• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 53
  • 9
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 173
  • 47
  • 43
  • 34
  • 32
  • 25
  • 25
  • 22
  • 21
  • 20
  • 19
  • 19
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Tissue-engineered canine mitral valve constructs as in vitro research models for myxomatous mitral valve disease

Liu, Mengmeng January 2014 (has links)
Myxomatous mitral valve disease (MMVD) is one of the most common degenerative cardiac diseases affecting humans and dogs; however, its pathogenesis is not completely understood. This study focussed on developing tissue-engineered fibrin based canine mitral valve constructs, which can be used as an in vitro platform to study the pathogenesis of MMVD. Prior to three dimensional (3D) construct fabrication, primary canine mitral valve endothelial cells (VECs) and valve interstitial cells (VICs) were isolated, cultured and characterized utilising a variety of techniques. Moreover, preliminary experiments were carried out to optimise the purity of VEC cultures. It is uncertain if canine MMVD is initiated by long term shear stress damage to the valve endothelium or from abnormalities of VICs. To investigate both hypotheses, three types of models were produced using fibrin/based 3D culture techniques: healthy VEC-VIC co-culture (Type 1); healthy VEC-diseased VIC co-culture (Type 2); healthy VEC-VIC co-culture with endothelial damage during culture (Type 3). Histological examination demonstrated partial native tissue-like morphology of the 3D constructs. Results suggest that current static cultured constructs express MMVD markers irrespective of using healthy or diseased VICs. Simple mechanical stimulation was found to regulate VIC activity in the 3D models. Endothelial damage resulting in VIC phenotypic activation (a change typically observed in MMVD), and decreased mechanical tension appeared to be a negative regulator of this effect. Moreover, there appears to be heterogeneity in the activated VIC population. Additionally, distinct advanced glycation end product (AGE) carboxymethyllysine (CML) expression was found in canine MMVD valves, which suggesting this biochemical compound (known to affect long living protein) might be a putative regulator of MMVD pathogenesis. The role of CML in MMVD can be further investigated utilizing current 3D static mitral valve construct model in future studies. Lastly a prototype dynamic tubular construct and a customised bioreactor system were developed. Preliminary data suggest the feasibility of tubular construct fabrication and endothelialisation, which provides foundation for future dynamic conditioning experiments and will allow examination of the role of endothelial shear stress in triggering MMVD. In summary, this project successfully developed fibrin based canine mitral valve constructs. It is believed they are promising models for MMVD research, allowing new insights in understanding MMVD pathogenesis.
102

Combining induced pluripotent stem cells and fibrin matrices for spinal cord injury repair

Montgomery, Amy 23 April 2014 (has links)
Spinal cord injuries result in permanent loss of motor function, leaving those affected with long term physical and financial burdens. Strategies for spinal cord injury repair must overcome unique challenges due to scar tissue that seals off the injury site, preventing regeneration. Tissue engineering can address these challenges with scaffolds that serve as cell- and drug-delivery tools, replacing damaged tissue while simultaneously addressing the inhibitory environment on a biochemical level. To advance this approach, the choice of cells, biomaterial matrix, and drug delivery system must be investigated and evaluated. This research seeks to evaluate (1) the behaviour of murine induced pluripotent stem cells in previously characterized 3D fibrin matrices; (2) the 3D fibrin matrix as a platform to support the differentiation of human induced pluripotent stem cells; and (3) the ability of an affinity-based drug delivery system to control the release of emerging spinal cord injury therapeutic, heat shock protein 70 from fibrin scaffolds. / Graduate / 0541 / amy.lynn.montgomery@gmail.com
103

D’un matériau innovant vers un pansement actif et un substitut cutané / An innovative material to an active wound dressing and a skin substitute

