• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 30
  • 7
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 165
  • 165
  • 165
  • 38
  • 35
  • 24
  • 23
  • 22
  • 21
  • 21
  • 20
  • 19
  • 19
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Pesquisa de mutações nos genes FGF9 e FGFR2 em pacientes portadores de distúrbios do desenvolvimento sexual 46,XY por anormalidades no desenvolvimento gonadal / Search for mutations on FGF9 and FGFR2 genes in patients with 46,XY disorders of sexual development by gonadal abnormalities

Aline Zamboni Machado 11 July 2012 (has links)
Introdução: Várias evidências em estudos de animais knockout sugerem a efetiva participação dos genes Fgf9-Fgfr2 no processo de determinação testicular. Animais XY knockout para os genes Fgf9 e Fgfr2 apresentam reversão sexual como consequência da alteração na cascata de eventos masculinizantes nas gônadas fetais. Até o momento, mutações inativadoras dos genes FGF9-FGFR2 não foram descritas em pacientes 46, XY portadores de disgenesia gonadal. Objetivos: Pesquisar a presença de mutações inativadoras nos genes FGF9 e FGFR2 em pacientes portadores de DDS 46,XY por anormalidades do desenvolvimento gonadal. Casuística e Métodos: Trinta e três pacientes com disgenesia gonadal 46, XY, 11 com a forma completa e 22 com a forma parcial. As regiões codificadoras dos genes FGF9 e FGFR2 de todos os pacientes foram amplificadas e sequenciadas. As investigações quanto a presença de deleções foram realizadas usando-se a técnica de MLPA (Multiplex ligation-dependent probe amplification). Resultados: Mutações ou deleções nos genes FGF9 não foram encontradas em nenhum dos pacientes estudados, apenas alguns polimorfismos previamente descritos. No gene FGFR2 não foram encontradas deleções. Uma nova variante não sinônima em heterozigose, c.1358 C>T (p.Ser453Leu), localizada no exon 10 do FGFR2 foi encontrada em duas irmãs com disgenesia gonadal parcial 46,XY. A mãe é portadora da variante alélica e o estudo de 147 indivíduos controles não identificou a presença desta variante. A análise da variante em sites de previsão, PolyPhen, SIFT e Mutation Taster indicou que a nova proteína FGFR2 é possivelmente danificada. Conclusões: Se esses resultados dos sites de previsão forem confirmados em estudos funcionais futuros a participação do gene FGFR2 na determinação gonadal masculina em humanos estará comprovada / Introduction: Several evidence in animal studies \"knockout\" suggest the effective participation of Fgf9-Fgfr2 genes in testicular determination process. Animals XY \"knockout\" for Fgf9 and Fgfr2 genes exhibit sex reversal as a result of the change in the cascade of masculinizing events in fetal gonads. To date, So far inactivating mutations of FGF9 and FGFR2 genes have not been described in 46,XY patients with gonadal dysgenesis. Objectives: To investigate the presence of inactivating mutations in the FGF9 and FGFR2 gene in patients with 46,XY DSD by gonadal abnormalities. Casuistic and Methods: Thirty-three patients with 46,XY gonadal dysgenesis, 11 with the full form and 22 with the partial form. The coding regions of FGF9 and FGFR2 genes of all patients were amplified and sequenced. Investigations on the presence of deletions were made using the MLPA technique (\"Multiplex ligation-dependent probe amplification\"). Results: Mutations or deletions in the FGF9 gene were not found in any of the patients studied, only a few polymorphisms previously described. FGFR2 gene deletions were not found. A new non-synonymous variant in heterozygosis, c.1358 C> T (p.Ser453Leu) located in exon 10 of FGFR2 was found in two sisters with 46,XY partial gonadal dysgenesis. The mother is a carrier of the variant allele and the study of 147 control subjects did not identify the presence of this variant. The analysis of the variant on prediction sites, \"PolyPhen\", \"SIFT\" and \"Mutation Taster\" indicated that the new FGFR2 protein is possibly damaged. Conclusions: If the results of the prediction sites are confirmed by future functional studies the participation of the FGFR2 gene in human male gonadal determination will be proven
82

Serum levels of fibroblast growth factor-21 are increased in chronic and acute renal dysfunction

