Spelling suggestions: "subject:"fibre reinforced concrete"" "subject:"fibre reinforced aconcrete""
21 |
The fire performance of restrained polymer-fibre-reinforced concrete composite slabsFox, David Christopher Alexander January 2013 (has links)
Composite slab flooring systems for steel-framed buildings consist of a profiled steel deck and a cast in-situ slab. The slab traditionally includes a layer of light gauge steel mesh reinforcement. This mesh is placed near the surface, which controls the early-age cracking caused by concrete drying and shrinkage. The steel mesh also performs a vital structural role at high temperatures. Structural fire tests and numerical investigations over the last 15 years have established that the mesh can provide enhanced fire resistance. A load-carrying mechanism occurs in fire with the mesh acting as a tensile catenary, spanning between perimeter supports. This structural mechanism is currently utilised regularly in the performance-based fire engineering design of steel-framed buildings. In a recent development, this mesh can be removed by using concrete with dispersed polymer fibre reinforcement to form the composite slab. The polymer-fibre-reinforced concrete (PFRC) is poured onto the deck as normal, and the fibres resist early crack development. For developers this technique has several advantages over traditional reinforcing mesh, such as lower steel costs, easier site operations and faster construction. However, to date the fire resistance of such slabs has been demonstrated only to a limited extent. Single element furnace tests with permissible deflection criteria have formed the basis for the fire design of such slabs. But these have not captured the full fire response of a structurally restrained fibre-reinforced slab in a continuous frame. The polymer fibres dispersed throughout the slab have a melting point of 160ºC, and it is unclear how they contribute to overall fire resistance. In particular, there has been no explanation of how such slabs interact with the structural perimeter to maintain robustness at high deflections. This project was designed to investigate the structural fire behaviour of restrained polymer-fibre-reinforced composite slabs. An experimental series of six slab experiments was designed to investigate the effects of fibre reinforcement and boundary restraint. A testing rig capable of recording the actions generated by the heat-affected slab was developed and constructed. Model-scale slab specimens were tested with different reinforcement and perimeter support conditions, to establish the contributions to fire resistance of the polymer fibres and applied structural restraint.
|
22 |
Fracture in high performance fibre reinforced concrete pavement materialsDenneman, Erik 12 October 2011 (has links)
An innovative pavement system known as Ultra Thin Continuously Reinforced Concrete Pavement (UTCRCP) was recently developed in South Africa. The technology is currently being implemented on some major routes in the country. The system consists of a high performance fibre reinforced concrete pavement slab with a nominal thickness of approximately 50 mm. The material has a significant post crack stress capacity compared to plain concrete. Current design methods for UTCRCP are based on conventional linear elastic concrete pavement design methodology, which does not take into account post crack behaviour. Questions can be raised with regards to the suitability of conventional approaches for the design of this high performance material. The hypothesis of the study is that the accuracy of design models for UTCRCP can benefit from the adoption of fracture mechanics concepts. The experimental framework for this study includes fracture experiments under both monotonic and cyclic loading, on specimens of different sizes and geometries and produced from several mix designs. The aim is to quantify size effect in the high performance fibre reinforced concrete material, to determine fracture mechanics material parameters from monotonic tests, and to investigate the fatigue behaviour of the material. As part of the study a method is developed to obtain the full work of fracture from three point bending tests by means of extrapolation of the load-displacement tail. This allows the specific fracture energy (Gƒ) of the material to be determined. An adjusted tensile splitting test method is developed to determine the tensile strength (ƒτ) of the material. The values of Gƒ and ƒτ are used in the definition of a fracture mechanics based cohesive softening function. The final shape of the softening function combines a crack tip singularity with an exponential tail. The cohesive crack model is implemented in finite element methods to numerically simulate the fracture behaviour observed in the experiments. The numerical simulation provides reliable results for the different mixes, specimen sizes and geometries and predicts the size effect to occur. Fracture mechanics based models for the prediction of the fatigue performance of the material are proposed. The predictive performance of the models is compared against a model representing the conventional design approach. It is concluded that the findings of the study support the thesis that design methods for UTCRCP can benefit from the adoption of fracture mechanics concepts. This conclusion is mainly based on the following findings from the study: <ul><li> The high performance fibre reinforced concrete material was found to be subject to significant size effect. As a consequence the MOR parameter will not yield reliable predictions of the flexural capacity of full size pavement structures, </li><li> In contrast to the MOR parameter, the fracture mechanics damage models developed as part of this study do provide reliable predictions of the flexural behaviour of the material, </li><li> The fatigue model developed based on fracture mechanics concepts, though not necessarily more precise, is more accurate. </li></ul> / Thesis (PhD)--University of Pretoria, 2011. / Civil Engineering / PhD / Unrestricted