Bidault, Laurent 19 December 2012 (has links)
La peau est un organe à l'architecture complexe qui assure plusieurs rôles essentiels dont celui de barrière contre les agressions extérieures. De plus, il est capable de se régénérer grâce un processus hautement régulé: la cicatrisation. Des biomatériaux, synthétisés à partir de macromolécules d'origine naturelle et/ou synthétique, ont été développés pour servir de pansements, de support de culture cutanée ou de substitut cutané.L'originalité de notre étude a été de mimer, non pas la matrice extracellulaire dermique, mais le réseau de fibrine, temporaire, qui apparait lors de la cicatrisation. Au cours de travaux précédents, il a été démontré qu'il était possible de renforcer mécaniquement un réseau de fibrine, à concentration physiologique, en l'associant, dans une architecture de réseaux interpénétrés de polymères (RIP), avec un réseau de polyoxyde d'éthylène (POE). Durant mes travaux, la non toxicité de ces matériaux envers des cellules modèles a été démontrée. Puis, la composition du matériau a été optimisée pour augmenter son module de stockage jusqu'à un facteur 100 par rapport à celui du gel de fibrine. Ensuite, grâce à la synthèse d'alcool polyvinylique méthacrylate (PVAm) pour le remplacement du POE, un matériau présentant mêmes qualités, mais plus facilement stockable à l'état déshydraté et complètement réhydratable, a pu être obtenu. Nous nous sommes ensuite attachés à rendre ce nouveau matériau biodégradable. L'introduction de sérum albumine bovine méthacrylate (BSAm) copolymérisée avec le PVAm (co-réseau) dans une architecture RIP avec un réseau de fibrine a permis de synthétiser un matériau hydride présentant l'ensemble des propriétés précédemment décrites et dégradable par des enzymes. Ce matériau a été testé en contact avec des populations cellulaires fibroblastiques. Il a pu être démontré, qu'en plus d'être non cytotoxique, ce matériau pouvait être totalement colonisé par ces cellules. Pour finir, l'encapsulation de cellules à l'intérieur de cette matrice et leur prolifération ont pu être observées. En conclusion, les matériaux synthétisés lors de ces travaux, c'est-à-dire des RIPs associant un réseau de fibrine à la concentration physiologique et un réseau de polymère synthétique, possèdent les propriétés nécessaires pour être utilisés en tant que pansements et supports de culture pour la régénération cutanée. De plus, la possibilité d'encapsuler des fibroblastes dans le RIP à base de coréseaux de PVAm et BSAm en fait un substitut cutané potentiel.Mots clefs : hydrogel, réseaux interpénétrés de polymères, fibrine, POE, PVA, BSA, encapsulation cellulaire, fibroblaste, médecine régénérative, peau. / The skin is an organ with a complex architecture that provides several key roles including barrier against external aggressions. In addition, it has the ability to regenerate itself by following a highly regulated process,: the wound healing. Biomaterials, synthesized by using macromolecules from natural and/or synthetic origin, have been developed to serve as wound dressing, cell culture support or skin substitute.The originality of our study was to not mimic the dermal extracellular matrix, but mimic the the fibrin scaffold, the temporary matrix who appears during the healing process. In previous work, it was shown that it was possible to mechanically reinforce a fibrin scaffold at physiological concentration by associating into interpenetrating polymer network (IPN) architecture with a polyethylene oxide (PEO) network. In my work, the non-toxicity of these materials was proved with model cells. Then, the material composition has been optimized to increase the storage modulus by 100 in comparison of the fibrin scaffold. Then, through the synthesis of polyvinyl alcohol methacrylate (PVAm) to replace the POE, a material with the same properties, but more easily stored in a dehydrated state (more ductile) and completely rehydratable could be obtained. We then attached to make this new biodegradable material. The use of bovin serum albumin methacrylate (BSAm) copolymerized with PVAm(conetwork) into IPN architecture with a fibrin scaffold performs to synthesize a hybrid material with all the properties described above and degradable by enzymes. This material has been tested in contact with human fibroblast. It has been demonstrated that in addition to be non-cytotoxic, this material could be completely colonized by these cells. Finally, the encapsulation of cells in the bulk of this matrix and their proliferation inside were observed.In conclusion, the materials synthesized in this work, IPN containing a fibrin scaffold at physiological concentration and a synthetic polymer network, have sufficient properties to be used as wound dressings or cells culture support for skin regeneration. In addition, the ability to encapsulate fibroblasts in material based on conetwork of PVAm and BSAM makes it suitable for a skin substitute application.Key words: hydrogel, Interpenetrating Polymer Network, fibrin, POE, PVA, BSA, entrapping, fibroblast, tissue engineering, skin.
104

Exploration ultrasonore haute-fréquence de la coagulation sanguine : cinétique des transformations microstructurelles lors de la fibrinoformation et de la contraction plaquettaire / High-frequency ultrasound exploration of blood coagulation : kinetics of microstructural transformations during fibrinoformation and platelet contraction

