
131 |
Processing-Property Relationships of Hemp FibreKorte, Sandra January 2006 (has links)
There is great interest in the plant Cannabis sativa (hemp) as a source of technical fibres for the reinforcement of polymers in composite materials due to its high mechanical properties. As a natural fibre hemp also offers biodegradabilty and is therefore an inexpensive and renewable alternative to glass fibres However, the environmental benefits of natural fibres cannot be fully exploited if the manufacturing of their composites involves polluting processing steps. Unfortunately, there is still a lack of environmetally sustainable processing methods yielding technical fibres of sufficient quality. Enzyme application as a biotechnological processing method is a good candidate for this aim and is therefore actively investigated at present. In this work the effects of a range of enzymes on the morphological, compositional and mechanical properties of hemp was investigated. The enzymes were firstly characterised and then applied to hemp fibre for differing periods of time. After visual inspection, a set of fibre samples were selected and subjected to further analysis by Fourier-Transform Infrared Spectroscopy (FTIR), tensile testing and scanning electron microscopy (SEM). The commercial formulation Pectinex® Ultra-SL emerged as the most efficient in terms of treatment time and fibre quality. The effectiveness of treatments was further investigated by developing a novel experimental method that correlates the adhesion forces measured by atomic force microscopy (AFM) on the fibre surface to the properties of the fibres or composites. In order to identify correlations between the adhesion forces and fibre or composite properties, hemp fibre was subjected to four distinctly different treatments to obtain significant differences between fibre properties. The fibres and composites were then analyzed using a combination of FTIR, tensile testing, 3-point bend testing, dynamic mechanical analysis (DMA) and SEM. Based on this comprehensive dataset the AFM data was correlated using the software SPSS. The information derived from AFM (adhesion forces and surface topology) was useful in the clarification of fibre modifications evoked by the treatments.
|
132 |
Interfibre Joint Strength under Mixed Modes of LoadingMagnusson, Mikael S. January 2014 (has links)
The load carrying capacity of interbre joints are one of the key entities for build-up of strength inpaper materials. In order to gain insight in how to tailor the macroscopic properties of such materialsby chemical and/or mechanical treatments at a microscopic level, direct measurement of individualbre{bre crosses are typically performed. However, the state of loading in the interbre joint, intesting of individual bre{bre crosses, is in general very complex and an increased understandingfor how to evaluate the mechanical properties of interbre joints is desirable. In Paper A, amethod for manufacturing and measuring the strength of isolated interbre joints is presented. Themethod is applied to investigate the strength of bre{bre crosses at two dierent modes of loading.Also, an investigation on the manufacturing conditions is presented. The strength distribution ofindividually prepared bre{bre crosses is characterized and it was found that the median strengthin a peeling type of loading was about 20% compared to samples tested in the conventional shearingtype of loading. In Paper B, a procedure for evaluating interbre joint strength measurementsin terms of resultant forces and moments in the interbre joint region is presented. The methodis applied to investigate the state of loading in bre{bre crosses tested in peeling and shearing,respectively. It is shown that for a typical interbre joint strength test, the load components otherthan shear, cannot in general be neglected and is strongly dependent on the structural geometry ofthe bre{bre crosses. In Paper C, four distinctly dierent load cases; peeling, shearing, tearingand a biaxial type of loading was tested mechanically and evaluated numerically in order to gainmore information on how interbre joints behave in dierent modes of loading. In Paper D, thein uence of a chemical additive on the interbre joint strength is investigated on the microscopic(joint) scale and correlated to the eect previously observed on the macroscopic (sheet) scale. Xraymicrotomography and image analysis was used to understand structural changes in the brousnetwork in terms of the number of interbre joints as well as the average interbre joint contact area.The results showed that the median interbre joint strength increased by 18% upon adsorption, andthat the polyelectrolyte increased the number of contacts between the bres as well as an increasedarea of contact. In Paper E, the damage behaviour of individual interbre joints is analyzed. Froman extensive number of mechanical tests, the typical damage behaviour is identied and a failurecriterion is used to study the in uence of failure properties to give indications on how to tailor thematerial to optimize the joint strength. / En av de viktigaste mekanismerna for den lastbarande formagan hos pappersmaterial ar brottegenskapernahos berfogarna. For att eektivt skraddarsy