Hindricks, Janka 06 November 2015 (has links)
The progressively increasing prevalence of the Metabolic Syndrome (MetS) has emerged as a major global health concern since the MetS is associated with an increased risk for cardiovascular morbidity and mortality. Central obesity represents a key feature of the MetS and is strongly related to all MetS comorbidities. Dysregulation of adipose tissue-derived proteins, so called adipokines, has been implied to partially contribute to these effects. Recently, fibroblast growth factor-21 (FGF-21) has been introduced as a novel insulin sensitizing and weight reducing adipokine with potential therapeutic properties. However, data on FGF-21 elimination are rather limited. Therefore, FGF-21 regulation in relation to renal function has been investigated in a patient population with chronic kidney disease (CKD, study population 1), as well as one with acute kidney impairment (study population 2). In study population 1 (n = 499), patients were distributed into five CKD subgroups according to estimated glomerular filtration rate (eGFR). Median FGF-21 serum concentrations progressively increased from CKD stage 1 to stage 5 and highest values of FGF-21 were detected in stage 5 (1: 86.4 ng/l; 2: 206.4 ng/l; 3: 289.8 ng/l; 4: 591.3 ng/l; 5: 1918.1 ng/l). Furthermore, eGFR remained the strongest predictor for FGF-21 levels in multivariate analysis. For study population 2 (n = 32), blood samples were obtained before elective unilateral partial or total nephrectomy, as well as within 30 hours after surgery. In this population FGF-21 levels significantly increased after surgery (325.0 ng/l) as compared to before surgery (255.5 ng/l). Furthermore, relative changes of FGF-21 were independently and positively predicted by relative changes of creatinine in this cohort. These results are in accordance with the hypothesis that FGF-21 is eliminated by the kidneys and that the extent of kidney dysfunction substantially contributes to serum FGF-21 levels. However, additional animal experiments and prospective clinical studies are needed to further elucidate the role of the kidneys in FGF-21 physiology.
83

Fibroblast Growth Factor 21 Expression in Mice with Altered Growth Hormone Action: Links to Obesity, Type 2 Diabetes Mellitus, and Increased Longevity

Brooks, Nicole E. 10 May 2016 (has links)
No description available.
84

FGF23 - a possible Phosphatonin

Marsell, Richard January 2008 (has links)
<p>Human physiology is dependent on an accurate phosphate (Pi) homeostasis. Defective Pi regulation causes hyper- or hypophosphatemia, which are associated with ectopic calcification or impaired bone mineralization, and a shortened life span. Current endocrine models of Pi homeostasis are incomplete. However, studies of acquired and hereditary disorders of Pi homeostasis have revealed new potential Pi regulating hormones, Phosphatonin(s). One of these is fibroblast growth factor-23 (FGF23). FGF23 is produced in bone and is secreted into the circulation. Mutations in FGF23 causes disturbed Pi regulation, without the appropriate counter-regulatory actions of parathyroid hormone or vitamin D. By the generation of FGF23 transgenic mice, which display phenotypic similarities to patients with hypophosphatemic disorders, we show that FGF23 exerts endocrine actions in the kidney and causes osteomalacia. Renal FGF23 actions severely decrease Pi reabsorption and expression of Klotho, a suggested age suppressor gene, known to be crucial in FGF23 receptor binding and activation. In bone, our transgenic model displays impaired osteoclast polarization, which should be detrimental to osteoclastic bone resorption in osteomalacia. However, in our model osteoclasts efficiently participate in bone matrix degradation. Furthermore, we investigated a large population-based cohort in order to elucidate the role of FGF23 in normal physiology. Importantly, we were able to demonstrate an association of FGF23 to parathyroid hormone, renal function and bone mineral density and we found a correlation of FGF23 to weight and body fat mass. The studies on which this thesis is based, demonstrate that FGF23 has phosphatonin-like properties and that the skeleton functions as an endocrine organ. In addition, the results indicate that FGF23 has a role in bone mineral and lipid metabolism, and that FGF23 is a possible diagnostic marker and therapeutic target for the future.</p>
85

Aplicação diagnóstica e terapêutica de um novo anticorpo anti-FGF2 em processos de angiogênese em melanoma experimental / Diagnostic and therapeutic application of a new anti-FGF2 antibody in angiogenesis process in experimental melanoma