Plag, Camille 10 December 2012 (has links)
Actuellement, l'étude exploratoire de la fonction hémostatique en routine se fonde essentiellement sur les tests du bilan standard d'hémostase, c'est à dire la détermination du temps caractéristique de formation d'un gel de fibrine dans des conditions standardisées. Cependant, la dernière décennie a vu la naissance de nouveaux tests se focalisant sur les transformations mécaniques du sang lors de sa coagulation. Portés par les récentes avancées dans la connaissance des phénomènes biochimiques et biophysiques menant à ces transformations mécaniques, ces tests, basés sur une étude dynamique des propriétés viscoélastiques de la coagulation du sang total, sont aujourd'hui de plus en plus adoptés par les hématologues et sont au centre d'un nombre grandissant d'études cliniques. C'est dans ce contexte que, s'appuyant sur les récents développements des techniques ultrasonores haute-fréquence, un dispositif de monitoring ultrasonore haute-fréquence de la coagulation sanguine sur sang total a été développé au sein de notre équipe. Grâce à une analyse simultanée de plusieurs paramètres acoustiques, ce dispositif à montré ses capacités à suivre les transformations mécaniques du sang coagulant. Le travail de cette thèse a consisté à poursuivre le développement de ce dispositif en s'attachant notamment à discriminer le rôle respectif des différents phénomènes ayant lieu lors de la coagulation sur les cinétiques acoustiques mesurées. En analysant les effets de traitements anticoagulant et anti-agrégant plaquettaires sur notre monitoring ultrasonore dans le cadre d'une étude clinique pilote, un premier potentiel diagnostic du dispositif a été établi. Les résultats de cette étude ont ensuite mené à la mise en place de mesures spécifiques centrées sur deux phénomènes : la formation de la fibrine et la contraction plaquettaire. Une visualisation originale de la formation du réseau de fibrine a pu être mise en place et a mené à la détermination d'un nouveau paramètre capable de déterminer à la fois le temps de gélification et le temps de rétraction. La gélification du milieu s'est avéré être primordiale dans l'évolution de l'atténuation dans le milieu, tout comme la rétraction du caillot est essentiellement responsable de l'augmentation de la vitesse. / Today, routine blood coagulation tests rely principally on the measurement of the time for a blood sample to gel under standardized conditions. However, in the last decade, new tests focused on monitoring mechanical changes during blood coagulation have been developped. Thanks to a new understanding of the biochemical and biophysical phenomena leading to those mechanical changes, these tests, dynamically studying the viscoelastic properties of coagulating whole blood, tend to be more and more adopted by haematologists and are the focus of a tremendous amount of clinical studies. Within this context and due to the recent development of high-frequency ultrasound techniques, a high-frequency ultrasound apparatus allowing the monitoring of whole blood coagulaion has been developped by our team. Simultaneously analysing the kinetics of four acoustical parameters, it has shown its potential in monitoring the mechanical changes appearing in whole blood coagulation. In this PhD thesis, new developments of this technique have been carried out and allowed to discriminate the respective role of the different phenomena appearing during coagulation on our acoustical parameters. Analysing the effect of anticoagulant and antiplatelet therapy within a pilot clincal study, the diagnostic potential of our test has been established. Following the results of this study, specific measurements have been set up and have shown the importance of two phenomena : fibrin formation and platelet contraction. A new way to visualize the fibrin network formation has been devised and has led to the computation of a new parameter capable of defining gel time and retraction time. Gelation of the medium was shown to be linked to the changes in attenuation in the medium and retraction of the clot was found to be critical in the rise of longitudinal velocity.
105

Modulation of inflammatory process and tissue regeneration in calvaria mouse models

Al-Hashemi, Jacob Yousef 17 June 2019 (has links)
MicroRNAs (miRNAs) are short, non-coding RNAs involved in the regulation of several processes associated with inflammatory diseases and infection. Bacterial infection modulates miRNA expression to subvert innate immune response. In this study, we analyzed bacterial modulation of miRNAs in bone-marrow-derived macrophages (BMMs), in which activity was induced by infection with Porphyromonas gingivalis (Pg) through a microarray analysis. Several miRNA expressions levels were modulated 3 hours post infection (at a multiplicity of infection (MOI) of 25). A bioinformatics analysis was performed to further identify pathways related to the innate immune host-response pathways that are under the influence of the selected miRNAs. To assess the effects of the identified miRNAs on cytokines secretion (pro inflammatory TNF-α and anti-inflammatory IL-10), BMMs were transfected with selected miRNAs mimics or inhibitors. Transfection with mmu-miR-155 and mmu-miR- 2137 did not modify TNF-α secretion while their inhibitors increased it. Inhibitors of mmumiR-2137 and mmu-miR-7674 increased the secretion of the anti-inflammatory IL-10. In Pginfected BMMs, mmu-miR-155-5p significantly decreased TNF-α secretion while inhibitor of mmu-miR-2137 increased IL-10 secretion. In vivo, in a Pg-induced calvarial bone resorption mouse model, injection of mmu-miR-155-5p or anti-mmu-miR-2137 reduced the size of the lesion significantly. Furthermore, anti-mmu-miR-2137 significantly reduced inflammatorycell infiltration, osteoclast activity and bone loss. Bioinformatics analysis demonstrated that pathways related to cytokines and chemokines related pathways but also osteoclast differentiation may be involved in the observed effects. The study highlights the potential therapeutic merits of targeting mmu-miR-155-5p and mmu-miR-2137 to control inflammation induced by Pg infection. To assess the regenerative process in the same animal model, we aimed to compare the effect of Bone Morphogenic Protien 2 (BMP2), Platelets Rich Plasma (PRP), Leukocyte-Platelets Rich Fibrin (L-PRF), and Polygucosamine (PGIcNAc) on bone formation in critical size bone defects in mice. One-hundred-thirty-eight mice were divided into 23 groups (n=6), negative control, different combinations of the PGIcNAc with or without of BMP2, Collagen Sponge (SurgiFoam), PRP, and L-PRF. The 5mm defect, then, was allowed to heal. After six weeks, samples were analyzed for bone formation utilizing radiographs, H&E staining, alkaline phosphatase staining. Our results show that BMP2 were able to produce 90-95% healing of critical size defects after six weeks histologically and radiographically. However, SurgiFoam, PRP and L-PRF with or without PGIcNAc were able to close 60% of the original defect. This study supports that BMP2 is more effective for bone regeneration than SurgiFoam, PRP, L-PRF and PGIcNAc.
106