sadana materials egenskaper genom kemiskoch/eller mekanisk behandling samt for att forsta hur sadana modieringar paverkar egenskapernapa en mikroskopisk niva ar provning av individuella ber-ber-kors en allmant anvand metod. Belastningeni en berfog vid sadan provning ar dock generellt komplicerad och ytterligare kunskapom hur berfogars mekaniska egenskaper skall utvarderas ar onskvard. I Artikel A, presenterasen metod for tillverkning samt mekanisk provning av isolerade ber-kors vid tva olika typer avbelastning. Vidare undersoks hur torktrycket, torkmetoden samt graden av malning inverkar pafogstyrkan. Resultaten visar att brottlasten for en globalt akande belastning var omkring 20 % avbrottlasten for prov utforda med den konventionella skjuvande belastningen samt att styrkan hosindividuellt tillverkade berkors ar fordelade enligt en Weibull fordelning. I Artikel B, presenterasen numerisk metod for utvardering av fogstyrke-matningar med avseende pa kraft- och momentresultanternai gransytan mellan brerna. Metoden anvands for att studera belastningsmoden hosber-kors i tva principiellt olika lastfall. Resultaten visar att for ett typiskt berfogsprov, kan intelastkomponenterna, vid sidan av skjuvning, generellt forsummas da de ar starkt beroende avber-korsets geometri. I Artikel C, jamfors fogstyrkematningar under fyra principiellt olika lastfall; akande, skjuvande, rivande samt biaxiellt. De experimentella last-forskjutningskurvorna, samtde beraknade lastmoderna anvands for att undersoka vilket tillskott pa information de foreslagnalastfallen kan ge i hansyn till fogstyrkan hos massabrer. I Artikel D, undersoks en polymers (somabsorberats pa berytorna) inverkan pa saval berniva som pa natverksniva. Fiberfogstyrkan matsexperimentellt och eekten av den kemiska tillsatsen jamfors pa mikroskopisk niva (ber-kors) medtidigare uppmatt eekt pa makroskopisk niva (ark). Rontgentomogra och bildanalys anvands foratt undersoka de strukturella skillnaderna som uppstar i de brosa natverken vid absorption av enpolyamin och resultaten visar att antalet berfogar per berlangdenhet samt att medelkontaktareanokade. Resultaten visar ocksa att medianen av berfogsstyrkan okade med 18 %. Dessa eekter sammantagetar anledningen till varfor polyaminer, sasom PAH, ar sa eektiva for att oka torrstyrkanhos pappersmaterial. I Artikel E, karakteriseras skadebeteendet hos individuella berfogar franett omfattande antal matningar. Ett brottkriterium infors i den numeriska utvarderingsmetoden foratt studera skadebeteendet. Kanslighetsanalys och inverkan av brottparametrarna studeras ocksafor att ge indikationer pa hur egenskaperna kan skraddarsys for att optimera berfogstyrkan. / <p>QC 20140527</p> / BiMaC Innovation
|
133 |
The orientation state of semi-dilute rigid fibre suspensions in a linearly contracting channelKrochak, Paul Joseph 05 1900 (has links)
This work investigates the effects of long range hydrodynamic fibre-fibre interactions on the orientation state of a semi-dilute, rigid fibre suspension flowing through a linear contracting channel under laminar flow conditions. The effects of fibre-fibre interactions are modeled mathematically, the governing equations solved numerically and the predicted results compared with experimental observations.
The theoretical model is based on the assumption that the orientation state of the suspension can be completely described by a probability distribution function and that fibre-fibre interactions are random in nature, thus giving rise to a diffusion-type process. The orientation distribution evolves spatially according to a Fokker-Plank type equation using closure equations for the rotary diffusion coefficient advanced by either (i) Folgar and Tucker (J. Reinforced Plast. Comp. 3 98–119 1984) or (ii) Koch (Phys. Fluids 7(8) 2086–2088 1995). Each of these two closure models for the rotary diffusion coefficient contains an unknown empirical constant that must be determined from experiments. These were fit to experimental data along the central streamline of the contraction as a function of fibre concentration. The diffusion coefficient was found to first increase with increasing suspension concentration up to a maximum, and then decrease with concentration above this point. This non-monotonic behavior was attributed to fibre flocculation, a mechanism not considered in the relationships for the rotary diffusion coefficient. The theoretical model is then extended to predict fibre orientation over the entire plane of the contraction and the two-way momentum coupling between the fluid and fibre phases were investigated numerically. The results show that the structure of the flow field within the contraction is significantly altered when the fibre phase is considered, demonstrating the non-negligible effect of the momentum exchange between the two phases. Comparison is made between the predicted orientation state of the suspension with experimental observations over the contraction plane. Good agreement was found between the model predictions and the experimental observations except in a small region near the solid boundaries. These near wall discrepancies were attributed to an inability to correctly handle the wall boundary conditions in the fibre orientation model.