|
23 |
Evaluation of a Tramway’s Track Slab in Conventionally Reinforced Concrete or Steel Fibre ConcreteZioris, Stavros, Vranjkovina, Alija January 2015 (has links)
The dominant reinforcement used widely for concrete structures is conventional steel bars (rebars). Nevertheless, the perpetual effort toward evolution and development could not exclude the engineering field, thus new innovative and sophisticated methods are introduced. It is true that, due to lack of extended regulations and standards, the fibre reinforced concrete (FRC) was limited to non-structural applications. However, the last years the situation is changing rapidly and already the applications of FRC include actual structural members. The subject of the current thesis was a tramway’s track slab from “Sparvag City” project in Stockholm. The aim was to evaluate the track slab, in terms of alternative reinforcing ways. In particular three models were examined; model I – conventional reinforcement, model II – steel fibre reinforced concrete (SFRC) and model III – SFRC with conventional reinforcement. The assessment was performed from structural, regulations – compliance, economic and ergonomic perspective. A static linear analysis of the track slab was performed using Abaqus; a finite element analysis (FEA) software. The track slab was subjected only to mechanical loads (selfweight and traffic actions) and thus, the design internal forces were extracted. Thereafter, Eurocode 2 (EN 1992-1-1, 2004) and Swedish standards for FRC structures (SS 812310:2014) were utilized for the reinforcement design of the models. The design was performed in ultimate limit state (ULS), for bending moment and shear resistance, and in serviceability limit state (SLS), for stress limitation and crack control. Model I and III were successfully designed abiding with the respective regulations and requirements, while “only fibres” model was considered valid only for bending moment resistance according to SS 812310:2014. Consequently only models I and III were compared with each other. From the economic comparison it was obtained that model I was less expensive than model III, but on the other hand its construction time was larger. Furthermore model III contained significantly less total rebars’ mass in comparison to model I. This particularity was crucial for the ergonomic assessment. The human factors, that were relevant to the ergonomic assessment, improved the quality of the comparison and the extracted inferences, but also introduced aspects impossible to be put against economic facts as an equal quantity. Thus, there was not a final proposal as the best solution for the thesis subject. / Armeringen av betongkonstruktioner domineras av konventionell armering (armeringsjärn). Med den ständiga strävan mot utveckling och förbättring har inom teknikområdet nya innovativa och avancerade metoder introducerats. Det är på grund av bristen på normer, standarder som fiberarmerad betong begränsats till icke- bärande ändamål. Däremot har situationen förändrats under de senaste åren, redan idag kan man se konstruktioner där fiberarmering används till bärande ändamål. Amnet for den aktuella masterexamen var betongplatta i projektet ”Sparvag City” i Stockholm. Syftet var att utvärdera betongplattan, i form av att undersöka alternativa armeringsmöjligheter. I synnerhet undersöktes tre modeller; modell I- konventionellt armerad platta, modell IIstålfiberarmerad platta och modell III stålfiberarmerad platta kombinerad med konventionell armering. Modellernas möjligheter att uppfylla regelverkens krav undersöktes, men de jämfördes även ur ekonomiskt samt ergonomiskt perspektiv. En statisk linjär analys av betongplattan genomfördes i ett finit element program, Abaqus. Betongplattan utsattes för mekanisk belastning (egenvikt samt trafiklast) för vilken dimensionerande krafter extraherats. Därefter användes Eurocode 2 (EN 1992-1-1, 2004) och den svenska standarden för fiberarmerade betong konstruktioner (SS 812310:2014) för vidare konstruktionsberäkningar. Konstruktionsberäkningarna för betongplattan genomfördes i brottgränstillstånd för böjmoment samt tvärkraft, i brukgränsmotståndet undersöktes betongplattan för spänningsbegränsningar samt sprickkontroll. Konstruktionsberäkningarna kunde genomföras för modell I och III med de existerande föreskrifterna och kraven, men modellen med ”endast fibrer” kunde endast dimensionerna för böjmoment enligt SS 812310:2014. Därför kunde endast modell I och III fortsättningsvis jämföras med varandra. Från den ekonomiska jämförelsen erhölls det att modellen I var billigare än modell III, men att konstruktionstiden var längre. Dessutom var behoven för konventionell armering (armeringsjärn) betydligt mindre för modell III till skillnad från modell I. Modellernas innehåll av konventionell armering var avgörande för den ergonomiska bedömningen. Den mänskliga faktorn, som var relevanta för den ergonomiska bedömningens, gav jämförelsen av modellerna en annan dimension, där de viktiga mänskliga faktorerna
|
24 |
An investigation into the use of low volume - fibre reinforced concrete for controlling plastic shrinkage crackingMaritz, Jaco-Louis 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Plastic shrinkage cracking (PSC) in concrete is a well-known problem and usually occurs within the first few hours after the concrete has been cast. It is caused by a rapid loss of water from the concrete, either from the surface through evaporation or through absorption by dry subgrade or formwork in contact with the concrete and results in an overall reduction in concrete volume. If this volume reduction or shrinkage is restrained, plastic shrinkage cracks can occur.