Influência da adição de células-tronco mesenquimais derivadas de tecido adiposo associadas a conduto de fibrina na regeneração de nervo periférico em modelo experimental de ratos / Influence of the addition of adipose derived stem cell in fibrin conduit for peripheral nerve regeneration in a rat model

Longo, Marco Vinicius Losso 06 November 2015 (has links)
INTRODUÇÃO: O tratamento padrão para lesões de nervo periférico que não podem ser suturados primariamente é a enxertia de nervo autólogo. Esse método, porém, carece de resultados satisfatórios e impõe algumas limitações técnicas e complicações. Várias opções já foram estudadas como alternativas ao enxerto de nervo, porém ainda não há conduto biológico ou sintético disponível para uso clínico que tenha a mesma capacidade regenerativa do enxerto de nervo autólogo. Os avanços em cultura celular e o maior entendimento dos mecanismos moleculares e celulares da regeneração nervosa levaram ao uso de células promotoras de regeneração associado aos condutos na tentativa de melhorar os resultados da reconstrução nervosa. Vários estudos demonstraram que o uso de célulastronco derivadas de tecido adiposo (ADSC) em condutos aloplásticos potencializa a regeneração neural. No entanto, nenhum estudo até hoje comparou a adição de ADSC indiferenciadas em conduto aloplástico ao tratamento padrão com autoenxerto. Esse estudo tem como objetivo avaliar a influência da adição de células-tronco mesenquimais derivadas de tecido adiposo em conduto de fibrina na regeneração de nervo periférico e comparar com enxertia de nervo autógeno em modelo experimental de ratos. MÉTODO: Em um modelo de lesão de nervo ciático (defeito de 10 mm) foram avaliados 30 ratos Wistar divididos em 3 grupos. O defeito de nervo foi reconstruído usando conduto de fibrina (Grupo Conduto, n=10), conduto de fibrina acrescido de ADSC (Grupo ADSC, n=10) e autoenxerto do nervo (Grupo Autoenxerto, n=10). A avaliação funcional dos ratos foi realizada com o teste de marcha (walking track analysis) com 4, 8 e 12 semanas e o índice de função ciática (IFC) foi determinado. Após 12 semanas, o peso do músculo tríceps sural foi avaliado. Segmentos dos nervos regenerados também foram coletados para análises histológicas como densidade axonal e diâmetro médio das fibras. RESULTADOS: O grupo Conduto mostrou recuperação funcional no teste da marcha após a reconstrução do nervo, porém com resultados inferiores aos outros dois grupos. O grupo ADSC mostrou recuperação intermediária e o grupo Autoenxerto obteve os melhores resultados (IFC com 12 semanas de -53,3±.3 vs -44,7±3 vs - 35,6±2, respectivamente, p < 0,001). A relação de peso do músculo tríceps sural no grupo Conduto foi de 41,1±3%, no grupo ADSC de 53,3±4% e no grupo Autoenxerto de 71,0 ± 4% (p < 0,001). Na avaliação histológica, o grupo Conduto mostrou densidade axonal de 39,8±3 axônios/10.995?m2 e diâmetro médio das fibras de 3,9 ± 0?m2, o grupo ADSC densidade axonal de 58,8 ± 3 axônios/10.995um2 e diâmetro médio das fibras de 4,9 ± 1um2 e o grupo Autoenxerto densidade axonal de 67,1±2 axônios/10.995?m2 e diâmetro médio das fibras de 8,9±1um2 (p < 0,001). CONCLUSÃO: A adição de células-tronco mesenquimais derivadas de tecido adiposo (ADSC) em conduto de fibrina na regeneração de nervo periférico, em modelo experimental de ratos, mostrou recuperação funcional e regeneração histológica estatisticamente mais significativa comparada à reconstrução somente com conduto de fibrina, porém ainda aquém dos resultados obtidos com enxertia de nervo autógeno / Introduction: The standard treatment for peripheral nerve injuries that cannot be primarily sutured is nerve autograft. But this method lacks satisfactory results and imposes some technical limitations and complications. Several options have been studied as alternatives to nerve autografting, but there is no biological or synthetic conduit available for clinical use that provides the same regenerative capacity of nerve autograft. Advances in cell culture and understanding of nerve regeneration mechanisms led to the use of regeneration-inducing cells in association with conduits, in an attempt to improve the reconstruction results. Several studies have shown that the use of adipose derived stem cells (ADSC) into conduits enhances neural regeneration. However, there is no study that compared the addition of undifferentiated ADSC in alloplastic conduit to standard treatment with autograft. This study evaluated the influence of the addition of adipose derived stem cell in fibrin conduit for peripheral nerve regeneration in comparison to the nerve autograft, in a rat model. Method: A sciatic nerve injury model (10-mm defect) was performed in 30 Wistar rats, which were divided into 3 groups. Nerve defect was reconstructed using fibrin conduit (Conduit group, n=10), fibrin conduit filled with ADSC (ADSC group, n = 10) and nerve autograft, (Autograft group, n=10). The walking behavior was measured by footprint analysis at 4, 8, and 12 weeks and sciatic function index (SFI) was determined. After 12 weeks, the triceps surae muscle weight was evaluated and histological analysis was performed to evaluate the regenerated nerve and measured axonal density and fibers diameter average. Results: The Conduit group showed less improvement in walking behavior compared to ADSC group and Autograft group (SFI at 12 weeks, - 53.3 ± .3 vs -44.7 ± 3 vs -35.6 ± 2 respectively, p< 0.001). The triceps surae muscle weight ratio of the fibrin conduit group was 41.1± 3%, ADSC group was 53.3 ± 4%, and Autograft group 71.0 ± 4% (p < 0.001). In histological evaluation, the Conduit group showed axonal density of 39.8±3 axons/10995um2 and fiber diameter average of 3.9±0 ?m2, the ADSC group had axonal density of 58.8 ± 3 axons/10995 um2 and fiber diameter average of 4.9±1?m2 and axon density of Autograft group was 67.1±2 axons/10995 um2 and fiber diameter average was 8.9±1?m2 (p < 0.001). Conclusion: The addition of adipose derived stem cells (ADSC) into fibrin conduit used for nerve reconstruction following peripheral nerve injury in the rat model, showed better functional recovery and better histological regeneration compared to reconstruction with fibrin conduit without ADSC. However, the functional recovery in the ADSC group was worse than that in nerve Autograft group and the nerve repair with the ADSC-fibrin conduit has less myelinated fibers when compared to the repair with nerve autograf
107