Aguiar, Rodrigo Barbosa de 18 July 2014 (has links)
Evidências sugerem que o fator de crescimento de fibroblasto 2 (FGF2), produzido por melanomas, possui importante papel no crescimento tumoral, angiogênese e metástase. Assim, o uso de anticorpo monoclonal (mAb) que reconhece e bloqueia a atividade de FGF2 é uma abordagem a ser considerada em oncologia. O propósito desse estudo foi avaliar a aplicação diagnóstica e terapêutica de um novo anticorpo anti-FGF2, 3F12E7 IgG1, em melanoma experimental B16-F10. Para isso, camundongos C57Bl/6 foram implantados subcutaneamente (ou intravenosamente, para ensaios de metástase) com células de melanoma murino B16-F10 (5x105 células/animal). Quando tumores alcançaram 3-4 mm de diâmetro (ou 24 h pós-inóculo de células B16-F10, no caso de ensaios de metástase), camundongos foram tratados com anti-FGF2 3F12E7 IgG. Animais controle receberam igual volume do veículo ou quantidade de anticorpo controle de isotipo. Grupos: animais tratados com (1) anti-FGF2 3F12E7 IgG1; (2) ligante de CEA IgG1 (controle de isotipo); e (3) veículo. O tratamento dos camundongos portadores de tumor com anti-FGF2 IgG resultou, comparado com os controles salina e de isotipo, em uma redução no número de focos metastáticos nos pulmões (ANOVA, p < 0,05), em ensaios de metástase experimental, bem como em uma menor taxa de crescimento de tumores subcutâneos (n=7/grupo). Esse resultado é acompanhado por uma redução na densidade vascular do tumor, conforme determinado por imunomarcação para CD34 ou CD31. A captação tumoral de anti-FGF2 3F12E7 IgG foi avaliada por métodos de medicina nuclear, usando esse anticorpo radiomarcado com tecnécio-99m. Estudos SPECT/CT in vivo e de biodistribuição ex vivo revelaram que 99mTc-anti-FGF2 3F12E7 IgG pode atingir eficientemente tumores subcutâneos e metastáticos de B16-F10. Assim, esses dados sugerem que anti-FGF2 3F12E7 IgG pode ser uma estratégia antitumoral promissora para melanoma, bem como uma potencial ferramenta de imagem a ser explorada, atuando como um possível traçador para rastrear tumores FGF2-positivos e mapear esse estímulo angiogênico no microambiente tumoral. Aprovado pelo comitê de ética (CAPPesq): número 0942/09 / Compelling evidence suggests that fibroblast growth factor 2 (FGF2), produced by melanomas, plays important role in tumor growth, angiogenesis and metastasis. Therefore, the use of a monoclonal antibody (mAb) that recognizes and blocks FGF2 activity is seen as an approach to be considered in oncology. The purpose of this study was to evaluate the diagnostic and therapeutic application of a new anti-FGF2 antibody, 3F12E7 IgG1, in experimental melanoma B16-F10. For this, C57Bl/6 mice were subcutaneously (or intravenously, for experimental metastasis assay) implanted with murine melanoma B16-F10 cells (5x105 cells/animal). When tumors reached 3-4 mm in diameter (or 24 h after B16-F10 cells injection, in the case of metastasis assay), mice started receiving anti-FGF2 3F12E7 IgG. Control mice received equal volume of vehicle or isotype control IgG amount. Groups: (1) anti-FGF2 3F12E7 IgG1-treated, (2) CEA-binding IgG1-treated (isotype control) and (3) vehicle-treated mice. The treatment of tumor-bearing mice with anti-FGF2 IgG, compared with saline and isotype controls, led to a reduction in the number of metastatic foci in the lungs (ANOVA test, p < 0.05), in experimental metastasis assays, as well as to a lower subcutaneous tumor growth rate (n=7 per group). This result is accompanied by a reduction in the tumor vascular density, as determined by CD34 or CD31 staining. The anti-FGF2 3F12E7 IgG tumor uptake was evaluated by nuclear medicine approaches, using this antibody radiolabeled with technetium-99m. In vivo SPECT/CT and ex vivo biodistribution studies reveled that 99mTc-anti-FGF2 IgG could efficiently achieved B16-F10 subcutaneous and metastatic tumors. Thus, these data suggest that the anti-FGF2 3F12E7 IgG may be a promising antitumor strategy for melanoma, as well as a potential imaging tool to be explored, working as a possible tracer to identify FGF2-positive tumors and map this angiogenic stimulus in the tumor microenvironment. Ethics committee (CAPPesq) approval number 0942/09
86

Impacto do uso dos quelantes do fósforo, acetato de cálcio e hidrocloreto de sevelamer, sobre os níveis séricos de paratormônio e FGF-23 de pacientes portadores de doença renal crônica / Impact of the use of phosphate binders, calcium acetate or sevelamer hydrochloride, on serum parathormone and FGF-23 levels of chronic kidney disease patients