Plastic shrinkage cracks create an unsightly appearance on the concrete surface which reduces the quality of the concrete structure. These cracks also develop weak points in the concrete which can be widened and deepened later on by drying shrinkage and thermal movement. As a result harmful substances may enter the cracks causing accelerated concrete deterioration. These cracks may also expose the steel reinforcement causing it to corrode more aggressively. Consequently, the aesthetic value, serviceability, durability and overall performance of the concrete will be reduced. Therefore it is important to consider methods of limiting PSC.
One of these methods is the addition of low volumes of polymeric fibres to concrete to reduce PSC. However, the application of this low volume fibre reinforced concrete (LV-FRC) is not clearly understood since there is a lack of knowledge and guidance available for the use of LV-FRC.
The objective of this study is to gain a full understanding of PSC behaviour in conventional concrete and LV-FRC by investigating the effects of evaporation and bleeding as well as the effect of various fibre properties on PSC. The following significant findings were attained: A basis for a crack prediction model in conventional concrete was developed using the average differences in cumulative evaporation and cumulative bleeding to create a crack prediction value (CPV). This preliminary model showed that there exists a certain CPV range (-0.2 to 0.4 kg/m2 for this study) where a slight decrease in the CPV results in a significant PSC reduction. It also showed that if the CPV falls outside this range, varying the bleeding or evaporation conditions will have very little effect on the PSC. A study on the fibre properties in LV-FRC showed that there exist certain limits to the fibre volume, length and diameter where a further increase or decrease in value will have no or little effect on reducing PSC. It also showed that the effect of the fibres depend on the level of severity of PSC.
The knowledge gained from this investigation can serve as a basis for the design of a model that can predict the risk of PSC in conventional concrete and specify preventative measures needed to reduce this risk. It also provides information that can be used to develop guidelines for the effective use of LV-FRC. / AFRIKAANSE OPSOMMING: Plastiese krimp krake (PKK) in beton is `n bekende probleem en vorm gewoonlik binne die eerste paar uur nadat die beton gegiet is. Dit word veroorsaak deur die vinnige waterverlies vanuit die beton, óf deur verdamping vanaf die beton oppervalk óf deur absorpsie van `n droeë grondlaag of bekisting wat in kontak is met die beton. Dit veroorsaak `n algehele vermindering in beton volume. As hierdie krimping van die beton beperk word, kan plastiese krimp krake ontstaan.
PKK skep 'n onooglike voorkoms van die beton oppervlakte en verlaag die kwaliteit van die beton struktuur. Hierdie krake tree ook op as swak plekke in die beton wat later kan verbreed of verdiep deur droogkrimping en termiese beweging. Gevolglik kan skadelike stowwe vanuit die omgewing die krake binnedring wat lei tot versnelde agteruitgang van die beton. Hierdie krake kan ook die staalbewapening ontbloot wat veroorsaak dat dit vinniger roes. Gevolglik verminder die estetiese waarde, diensbaarheid, duursaamheid en algehele prestasie van die beton. Daarom is dit belangrik om metodes te ondersoek vir die beperking van PKK.
Een van hierdie metodes is die byvoeging van lae volumes polimeer vesels tot beton om PKK te verminder. Die toepassing van hierdie lae volume - vesel versterkte beton (LV-VVB) word egter nog nie volledig verstaan nie as gevolg van 'n algemene gebrek aan kennis en riglyne vir die gebruik van die LV-VVB.
Die doel van hierdie studie is om 'n volledige begrip van PKK gedrag in normale beton asook LV-VVB te kry. Dit word behaal deur die effek van verdamping en bloei op PKK sowel as die effek van verskillende vesel eienskappe op PKK te ondersoek. Die volgende noemenswaardige bevindinge is bekry.