Terapia celular para isquemia cardíaca: efeitos da via de administração, do tempo pós-lesão e do uso biopolímero para a retenção das células e função miocárdica / Cell therapy for ischemic cardiac disease: effect of different routes for cell administration, time post-mi and the use of a fibrin polymer for cardiac cell retention and myocardial function

Nakamuta, Juliana Sanajotti 29 January 2009 (has links)
A terapia celular representa uma abordagem promissora para o tratamento de cardiopatia isquêmica, porém aspectos-chave dessa estratégia permanecem incertos. Neste trabalho avaliamos a eficiência da retenção cardíaca de células da medula óssea marcadas com tecnécio (99m Tc-CMO) transplantadas, de acordo com o tempo após o infarto (1, 2, 3 e 7 dias) e a via de administração dessas células (intravenosa [IV], intraventricular [IC], intracoronariana [ICO] e intramiocárdica [IM]), em ratos submetidos à isquemia-reperfusão cardíaca [I&R]. Após 24 horas, a retenção cardíaca de 99m Tc-CMO foi maior na via IM comparada com a média alcançada pelas demais (6,79% do total injetado vs. 0,53%). O uso de fibrina como veículo para a injeção de células incrementou a retenção em 2.5 vezes (17,12 vs. 6,84%) na via IM. Curiosamente, quando administradas após 7 dias, a retenção de células na via IM alcançou valores próximos dos observados com da matriz de fibrina injetadas 24 h após a I&R (16,55 vs. 17,12%), enquanto que para as demais vias as mudanças foram insignificantes. Nos animais em que as CMO foram administradas por via intramiocárdica 24 horas após a I&R, com ou sem fibrina, observou-se melhora significante do desempenho cardíaco frente ao estresse farmacológico com fenilefrina quando comparados aos controles. Em conjunto, os dados mostram a biodistribuição das células injetadas após a I&R por 4 diferentes vias e 4 intervalos de tempo pós-lesão e indicam que a via IM é a que produz maior retenção cardíaca. O uso do biopolímero de fibrina aumenta a retenção das células e a eficácia deste efeito sobre a função cardíaca e mortalidade dos animais em longo prazo, além de 30 dias pós I&R, merecerá ser investigada no futuro. / Cell therapy represents a promising approach for ischemic cardiac disease, but key aspects of this strategy remain unclear. We examined the effects of timing and route of administration of bone marrow cells (BMCs) after myocardial ischemia/reperfusion injury (I&R). 99mTc-labeled BMCs were injected by 4 different routes: intravenous (IV), left ventricular cavity (LV), left ventricular cavity with temporal aorta occlusion (LV+) and intramyocardial (IM). The injections were performed 1, 2, 3, or 7 days after infarction. Cardiac retention was higher following the IM route compared to the average values obtained by all other routes (6.79% of the total radioactivity injected vs. 0.53%). Use of a fibrin biopolymer as vehicle during IM injection led to a 2.5-fold increase in cardiac cell accumulation (17.12 vs. 6.84%). Interestingly, the retention of cells administered with culture medium at day 7 post-MI by the IM route was similar to that observed when cells were injected 24 h post-IM using fibrin (16.55 vs 17.12%), whereas no significant changes were observed for the other routes. Cell therapy 24 hs post MI by IM injection, with or without fibrin, resulted in comparable improvement in cardiac function under pharmacological stress compared to control animals. Together, we provide evidence for the biodistribution of 99mTc-labeled BMCs injected post MI by 4 different routes and times post-injury, which shows that the IM rout is the most effective for cardiac cell retention. The use of a fibrin biopolymer further increased cardiac cell retention and its potential long term benefits, beyond 30, on reducing mortality and improving cardiac function deserve to be explored in the future.