Oliveira, Rodrigo Bueno de 05 August 2010 (has links)
INTRODUÇÃO: O paratormônio (PTH) e o fator de crescimento de fibroblastos 23 (FGF-23) aumentam precocemente durante o curso da doença renal crônica (DRC) antes do desenvolvimento de hiperfosfatemia. Este estudo avaliou os efeitos de dois quelantes de fósforo, acetato de cálcio (Ca) e hidrocloreto de sevelamer (SEV), nos níveis de PTH e FGF-23 de pacientes com DRC. MÉTODOS: Quarenta e dois pacientes com DRC estágios III e IV foram randomizados em 2 grupos para receber durante 6 semanas, Ca ou Sev. Após este período os pacientes foram seguidos por mais 2 semanas (washout). Analisamos os efeitos destes quelantes sobre os parâmetros do metabolismo ósseo e mineral. RESULTADOS: No início do estudo, os pacientes apresentaram-se com fração de excreção do fósforo, PTH e FGF-23 séricos elevados. Durante o tratamento com quelantes de fósforo houve um declínio progressivo nos níveis de PTH e fósforo urinário, mas sem mudanças nos níveis séricos de cálcio e fósforo. Ocorreu uma mudança significativa nos níveis de FGF-23 no grupo de pacientes tratados com Sev. CONCLUSÕES: Este estudo confirmou os efeitos positivos da prescrição de quelantes de fósforo no controle do PTH, nos estágios III e IV da DRC. Estudos prospectivos e de longo seguimento são necessários para confirmar os efeitos do Sev sobre os níveis de FGF-23 e os benefícios de sua redução sobre parâmetros como mortalidade / INTRODUCTION: Parathyroid hormone (PTH) and fibroblast growth factor (FGF-23) levels increase early in CKD before the occurrence of hyperphosphatemia. This study evaluated the effect of two phosphate binders, calcium carbonate or sevelamer hydrocloride, on PTH and FGF-23 levels in patients with CKD. METHODS: Forty two patients were randomized in two groups to receive calcium acetate or sevelamer hydrochloride, over a 6-wk period. After that, the patients were followed by more two weeks and effects of phosphate binders on mineral parameters were analyzed. RESULTS: At baseline, patients presented with elevated fractional excretion of phosphate, serum PTH and FGF-23 During treatment with both phosphate binders, there was a progressive decline in serum PTH and urinary phosphate, but no change in serum calcium or serum phosphate. Significant changes were observed for FGF-23 only in sevelamer-treated patients. CONCLUSIONS: This study confirms the positive effects of early prescription of phosphate binders on PTH control. Prospective and long-term studies are necessary to confirm the effects of sevelamer hydrocloride on serum FGF-23 and the benefits of this decrease on outcomes
87

Gene delivery strategies for enhancing bone regeneration

Khorsand Sourkohi, Behnoush 01 August 2018 (has links)
There exists a dire need for improved therapeutics to achieve predictable and effective bone regeneration. Non-viral gene therapy is a safe method that can efficiently transfect target cells, therefore is a promising approach to overcoming the drawbacks of protein delivery of growth factors. The goal of this study was to employ cost-effective biomaterials to deliver genetic materials (DNA or RNA) in a controlled manner in order to address the high cost issues, safety concerns, and lower transfection efficiencies that exist with protein and gene therapeutic approaches. To achieve our goal, we set several aims: 1) To assess the bone regeneration capacity of polyethylenimine (PEI)-chemically modified ribonucleic acid (cmRNA) (encoding bone morphogenetic protein-2 (BMP-2)) activated matrices, compared to PEI-plasmid DNA (BMP-2)-activated matrices. 2) To explore the osteogenic potential of cmRNA-encoding BMP-9, in comparison to cmRNA-encoding BMP-2. 3) To use collagen membranes as integral components of a guided bone regeneration protocol and to enhance the bioactivity of collagen membranes by incorporating plasmid DNA (pDNA) or cmRNA encoding bone morphogenetic protein-9 (BMP-9). 4) To test whether the delivery of pDNA encoding BMP-2 (pBMP-2) and fibroblast growth factor-2 (pFGF-2) together can synergistically promote bone repair in a leporine model of diabetes mellitus, a condition that is known to be detrimental to union. 5) To investigated whether there is a synergistic effect on bone regeneration following delivery of pBMP-2 and pFGF-2, insulin and/or vitamin D. These investigations together provided new insights regarding the appropriate treatment methods for patients with fractures. Here we develop and test a non-viral gene delivery system for bone regeneration in challenging animal models utilizing a scaffold carrying PEI-nucleic acid complexes. We utilized three kinds of pDNA encoding either BMP-2, BMP-9 or FGF-2 as well as two kinds of cmRNA encoding either BMP-2 or BMP-9 formulated into PEI complexes. The fabricated nanoplexes were assessed for their size, charge, in vitro cytotoxicity, and capacity to transfect human bone marrow stromal cells (BMSCs). The in vivo functional potency of different nanoplexes embedded in scaffolds was evaluated using a calvarial bone defect model in rats, diaphyseal long bone radial defects in a diabetic rabbit model and intramuscular implantation in a diabetic rat. The results indicate that our non-viral gene delivery system induced migration and differentiation of resident cells to enhance bone regeneration. Together these findings suggest that scaffolds loaded with non-viral vectors harboring cmRNA or pDNA encoding osteogenic proteins may be a powerful tool for stimulating bone regeneration with significant potential for clinical translation.
88