• Die basis van 'n kraak voorspellingsmodel vir gewone beton is ontwikkel deur gebruik te maak van die gemiddelde verskil tussen die kumulatiewe verdamping en die kumulatiewe bloei om 'n kraak voorspellingswaarde (KVW) te vorm. Hierdie voorlopige model toon dat daar `n sekere KVW interval ontstaan (-0,2 tot 0,4 kg/m2 vir hierdie studie) waar slegs 'n effense vermindering in die KVW 'n geweldige vermindering in die PKK tot gevolg het. Dit dui ook aan dat, indien die KVW buite hierdie interval val, ʼn verandering in die bloei of verdamping toestande `n baie klein invloed op die PKK het. 'n Studie oor die vesel eienskappe in LV-VVB het gewys dat daar sekere grense is aan die vesel volume, lengte en deursnee waardes, waar 'n verdere toename of afname in waarde min of geen effek het op die vermindering van PKK nie. Dit wys ook dat die effek van die vesels grotendeels afhanklik is van die risiko vlak vir PKK.
Die kennis wat uit hierdie ondersoek opgedoen is, kan dien as 'n basis vir die ontwerp van 'n model wat die risiko van PKK in gewone beton kan voorspel en daarvolgens besluit op 'n voorkomingsmaatsreël om hierdie risiko te verminder. Dit bied ook inligting wat gebruik kan word om riglyne te ontwikkel vir die effektiewe gebruik van LV-VVB.
|
25 |
Investigating the tensile creep of steel fibre reinforced concreteMouton, Christiaan Johannes 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Research in concrete has advanced to such an extent that it is now possible to add steel fibres to concrete in order to improve its durability and ductility. This led to a research group in Europe, FIB, who has provided guidelines to designing Steel Fibre Reinforced Concrete (SFRC) structures. They have found that it is possible for SFRC beams in flexure to be in static equilibrium. However, the time-dependent behaviour of SFRC has not been researched fully and it requires further investigation.
When looking at a concrete beam in flexure there are two main stress zones, the compression zone and the tension zone, of which the tensile zone will be of great interest. This study will report on the investigation of the tensile time-dependent behaviour of SFRC in order to determine how it differs from conventional concrete. The concrete has been designed specifically to exhibit strain-softening behaviour so that the material properties of SFRC could be investigated fully. Factors such as shrinkage and tensile creep of SFRC were of the greatest importance and an experimental test setup was designed in order to test the tensile creep of concrete in a simple and effective manner.
Comparisons were be made between the tensile creep behaviour of conventional concrete and SFRC where emphasis was placed on the difference between SFRC specimens before and after cracking occurred in order to determine the influence of steel fibre pull-out. The addition of steel fibres significantly reduced the shrinkage and tensile creep of concrete when un-cracked. It was however found that the displacement of fibre pull-out completely overshadowed the tensile creep displacements of SFRC. It was necessary to investigate what effect this would have on the deflection of SFRC beams in flexure once cracked.
Viscoelastic behaviour using Maxwell chains were used to model the behaviour of the tensile creep as found during the tests and the parameters of these models were used for further analyses. Finite Element Analyses were done on SFRC beams in flexure in order simulate creep behaviour of up to 30 years in order to determine the difference in deflections at mid-span between un-cracked and pre-cracked beams.
The analyses done showed that the deflections of the pre-cracked SFRC beams surpassed the requirements of the Serviceability Limit States, which should be taken into account when designing SFRC beams. / AFRIKAANSE OPSOMMING: Die navorsing in beton het gevorder tot so ‘n mate dat dit nou al moontlik is om staal vesels by die beton te voeg sodat dit beton se duursaamheid en duktiliteit te verbeter. Dit het gelei tot ‘n groep in Europa, FIB, wat dit moontlik gemaak het om Staal Vesel Beton (SVB) strukture te ontwerp. Hulle het gevind dat dit moontlik is vir SVB balke om in statiese ewewig te wees tydens buiging. Die tyd afhanklike gedrag van SVB is egter nog nie deeglik ondersoek nie en benodig dus verdure ondersoek.
Wanneer ‘n balk in buiging aanskou word kan twee hoof spanningzones identifiseer word, ‘n druk zone en ‘n trek zone, waarvan die trek zone van die grootste belang is. Hierdie studie gaan verslag lewer oor die ondersoek van tyd-afhanklike trekgedrag van SVB om te bepaal hoe dit verskil van konvensionele beton. Die beton was spesifiek ontwerp om vervormingsversagtende gedrag te wat maak dat die materiaal eienskappe van SVB ten volle ondersoek kan word. Faktore soos krimp en die trekkruip van SVB was van die grootste belang en ‘n eksperimentele toets opstelling was ontwerp om die trekkruip van beton op ‘n eenvoudige en effektiewe manier te toets.