108

Regulating Valvular Interstitial Cell Phenotype by Boundary Stiffness

Kural, Mehmet Hamdi 01 June 2014 (has links)
"A quantitative understanding of the complex interactions between cells, soluble factors, and the biological and mechanical properties of biomaterials is required to guide cell remodeling towards regeneration of healthy tissue rather than fibrocontractive tissue. The goal of this thesis was to elucidate the interactions between the boundary stiffness of three-dimensional (3D) matrix and soluble factors on valvular interstitial cell (VIC) phenotype with a quantitative approach. The first part of the work presented in this thesis was to characterize the combined effects of boundary stiffness and transforming growth factor-β1 (TGF-β1) on cell-generated forces and collagen accumulation. We first generated a quantitative map of cell-generated tension in response to these factors by culturing VICs within micro-scale fibrin gels between compliant posts (0.15-1.05 nN/nm) in chemically-defined media with TGF-β1 (0-5 ng/mL). The VICs generated 100 to 3000 nN/cell after one week of culture, and multiple regression modeling demonstrated, for the first time, quantitative interaction (synergy) between these factors in a 3D culture system. We then isolated passive and active components of tension within the micro-tissues and found that cells cultured with high levels of stiffness and TGF-β1 expressed myofibroblast markers and generated substantial residual tension in the matrix yet, surprisingly, were not able to generate additional tension in response to membrane depolarization signifying a state of continual maximal contraction. In contrast, negligible residual tension was stored in the low stiffness and TGF-β1 groups indicating a lower potential for shrinkage upon release. We then studied if ECM could be generated under the low tension environment and found that TGF-β1, but not EGF, increased de novo collagen accumulation in both low and high tension environments roughly equally. Combined, these findings suggest that isometric cell force, passive retraction, and collagen production can be tuned by independently altering boundary stiffness and TGF-β1 concentration. In the second part, by using the quantitative information obtained from the first part, we investigated the effects of dynamic changes in stiffness on cell phenotype in a 3D protein matrix, quantitatively. Our novel method utilizing magnetic force to constrain the motion of one of two flexible posts between which VIC-populated micro-tissues were cultured effectively doubled the boundary stiffness and resulted in a significant increase in cell-generated forces. When the magnetic force was removed, the effective boundary stiffness was halved and the tissue tension dropped to 65-87% of the peak value. Surprisingly, following release the cell-generated forces continued to increase for the next two days rather than reducing down to the homeostatic tension level of the control group with identical (but constant) boundary stiffness. The rapid release of tension with the return to baseline boundary stiffness did not result in a decrease in number of cells with α-SMA positive stress fibers or an increase in apoptosis. When samples were entirely released from the boundaries and cultured free floating (where tension is minimal but cannot be measured), the proportion of apoptotic cells in middle region of the micro-tissues increased more than five-fold to 31%. Together, these data indicate that modest temporary changes in boundary stiffness can have lasting effects on myofibroblast activation and persistence in 3D matrices, and that a large decrease in the ability of the cells to generate tension is required to trigger de-differentiation and apoptosis. "
109