Hedgehog signalling in lung development and airway regeneration

Uda Ho Unknown Date (has links)
Tumorigenesis is often caused by the dysregulation of developmental pathways that are activated during repair, a process that recapitulates development. The Hedgehog (Hh) pathway is a signalling pathway essential for cell patterning and identity during embryogenesis. Activation of Hh signalling has been reported in small cell lung cancer progression, but the role of the Hh receptor, Patched1 (Ptch1), remains poorly understood. Therefore, it is imperative that we understand how Ptch1 is involved in development and tissue repair in order to understand its roles in cancer. This project aimed to study the role of Ptch1 during the branching process of lung development and in the regeneration of airway epithelial cells. A conditional knockout approach was utilised to excise Ptch1 by crossing Ptch1 conditional mice with Dermo1-Cre mice (Dermo1Cre+/-;Ptch1lox/lox), thereby activating the Hh pathway in the mesenchyme, independent of ligand. Dermo1Cre+/-;Ptch1lox/lox embryos died at E12.0 and showed secondary lung branching arrest leading to lobe formation defects. Expression of Ptch1, Gli1 and Foxf1 were shown to be upregulated in both proximal and distal lung mesenchyme, indicating inappropriate pathway activation and disruption of the Hh gradient. Fgf10 expression was spatially reduced in Dermo1Cre+/-;Ptch1lox/lox lungs and the addition of Fgf10 to these lungs in culture showed partial restoration of branching, thus Hh signalling was shown to regulate branching via Fgf10. Due to the patterning defect associated with our in vivo model, we took an in vitro approach to delete Ptch1 in lung explants cultures. This also showed reduced branching and validated that mesenchymal proliferation was enhanced after Ptch1 deletion, consistent with the previously reported role of Hh signalling in mesenchymal cell survival. Small cell lung cancer originates in the proximal lung and has been linked to aberrant repair processes. Therefore, Hh signalling in proximal airway repair was investigated. Ptch1 expressing cells were detected in the bronchial epithelium and stroma during homeostasis. But these cells were not detected following polidocanol-induced injury in the murine nasal septum and lung. However during naphthalene-induced repair, Ptch1 expressing cells were detected in the regenerating bronchial epithelium, suggesting that Hh dependent progenitors respond specifically to naphthalene-induced damage and perhaps are pulmonary neuroendocrine or variant Clara cells. Therefore, this project has provided insight into how Ptch1 patterns lung branching and lobe specification during development and also highlights the importance of Ptch1 in pulmonary epithelial regeneration.
89

A Systems Level Analysis of the Transcription Factor FoxN2/3 and FGF Signal Transduction in Sea Urchin Larval Skeleton Development and Body Axis Formation