Daar was vergelykings getref tussen die trekkruip gedrag van konvensionele beton en SVP en groot klem was geplaas op die verskil tussen SVB monsters voor en na die monsters gekraak het om te bepaal wat die invloed was van staalvesels wat uittrek. Die byvoeging van staalvesels het beduidend die kruip en trekkruip van beton verminder. Daar was alhoewel gevind dat die verplasing van die uittrek van staalvesels heeltemal die trekkruip verplasings van SVB oorskadu het. Dit was nodig om te sien watse effek dit op die verplasing van SVB balke in buiging sal hê.
Viskoelastiese gedrag deur Maxwell kettings was gebruik om die gedrag van trekkruip, soos gevind deur die toetse, te modelleer en die parameters van hierdie modelle was verder gebruik vir analises. Eindige Element Analises was gedoen op SVB balke in buiging om die trekkruip gedrag tot op 30 jaar te simuleer op die verskil tussen die defleksies by midspan tussen ongekraakte en vooraf gekraakte balke te vind.
Die analises het gewys dat die defleksies van die vooraf gekraakte balke nie voldoen het aan die vereistes van die Diensbaarheid limiete nie, wat in ag geneem moet word wanneer SVB balke ontwerp word.
|
26 |
Using synthetic fibres in concrete to control drying shrinkage cracking in concrete slabs-on-gradeVan der Westhuizen, Daniel Erasmus 12 1900 (has links)
Thesis (MScEng)-- Stellenbosch University, 2013. / ENGLISH ABSTRACT: Macro synthetic fibre reinforced concrete (SynFRC) is a relatively new concrete for the purpose of
being used in structural elements which only require minimum reinforcement and are supported
continuously by sub-layers. One structural element that is of particular interest is slabs-on-grade
which is supported by a subgrade/sub-base and requires minimum reinforcement to control the
shrinkage strains which may result in cracking.
The aim of this project is to investigate the potential use of macro SynFRC in the application of
controlling drying shrinkage cracking (DSC) in concrete slabs-on-grade. The focus is on the use of
concrete slabs-on-grade that is intended for industrial floors.
The SynFRC material parameters of interest were characterised first with the aid of various
experimental tests. These are: flexural tests, compression tests, friction tests between the SynFRC and
wooden surfaces used for full scale testing, and the shrinkage of the concrete.
Next the post-cracking tensile behaviour of the SynFRC was determined by way of an inverse
analysis. These tensile responses were subsequently used to perform a series of different finite
element analyses. These analyses were performed on specific slabs-on-grade to determine the effects
of the added tensile behaviour of the SynFRC on the DSC.
The results obtained concerned: the spacing of cracks, the maximum and average crack width, and the
difference in crack width between the normal concrete (NC) and the SynFRC. These changes take
place in accordance to the concrete age. From the analyses it was determined that the addition of
fibres gives the concrete a ductility that allows the concrete to crack more than NC, yet does not allow
the cracks to propagate. This applies to low fibre contents of less than 0.4% by volume and a slab
thickness of 200mm, as well as to fibre contents that have Re,3 values of 0.51 and higher. Moreover, it
results in improvements seen when adding fibres if the friction is sticky, meaning when the maximum
friction between the slab and the subgrade is reached with a very small amount of movement. With a
stickier friction though smaller crack widths occur within both the NC and the SynFRC. / AFRIKAANSE OPSOMMING: Makro sintetiese vesel versterkte beton (SynFRC) is 'n relatiewe nuwe beton. Dit het ten doel om
gebruik te word in strukturele elemente wat minimale versterking benodig en wat deurlopend deur
sublae ondersteun word. Een spesifieke strukturele element van belang is grondvloere wat deur 'n
sublaag ondersteun word en wat minimale ondersteuning benodig om die krimping vervorming te
beheer wat moontlike krake kan veroorsaak.
Die doel van die projek was om die potensiële gebruik van makro sintetiese vesels te ondersoek
tydens die beheer van die uitdroog krimp kraking van 'n beton grondvloer. Die fokus was op die
gebruik van betonvloere vir fabrieksdoeleindes.
Die eienskappe van SynFRC materiale is vooraf vasgestel vir die doel van verskeie eksperimentele
toetse. Hierdie toetse sluit in buigbaarheidstoetse, druktoetse, krimping van beton en toets van
wrywing tussen die SynFRC en hout oppervlaktes wat gebruik is vir volskaalse toets.