Avaliação da segurança do biopolimero de fibrina como arcabouço para células tronco mesenquimais em lesões na dura-máter em ratos

Ochoa, Clara Cecilia Reyes January 2019 (has links)
Orientador: Rui Seabra Ferreira Júnior / Resumo: Terapias efetivas de lesões na dura-máter representam um enorme desafio à medicina, devido à dificuldade de suturas com êxito e de vedação das meninges, aumentando os índices de mortalidade e morbidade destes pacientes. Biomateriais que possam favorecer a regeneração e impedir o extravasamento de líquido cefalorraquidiano sem produzir efeitos adversos são alvos da indústria farmacêutica. Este estudo avaliou a biocompatibilidade do Biopolimero de Fibrina (BPF) derivado de peçonha de serpente como arcabouço tridimensional para células-tronco mesenquimais (CTMs) em lesões na dura-máter de ratos wistar (Rattus norvegicus). As CTMs foram caracterizadas na quinta passagem por citometria de fluxo (ICAM, CD90, CD34, CD45, CD11b) e diferenciadas em linhagens osteogênica e adipogênica. Foram utilizados 4 grupos (n=20) de ratos Wistar machos adultos. O grupo C (controle) foi submetido à durotomia. Os grupos tratados foram submetidos à durotomia seguido de: Tratamento com Biopolimero de fibrina (BPF); células-tronco mesenquimais (CTMs); e BPF+CTMs, formado pela associação do Biopolimero de fibrina e células-tronco mesenquimais. As CTMs marcadas e associadas ao BPF foram avaliadas por imageamento da fluorescência in vivo. Os animais foram avaliados neurológica e clinicamente quanto à sensibilidade dolorosa, deiscência de pontos, infecção da ferida, consumo de alimento e água e habilidades motoras. Foram realizadas eutanásias dos animais aos 7 e 28 dias após cirurgia e coletado material pa... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Effective therapies to treat dura mater injuries represents a major challenge to medicine due to its lack of sutures with high seal properties upon meninges, increasing the rate of mortality and morbidity among these patients. Biomaterials that promotes regeneration and prevent extravasation of cerebrospinal fluid, without producing adverse effects, are targets of the pharmaceutical industry. The present study aimed to evaluate the biocompatibility of the use on Fibrin Biopolymer (FBP) derived from snake venom as tridimensional scaffold to mesenchymal stem cells (MSC) on rat’s dura mater injury. Mesenchymal stem cells characterization was performed at fifth passage by flow cytometry (ICAM, CD90, CD34, CD45, CD11b) and differentiated into osteogenic and adipogenic lineages. Four groups (n=20) os male Wistar rats were used. Group C (control) animals were submitted to durotomy only. Treatment groups were submitted to durotomy followed by: Fibrin Biopolymer (FBP); mesenchymal stem cells (MSC); and FBP+MSCs, consisting on the association between fibrin biopolymer and mesenchymal stem cells. Marked MSCs associated to FBP were evaluated through in vivo fluorescence imaging. Animals were evaluated neurologically and clinically regarding pain sensitivity, dehiscence of suture, wound infection, feeding e motor capacity parameters. Animals were euthanized at seven and 28 days after surgical procedure, and biological material was collected to histological and proteomic analysis. Protein ... (Complete abstract click electronic access below) / Doutor
110

Expression and modulation of tissue factor and tissue factor pathway inhibitor in an endothelial cell based model