Rho, Ho Kyung January 2011 (has links)
<p>Specification and differentiation of a cell is accomplished by changing its gene expression profiles. These processes require temporally and spatially regulated transcription factors (TFs), to induce the genes that are necessary to a specific cell type. In each cell a set of TFs interact with each other or activate their targets; as development progresses, transcription factors receive regulatory inputs from other TFs and a complex gene regulatory network (GRN) is generated. Adding complexity, each TF can be regulated not only at the transcriptional level, but also by translational, and post-translational mechanisms. Thus, understanding a developmental process requires understanding the interactions between TFs, signaling molecules and target genes which establish the GRN.</p><p>In this thesis, two genes, FoxN2/3, a TF and FGFR1, a component of the FGF signaling pathway are investigated. FoxN2/3 and FGFR1 have different mechanisms that function in sea urchin development; FoxN2/3 regulates gene expression and FGFR1 changes phosphorylation of target proteins. However, their ultimate goals are the same: changing the state of an earlier GRN into the next GRN state. </p><p>First, we characterize FoxN2/3 in the primary mesenchyme cell (PMC) GRN. Expression of foxN2/3 begins in the descendants of micromeres at the early blastula stage; and then is lost from PMCs at the mesenchyme blastula stage. foxN2/3 expression then shifts to the secondary mesenchyme cells (SMCs) and later to the endoderm. Here we show that, Pmar1, Ets1 and Tbr are necessary for activation of foxN2/3 in the descendants of micromeres. The later endomesoderm expression is independent of the earlier expression of FoxN2/3 in micromeres and independent of signals from PMCs. FoxN2/3 is necessary for several steps in the formation of larval skeleton. A number of proteins are necessary for skeletogenesis, and early expression of at least several of these is dependent on FoxN2/3. Furthermore, knockdown (KD) of FoxN2/3 inhibits normal PMC ingression. PMCs lacking FoxN2/3 protein are unable to join the skeletogenic syncytium and they fail to repress the transfating of SMCs into the skeletogenic lineage. Thus, FoxN2/3 must be present for the PMC GRN to control normal ingression, expression of skeletal matrix genes, prevention of transfating, and control fusion of the PMC syncytium.</p><p>Second, we show that the FGF-FGFR1 signaling is required for the oral-aboral axis formation in the sea urchin embryos. Without FGFR1, nodal is induced in all of the cells at the early blastula stage and this ectopic expression of nodal requires active p38 MAP kinase. The loss of oral restriction of nodal expression results in the abnormal organization of PMCs and the larval skeleton; it also induces ectopic expression of oral-specific genes and represses aboral-specific genes. The abnormal oral-aboral axis formation also affected fgf and vegf expression patterns; normally these factors are expressed in two restricted areas of the ectoderm between the oral and the aboral side, but when FGFR1 is knocked down, Nodal expands, and in response the expression of the FGF and VEGF ligands expands, and this in turn affects the abnormal organization of larval skeleton.</p> / Dissertation
90

The role of fibroblast growth factor receptor 3 in post-natal cartilage and bone metabolism /

Valverde Franco, Gladys, 1972- January 2008 (has links)
FGFR 3 is one of a family of four high affinity receptors for FGF ligands. Activating mutations in FGFR 3 result in skeletal dysplasias that vary in severity from undetectable to neonatal lethal. Mice with congenital deficiency of FGFR3 develop severe kyphosis and skeletal overgrowth. FGFR3 is also expressed in calvarial pre-osteoblasts, osteoblast and articular chondrocytes, although it biological role in these cells remains undefined. By changing the genetic background of the Fgfr3-/- mice we were able to extend their lifespan and examine its impact on post-natal skeletal growth. To investigate the implication of FGFR 3 in post-natal cartilage and bone metabolism we used a combination of imaging, classic histology, molecular biology and biomechanical testing. The results demonstrated that the synovial joints of young adult Fgfr3-/- mice revealed a progressive deterioration, loss of the joint space width and changes in the subchondral bone. These alterations were accompanied by an increase of cartilage matrix degradation. Increased aggrecan and collagen type II degradation products, generated by MMPs were detected with DIAPEN and COL2-3/4C antibodies. Increased collagen type X, cellular hypertrophy and loss of proteoglycan at the articular surface were also demonstrated. A novel micro-mechanical indentation protocol revealed that the humeral heads of Fgfr3-/- mice were less stiff than those of wild type littermates. On the other hand, young adult Fgfr3-/- mice are osteopenic due to reduced cortical bone thickness and defective trabecular bone mineralization. The reduction in mineralized bone and lack of trabecular connectivity observed by micro-computed tomography were confirmed by histological and histomorphometric analyses, which revealed a significant decrease in calcein labeling of mineralizing surfaces and a significant increase in osteoid in the long bones of 4-month-old Fgfr3-/- mice. Primary cultures of adherent bone marrow-derived cells from Fgfr3-/- mice expressed markers of differentiated osteoblasts but developed fewer mineralized nodules than Fgfr3+/+ cultures of the same age. These data point to a major role for FGFR3 signaling in development and homeostatic maintenance of cartilage and bone post-natally and identify FGFR3 as a potential target for intervention in degenerative disorders of cartilage, osteopenia and those associated with defective bone mineralization.

Page generated in 0.0483 seconds