Die trek gedrag van SynFRC na kraking is vasgestel deur inverse analise. Hierdie trek gedrag is dan
gebruik om 'n reeks eindige element analises uit te voer. Hierdie analises is uitgevoer op spesifieke
grondvloere om die effek te bepaal van verhoogde trek gedrag van SynFRC op die uitdroog krimp
kraking.
Volgens die uitslae sodoende verkry was die kraakspasiëring, die maksimum en gemiddelde
kraakwydte en die verskil in die kraakwydte tussen normale beton en die SynFRC as ‘n funksie van
beton oudedom. Vanuit die analises het dit duidelik geblyk dat die byvoeging van vesels die beton se
smeebaarheid verhoog het en dit het tot gevolg gehad dat die beton meer krake vorm, maar dat die
krake nie vergroot nie. Dit is waargeneem by 'n lae vesel inhoud van minder as 0.4% per volume en 'n
betonblad met 'n dikte van 200mm. Dit is ook waargeneem by 'n hoër vesel volume wat Re,3 waardes
van 0.51 en hoër het. Kleiner kraakwydte is waargeneem waar vesel volume verhoog is indien die
wrywing hoër is, bedoelende dat die maksimum wrywing tussen die betonblad en die sublaag bereik
is met baie min beweging. Daar het wel kleiner kraakwydtes in beide die normale beton en die
SynFRC voorgekom waar daar hoër wrywing was.
|
27 |
Caracterização e controle do comportamento mecânico do concreto reforçado com fibras para tubos. / Characterization and control of mechanical behavior of fibre reinforced concrete for pipes.Monte, Renata 17 April 2015 (has links)
Os estudos focando a otimização do reforço dos tubos de concreto para obras de saneamento são importantes por estes componentes estarem vinculados a grandes necessidades sociais que ainda atingem o Brasil e outros países em desenvolvimento bem como pelo fato destes componentes serem produzidos em série, o que gera economia de escala. Neste sentido, a utilização de fibras como reforço dos tubos trás consigo um grande número de vantagens aplicativas e de desempenho. A tendência internacional de busca por um consenso no dimensionamento e controle do concreto reforçado com fibras (CRF) como material estrutural está sendo direcionada para o fib Model Code 2010. Geralmente, para a caracterização do CRF são utilizados os ensaios de flexão de vigas. Porém, a moldagem desses corpos de prova para o controle do CRF dos tubos apresentou resultados inadequados em estudos anteriores. A definição do reforço ótimo de tubos de CRF através da tentativa e erro no ensaio de compressão diametral do componente deve ser evitada pelos elevados gastos (financeiros, de material e tempo) associados a esta metodologia. O projeto deve ser atingido através de modelos confiáveis que possam otimizar o reforço através da previsão adequada do desempenho do componente. Da mesma forma, deve-se obter procedimentos de controle do material que sejam concatenados com os procedimentos de controle do produto. Neste sentido, esta tese propõe uma metodologia para a caracterização e controle do comportamento mecânico do CRF para a produção de tubos, que permita modelar o comportamento do componente no ensaio de compressão diametral e verificar sua adequação a uma aplicação estrutural. O estudo foi dividido em três fases principais. Na primeira houve a avaliação de um método de ensaio alternativo ao de flexão de prismas para o controle do CRF. Na segunda fase experimental houve a incorporação de modificações no método de ensaio de compressão diametral do componente de modo a aproximá-lo à filosofia do fib Model Code 2010. Nesta etapa foram avaliados tubos com reforço de fibras de aço, macrofibras poliméricas e vergalhões para comprovar a pertinência da nova metodologia de ensaio. Na terceira fase do estudo foi realizada uma simulação numérica para previsão de comportamento dos componentes ensaiados utilizando os parâmetros do material caracterizados através do método de ensaio alternativo validado na primeira fase. Os resultados obtidos na modelagem foram comparados com o resultado experimental do ensaio do componente de modo a validar a metodologia proposta. Os resultados demonstraram a adequação do ensaio Barcelona para a caracterização e controle do comportamento mecânico do CRF destinado à produção de tubos. Essa caracterização poderá subsidiar simulações numéricas do comportamento do componente no ensaio de compressão diametral. Com isto, ábacos de projeto de tubos de concreto reforçados com diferentes tipos de fibras poderão ser desenvolvidos, identificando as classes resistentes que serão atendidas dependendo do diâmetro do tubo e do teor de fibras empregados. Esta tese aponta também para a necessidade de uma revisão na normalização vigente, estabelecendo critérios relacionados ao comportamento pós-fissuração que avaliem o estado limite