|
134 |
Monitoring the interface of carbon fibre and epoxy microcomposites using Raman spectroscopy with single walled carbon nanotubes as strain sensorsJin, Siyu January 2014 (has links)
The interfacial micromechanics of both high modulus and low modulus carbon fibres have been investigated using Raman spectroscopy. The innovative step was to make low modulus carbon fibres more Raman active by coating them with SWNTs to act as as a strain sensor. Two types of SWNTs have been employed; namely HiPCO SWNTs and COOH SWNTs. Single fibre deformation tests were carried out and the Raman band shift rates with respect to fibre strain have been determined. Meanwhile, different SWNTs coating methods have been investigated. The method of adding COOH SWNTs into the silane layer and within a hot cured epoxy layer was found to generate the highest band shift rates. Furthermore, an investigation of the effect of SWNTs on the strength of the interface was also carried out. A coating of COOH SWNTs was found to significantly improve the interfacial shear strength. Micromechanical tests have been carried out and the stress transfer between the carbon fibres and an epoxy resin was monitored using three different model composite geometries; namely microdroplet-fibre, a film-fibre and a standard fragmentation approach. The result of interfacial shear stress determined from microdroplet-fibre method varied and was found to be highly dependent on the droplet size and shape; this gave the lowest values of interfacial shear stress (ISS). The method of film-fibre obtained an intermediate ISS value which is between that from the microdroplet model test and the fragmentation test. The standard fragmentation test using Raman technique gives the highest ISS and HiPCO SWNTs were found to be a better strain sensor without affecting the original interfacial properties.
|
135 |
The orientation state of semi-dilute rigid fibre suspensions in a linearly contracting channelKrochak, Paul Joseph 05 1900 (has links)
This work investigates the effects of long range hydrodynamic fibre-fibre interactions on the orientation state of a semi-dilute, rigid fibre suspension flowing through a linear contracting channel under laminar flow conditions. The effects of fibre-fibre interactions are modeled mathematically, the governing equations solved numerically and the predicted results compared with experimental observations.
The theoretical model is based on the assumption that the orientation state of the suspension can be completely described by a probability distribution function and that fibre-fibre interactions are random in nature, thus giving rise to a diffusion-type process. The orientation distribution evolves spatially according to a Fokker-Plank type equation using closure equations for the rotary diffusion coefficient advanced by either (i) Folgar and Tucker (J. Reinforced Plast. Comp. 3 98–119 1984) or (ii) Koch (Phys. Fluids 7(8) 2086–2088 1995). Each of these two closure models for the rotary diffusion coefficient contains an unknown empirical constant that must be determined from experiments. These were fit to experimental data along the central streamline of the contraction as a function of fibre concentration. The diffusion coefficient was found to first increase with increasing suspension concentration up to a maximum, and then decrease with concentration above this point. This non-monotonic behavior was attributed to fibre flocculation, a mechanism not considered in the relationships for the rotary diffusion coefficient. The theoretical model is then extended to predict fibre orientation over the entire plane of the contraction and the two-way momentum coupling between the fluid and fibre phases were investigated numerically. The results show that the structure of the flow field within the contraction is significantly altered when the fibre phase is considered, demonstrating the non-negligible effect of the momentum exchange between the two phases. Comparison is made between the predicted orientation state of the suspension with experimental observations over the contraction plane. Good agreement was found between the model predictions and the experimental observations except in a small region near the solid boundaries. These near wall discrepancies were attributed to an inability to correctly handle the wall boundary conditions in the fibre orientation model. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
|
136 |
Measurement and Analysis of Flow in 3D Preforms for Aerospace CompositesStewart, Andrew L January 2012 (has links)
Composite materials have become viable alternatives to traditional engineering materials for many different product categories. Liquid transfer moulding (LTM) processes, specifically resin transfer moulding (RTM), is a cost-effective manufacturing technique for creating high performance composite parts. These parts can be tailor-made to their specific application by optimizing the properties of the textile preform. Preforms which require little or no further assembly work and are close to the shape of the final part are critical to obtaining high quality parts while simultaneously reducing labour and costs associated with other composite manufacturing techniques. One type of fabric which is well suited for near-net- shape preforms is stitched non-crimp fabrics. These fabrics offer very high in-plane strength and stiffness while also having increased resistance to delamination. Manufacturing parts from these dry preforms typically involves long-scale fluid flow through both open channels and porous fibre bundles.