Ellery, Paul E. R. January 2008 (has links)
Haemostasis is a complex physiological process involving cellular and plasma protein components that interact to keep the blood fluid under normal conditions and prevent blood loss after vessel injury by promoting clot formation. Primary haemostasis encompasses the activation and aggregation of platelets and is supported by secondary haemostasis, in which the coagulation factors of the plasma interact in a complex series of reactions. Secondary haemostasis is initiated by the exposure of tissue factor (TF) to the blood after vessel injury. TF forms a complex with activated factor VII (FVIIa), which in turn activates factor X (FXa) and ultimately results in fibrin formation. The TF-FVIIa complex and FXa are tightly regulated by tissue factor pathway inhibitor (TFPI), a trivalent Kunitz-type protease inhibitor. The endothelium, consisting of endothelial cells (ECs), constitutes the inner lining of all blood vessels. As such, it is in constant contact with the blood and plays a major role in haemostasis by synthesising and storing both pro- and anti- coagulant substances, including TF and TFPI. Release of TFPI from ECs is increased after exposure to both unfractionated and low molecular weight heparins, though the mechanisms are not clearly defined. TFPI circulates in plasma, predominantly bound to lipoproteins, though the effect of the three major lipoproteins [low density (LDL), very low density (VLDL) and high density (HDL)] on the release of TFPI from ECs is not well established. Furthermore, previous studies have not systematically investigated the effect of these lipoproteins on both TF and TFPI. The initial aim of this project was to establish assays for the measurement of TF activity and TFPI antigen to supplement the TFPI activity assay that is well established in our laboratory. / These assays were then used to determine the effects of heparin and the major lipoproteins on the expression of TF and the release of TFPI on/from ECs. Human umbilical vein endothelial cells (HUVECs) were used as the EC model because their collection and isolation is well established and they have biochemical and physiological properties representative of in vivo conditions. A TF activity assay, based on a previously published method, was successfully modified and validated for the measurement of cell surface TF (standard curve R2 = 0.997). Despite exhaustive attempts, adaptation of this assay for plasma TF was unsuccessful, raising doubts regarding the plasma fractionation procedure of the originally published assay [Fukuda, C., Iijima, K. and Nakamura, K. (1989). "Measuring tissue factor (factor III) activity in plasma." Clinical Chemistry 35(9): 1897‐1900]. A novel insect cell expression system was used to produce well defined recombinant TFPI standards for use in TFPI activity and antigen assays. For the first time, truncated TFPI variants, containing the first Kunitz domain only, the first and second Kunitz domains only, and the first through third Kunitz domains minus the carboxyl terminus, were successfully produced in insect cells, though the full length molecule was not. Possible reasons for this include codon bias, protein instability and/or the signal peptide used. An ELISA to measure TFPI antigen was designed using a monoclonal anti‐TFPI antibody directed against the N‐terminus for protein capture and a polyclonal anti‐ TFPI antibody for detection. The assay was successfully optimised (standard curve R2 = 0.978, intra‐assay CV = 4.8%), however it produced inaccurate results (normal range = 498.7 ± 156.3 ng/mL), probably due to the antibody combination used. / TF and TFPI activity assays were used to determine the effect of both unfractionated and low molecular weight heparins (UFH and LMWH, respectively) on the release of TFPI and the expression of TF from/on ECs. A significant increase in the secretion of functional TFPI from ECs due to heparin (0 U/ml vs 1 and 10 U/mL) was demonstrated only in the presence of serum (UFH: 9.0 mU/mL vs 18.3 and 18.4 mU/mL, p < 0.0001; LMWH: 8.8 mU/mL vs 13.3 and 21.4 mU/mL, p < 0.05), suggesting, for the first time, that a component of serum is required for the heparin‐dependent release of TFPI. The effect of LDL, VLDL and HDL on the release of TFPI and the expression of TF from/on ECs was also investigated. All three lipoprotein fractions increased the secretion of functional TFPI after one hour incubation (LDL: 12.5 μg/mL, p < 0.01; 25 μg/mL, p < 0.05; VLDL: 50 μg/mL, p < 0.01; HDL: 50 μg/mL, p < 0.05). This is the first data to demonstrate a HDL‐dependent increase in released TFPI. After 24 hours, both LDL and VLDL decreased levels of secreted functional TFPI (LDL: 25 μg/mL, p < 0.01; 50 μg/mL, p < 0.01; VLDL: 12.5 μg/mL, p < 0.01), probably due to the oxidation and subsequent association of both lipoprotein species with TFPI. Surprisingly, both LDL and VLDL decreased cell surface TF, though this effect was not dose dependent. These results suggest that the major lipoproteins have a short term anticoagulant effect which is reversed in the longer term due to lipid oxidation. In summary, this thesis describes the successful adaptation of a chromogenic assay for the measurement of cell surface TF activity and the production of truncated TFPI variants. / Both will be used for the measurement of TF and TFPI, their association with thrombus formation and propagation, and investigations into potential therapeutic applications of TFPI. The results presented in this thesis extend the current knowledge on the expression and release of TF and TFPI on/from ECs by heparin, highlighting the importance of serum in the heparin dependent release of TFPI in vitro. Furthermore, it describes for the first time the effects of the major lipoprotein fractions on TFPI release and TF expression. The data support novel mechanisms by which LDL and VLDL are procoagulant, and HDL anticoagulant. This study provides a foundation for future research of the TF pathway in cellular models, which is critical in increasing the understanding of the pathogenesis and treatment of thrombotic disease. vitro. Furthermore, it describes for the first time the effects of the major lipoprotein fractions on TFPI release and TF expression. The data support novel mechanisms by which LDL and VLDL are procoagulant, and HDL anticoagulant. This study provides a foundation for future research of the TF pathway in cellular models, which is critical in increasing the understanding of the pathogenesis and treatment of thrombotic disease.

Page generated in 0.034 seconds