de serviço e o estado limite último. Isto permitirá uma avaliação homogênea do tipo de reforço e tornará mais adequada a comparação entre distintos tipos de reforço (fibras ou convencional). / The international trend for a consensus about the design and control of fibre reinforced concrete (FRC) as a structural material is based on the fib Model Code 2010. Generally, in order to characterize the FRC, bending tests are used. However, the moulding of these control test specimens of the FRC pipes is not quite simple as has been shown by previous studies. The design of FRC pipes through trial and error in the component-crushing test should be avoided. This test shall be limited to the acceptance control or final validation of a new component, designed through reliable models that optimize the reinforcement and the component performance. These models should allow both design and prediction of the component behaviour related to the quality control. In that sense, this thesis proposes a methodology for characterizing and controlling the mechanical behaviour of FRC for the production of pipes. This study allows modelling the component behaviour in crushing test and verifying their suitability for structural application. The methodology considered consisted in three main topics: evaluation of an alternative method of FRC control test; modification of the procedure of the crushing test method in order to approach the fib Model Code 2010 philosophy, and prediction the mechanical behaviour of the components comparing numerical simulation results with experiments results. In this last topic, the characterization of the materials performance by the alternative test method was considered. The results indicated that the Barcelona test is suitable in order to characterize and control the mechanical behaviour of the FRC used for the production of pipes. This characterization is able to support numerical simulations of the component behaviour in crushing test. It allows the development of design tables identifying the pipes resistant classes considering a variety of parameters such as types and contents of fibres and pipes diameters. This thesis also points out the need for a review of the current standards, establishing parameters related to the post-cracking behaviour to assess the serviceability limit state and the ultimate limit state. This allows a homogeneous evaluation of the reinforcement type and makes it more suited to comparing different types of reinforcement (fibre or conventional).
|
28 |
Behaviour and Analysis of Steel and Macro-synthetic Fibre Reinforced Concrete Subjected to Reversed Cyclic Loading: A Pilot InvestigationCarnovale, David Joseph 21 November 2013 (has links)
The benefits of fibre reinforced concrete (FRC) have been thoroughly investigated. Much of this
work has focussed on steel FRC subjected to monotonic loads. Data on the structural behaviour
of macro-synthetic FRC or FRC under cyclic loads is scarce.
A pilot investigation on the shear behaviour of macro-synthetic FRC and on the behaviour of
FRC under reversed cyclic in-plane shear loading was carried out. Five in-plane shear panel
tests were performed. The parameters under study were the fibre material type (steel or macrosynthetic)
and loading protocol. Additionally, a number of compression, direct tension, and
flexural tests were performed to determine the material properties of the concretes for
comparison. The material response of 2.0% by volume of macro-synthetic FRC matched closely
with 1.0% steel FRC.
Finally, building upon an existing steel FRC model, a model for macro-synthetic FRC in tension
was proposed and a short verification study was undertaken.
|
29 |
Behaviour and Analysis of Steel and Macro-synthetic Fibre Reinforced Concrete Subjected to Reversed Cyclic Loading: A Pilot InvestigationCarnovale, David Joseph 21 November 2013 (has links)
The benefits of fibre reinforced concrete (FRC) have been thoroughly investigated. Much of this
work has focussed on steel FRC subjected to monotonic loads. Data on the structural behaviour
of macro-synthetic FRC or FRC under cyclic loads is scarce.
A pilot investigation on the shear behaviour of macro-synthetic FRC and on the behaviour of
FRC under reversed cyclic in-plane shear loading was carried out. Five in-plane shear panel
tests were performed. The parameters under study were the fibre material type (steel or macrosynthetic)
and loading protocol. Additionally, a number of compression, direct tension, and
flexural tests were performed to determine the material properties of the concretes for
comparison. The material response of 2.0% by volume of macro-synthetic FRC matched closely
with 1.0% steel FRC.