This thesis documents and analyzes the flow of fluid through preforms manufactured from non-crimp fabrics featuring through-thickness stitches. The objective of this research is to determine the effect of this type of stitch on the RTM injection process. All of the tests used preforms with fibre volume fractions representative of primary and secondary structural parts. A series of trials was conducted using different fibre materials, flow rates, fibre volumes fractions, and degrees of fibre consolidation. All of the trials were conducted for cases similar to RTM. Consolidation of the fibres showed improvements to both the thoroughness of the filling and to the fibre volume fraction. Experimentally determined permeability data was shown to trend well with simple models and precision of the permeability data was comparable to values presented by other authors who studied fabrics which did not feature the through-thickness stitches.
|
137 |
Fibre orientationCaton-Rose, Philip D., Coates, Philip D., Duckett, R.A., Hine, P.J. January 2005 (has links)
No
|
138 |
Characterization of Optical Coupling and Back-reflection of Few Mode FibersShipton, Matthew J. 01 September 2015 (has links)
The continued growth of the communications industry has caused interest in mode-division multiplexing (MDM) techniques to flourish in recent years. These techniques allow individual waveguide modes to be used as distinct channels. However, as with any versatile technique, it should be also useful and beneficial to extend its application to other areas. This work concerns itself with an initial conceptual design of a mode-division multiplexing (MDM) enabled optical sensor network that can use modes to interrogate either specific sensors or sensor subsystems, and specifically with quanitizing and optimizing the injection and detection of the signal of interest. A hypothetical test setup is demonstrated, and the major issue of back reflection burying the intended signal is addressed, analyzed, and improved. Improvements in the signal-to-background contrast ratio (SBCR) of approximately 10dB were achieved depending on fibre type and proximal face. Suggestions for extensions to further improve the SBCR as well as for applications of this system are discussed. / Master of Science
|
139 |
Towards defect free forming of multi-stacked composite aerospace components using tailored interlayer propertiesHallander, Per January 2016 (has links)
Use of lightweight materials is an important part of reduction of fuel consumption by commercial aircraft. A considerable number of structural aircraft parts are therefore built of thin layers of epoxy pre-impregnated carbon fibres stacked to laminates. Manufacturing these by hand is costly and different methods of automation have therefore been developed. One cost-effective way of manufacturing is Automated Tape Lay-up of flat stacks followed by a Hot Drape Forming operation. A well-known problem in the industry within forming is fibre wrinkling, which can cause a serious strength knock down. The focus of this thesis has therefore been on understanding how and why wrinkles develop during forming of multi-layer stacks and, based on this, investigate different methods for process and material improvements. The work presented initially investigates the dependency between stacking sequence and wrinkle development. It is shown that wrinkle free forming can be obtained by changing the fibre stacking order. In the following investigation it is shown that the wrinkles cannot be entirely eliminated by local stiffening of the critical layers. In a, related study it is shown that different kinds of wrinkles develops during forming; wrinkles may be either due to global buckling of the entire lay-up or local compression of single layers. Global buckling is due to excessive material. Local compression occurs as the material shear during forming. The work presented leads to an understanding of the importance of making the beneficial neighbouring fibre layers interact during forming. One way to connect neighbouring layers is to tailor the interlayer properties. A study is presented that shows how local manipulation of interlayer properties may steer the multi-layered material into a different deformation mechanisms. The manipulation in this thesis is performed using Multi Wall Carbon Nano Tubes, thermoplastic veils or consolidation of thermoplastic toughener particle interlayers. / <p>QC 20160425</p>
|
140 |
FLIGHT TEST MONITORING OF AVIONIC FIBRE CHANNEL NETWORKS FOR RECORDING AND TELEMETRYZettwoch, Robert N. 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The F/A-18E/F Super Hornet fighter aircraft program is currently flight testing a Fibre Channel Network (FCN), which will initially replace certain Avionics Systems’ MIL-STD-1553 communications. The Advanced Mission Computers and Displays (AMC&D) and the Active Electronically Scanned Array (AESA) RADAR are replacing their MIL-STD-1553 counterparts to fulfill performance enhancements and growing data requirements. The maximum amount of data that can be transferred between these systems is significantly increasing. Each remote terminal on a MIL-STD-1553 bus can transmit or receive approximately 1Mbps. Each node on a FCN can simultaneously transmit and receive 1Gbps. With a Fibre Channel Network Switch (FCNS), multiple systems can communicate concurrently, thus increasing overall system throughput even further. Several other systems will be replaced in the near future utilizing the FCNS. The Fibre Channel Interface Unit (FCIU) was designed for the F/A-18E/F AESA program as a nonintrusive way to monitor multiple nodes, extract node specific information, and record this information using conventional on-board recorders. In order to reduce the risks associated with developing hardware and software concurrently with the Avionic System’s protocol, the FCIU was developed as an upper-level-protocol (ULP) (layer FC-4) independent device. Two big advantages of ULP independence are the avoidance of complex protocol programming for each different type of monitored network system and the non-intrusive nature of the FCIU connection to the FCN. This facilitates the quick installation of the FCIU to monitor any FC network and the FCIU IRIG-106 PCM type output lends itself to be integrated quickly into a typical Flight Test data recording or telemetry system.
|
Page generated in 0.0326 seconds