Finally, building upon an existing steel FRC model, a model for macro-synthetic FRC in tension
was proposed and a short verification study was undertaken.
|
30 |
Caracterização e controle do comportamento mecânico do concreto reforçado com fibras para tubos. / Characterization and control of mechanical behavior of fibre reinforced concrete for pipes.Renata Monte 17 April 2015 (has links)
Os estudos focando a otimização do reforço dos tubos de concreto para obras de saneamento são importantes por estes componentes estarem vinculados a grandes necessidades sociais que ainda atingem o Brasil e outros países em desenvolvimento bem como pelo fato destes componentes serem produzidos em série, o que gera economia de escala. Neste sentido, a utilização de fibras como reforço dos tubos trás consigo um grande número de vantagens aplicativas e de desempenho. A tendência internacional de busca por um consenso no dimensionamento e controle do concreto reforçado com fibras (CRF) como material estrutural está sendo direcionada para o fib Model Code 2010. Geralmente, para a caracterização do CRF são utilizados os ensaios de flexão de vigas. Porém, a moldagem desses corpos de prova para o controle do CRF dos tubos apresentou resultados inadequados em estudos anteriores. A definição do reforço ótimo de tubos de CRF através da tentativa e erro no ensaio de compressão diametral do componente deve ser evitada pelos elevados gastos (financeiros, de material e tempo) associados a esta metodologia. O projeto deve ser atingido através de modelos confiáveis que possam otimizar o reforço através da previsão adequada do desempenho do componente. Da mesma forma, deve-se obter procedimentos de controle do material que sejam concatenados com os procedimentos de controle do produto. Neste sentido, esta tese propõe uma metodologia para a caracterização e controle do comportamento mecânico do CRF para a produção de tubos, que permita modelar o comportamento do componente no ensaio de compressão diametral e verificar sua adequação a uma aplicação estrutural. O estudo foi dividido em três fases principais. Na primeira houve a avaliação de um método de ensaio alternativo ao de flexão de prismas para o controle do CRF. Na segunda fase experimental houve a incorporação de modificações no método de ensaio de compressão diametral do componente de modo a aproximá-lo à filosofia do fib Model Code 2010. Nesta etapa foram avaliados tubos com reforço de fibras de aço, macrofibras poliméricas e vergalhões para comprovar a pertinência da nova metodologia de ensaio. Na terceira fase do estudo foi realizada uma simulação numérica para previsão de comportamento dos componentes ensaiados utilizando os parâmetros do material caracterizados através do método de ensaio alternativo validado na primeira fase. Os resultados obtidos na modelagem foram comparados com o resultado experimental do ensaio do componente de modo a validar a metodologia proposta. Os resultados demonstraram a adequação do ensaio Barcelona para a caracterização e controle do comportamento mecânico do CRF destinado à produção de tubos. Essa caracterização poderá subsidiar simulações numéricas do comportamento do componente no ensaio de compressão diametral. Com isto, ábacos de projeto de tubos de concreto reforçados com diferentes tipos de fibras poderão ser desenvolvidos, identificando as classes resistentes que serão atendidas dependendo do diâmetro do tubo e do teor de fibras empregados. Esta tese aponta também para a necessidade de uma revisão na normalização vigente, estabelecendo critérios relacionados ao comportamento pós-fissuração que avaliem o estado limite de serviço e o estado limite último. Isto permitirá uma avaliação homogênea do tipo de reforço e tornará mais adequada a comparação entre distintos tipos de reforço (fibras ou convencional). / The international trend for a consensus about the design and control of fibre reinforced concrete (FRC) as a structural material is based on the fib Model Code 2010. Generally, in order to characterize the FRC, bending tests are used. However, the moulding of these control test specimens of the FRC pipes is not quite simple as has been shown by previous studies. The design of FRC pipes through trial and error in the component-crushing test should be avoided. This test shall be limited to the acceptance control or final validation of a new component, designed through reliable models that optimize the reinforcement and the component performance. These models should allow both design and prediction of the component behaviour related to the quality control. In that sense, this thesis proposes a methodology for characterizing and controlling the mechanical behaviour of FRC for the production of pipes. This study allows modelling the component behaviour in crushing test and verifying their suitability for structural application. The methodology considered consisted in three main topics: evaluation of an alternative method of FRC control test; modification of the procedure of the crushing test method in order to approach the fib Model Code 2010 philosophy, and prediction the mechanical behaviour of the components comparing numerical simulation results with experiments results. In this last topic, the characterization of the materials performance by the alternative test method was considered. The results indicated that the Barcelona test is suitable in order to characterize and control the mechanical behaviour of the FRC used for the production of pipes. This characterization is able to support numerical simulations of the component behaviour in crushing test. It allows the development of design tables identifying the pipes resistant classes considering a variety of parameters such as types and contents of fibres and pipes diameters. This thesis also points out the need for a review of the current standards, establishing parameters related to the post-cracking behaviour to assess the serviceability limit state and the ultimate limit state. This allows a homogeneous evaluation of the reinforcement type and makes it more suited to comparing different types of reinforcement (fibre or conventional).
|
Page generated in 0.088 seconds