• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 18
  • 15
  • 14
  • 13
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Electronically adjustable bandpass filter

Terblanche, Phillip 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: This thesis presents the study, analysis and design of electronically tunable filters, that can be tuned over a wide frequency range (20-500MHz), for use in a direct sampling receiver. The final design does not have to be a single filter, but may be comprised of a filter bank which enables switching between the filters. The band of interest is too low to use normal transmission lines and lumped elements have to be used. Different topologies that can implement Coupled Resonator filters with lumped elements are investigated. Devices that can be used for tuning are also investigated and varactor diodes are found to be the most suitable tuning devices currently available. Two filters, one at the high-end and one at the low-end of the band, were designed and built, both using varactor diodes. These filters perform well in terms of tuning range, but achieving low losses with current technologies in this band remains difficult. / AFRIKAANSE OPSOMMING: Hierdie tesis meld die studie, analise en ontwerp van elektronies verstelbare filters, wat verstelbaar is oor ’n wye band (20-500MHz), vir gebruik in ’n direk-monster-ontvanger. Die finale ontwerp hoef nie ’n enkele filter te wees nie, maar kan bestaan uit ’n filterbank wat skakeling tussen die filters toelaat. Die betrokke band is te laag vir die gebruik van normale transmissielyne en diskrete komponente moet gebruik word. Verskillende topologieë wat gekoppelde resoneerder filters implementeer met diskrete komponente is ondersoek. Verstelbare komponente word ook ondersoek en varaktor diodes blyk die mees geskikte verstelbare komponent wat huidig beskikbaar is in hierdie band. Twee filters, een aan die hoë kant en een aan die lae kant van die band, is ontwerp en gebou, beide met varaktor diodes. Hierdie filters het wye verstelbare bereik, maar dit is steeds moeilik om verliese te beperk met die huidige tegnologie.
22

Transmitter and receiver design for inherent interference cancellation in MIMO filter-bank based multicarrier systems

Zakaria, Rostom 07 November 2012 (has links) (PDF)
Multicarrier (MC) Modulation attracts a lot of attention for high speed wireless transmissions because of its capability to cope with frequency selective fading channels turning the wideband transmission link into several narrowband subchannels whose equalization, in some situations, can be performed independently and in a simple manner. Nowadays, orthogonal frequency division multiplexing (OFDM) with the cyclic prefix (CP) insertion is the most widespread modulation among all MC modulations, and this thanks to its simplicity and its robustness against multipath fading using the cyclic prefix. Systems or standards such as ADSL or IEEE802.11a have already implemented the CP-OFDM modulation. Other standards like IEEE802.11n combine CP-OFDM and multiple-input multiple-output (MIMO) in order to increase the bit rate and to provide a better use of the channel spatial diversity. Nevertheless, CP-OFDM technique causes a loss of spectral efficiency due to the CP as it contains redundant information. Moreover, the rectangular prototype filter used in CP-OFDM has a poor frequency localization. This poor frequency localization makes it difficult for CP-OFDM systems to respect stringent specifications of spectrum masks.To overcome these drawbacks, filter-bank multicarrier (FBMC) was proposed as an alternative approach to CP-OFDM. Indeed, FBMC does not need any CP, and it furthermore offers the possibility to use different time-frequency well-localized prototype filters which allow much better control of the out-of-band emission. In the literature we find several FBMC systems based on different structures. In this thesis, we focus on the Saltzberg's scheme called OFDM/OQAM (or FBMC/OQAM). The orthogonality constraint for FBMC/OQAM is relaxed being limited only to the real field while for OFDM it has to be satisfied in the complex field. Consequently, one of the characteristics of FBMC/OQAM is that the demodulated transmitted symbols are accompanied by interference terms caused by the neighboring transmitted data in time-frequency domain. The presence of this interference is an issue for some MIMO schemes and until today their combination with FBMC remains an open problem.The aim of this thesis is to study the combination between FBMC and MIMO techniques, namely spatial multiplexing with ML detection. In the first part, we propose to analyze different intersymbol interference (ISI) cancellation techniques that we adapt to the FBMC/OQAM with MIMO context. We show that, in some cases, we can cope with the presence of the inherent FBMC interference and overcome the difficulties of performing ML detection in spatial multiplexing with FBMC/OQAM. After that, we propose a modification in the conventional FBMC/OQAM modulation by transmitting complex QAM symbols instead of OQAM ones. This proposal allows to reduce considerably the inherent interference but at the expense of the orthogonality condition. Indeed, in the proposed FBMC/QAM,the data symbol and the inherent interference term are both complex. Finally, we introduce a novel FBMC scheme and a transmission strategy in order to avoid the inherent interference terms. This proposed scheme (that we call FFT-FBMC) transforms the FBMC system into an equivalent system formulated as OFDM regardless of some residual interference. Thus, any OFDM transmission technique can be performed straightforwardly to the proposed FBMC scheme with a corresponding complexity growth. We develop the FFT-FBMC in the case of single-input single-output (SISO) configuration. Then, we extend its application to SM-MIMO configuration with ML detection and Alamouti coding scheme.
23

Reducing Fir Filter Costs: A Review of Approaches as Applied to Massive Fir Filter Arrays

Dallmeyer, Matthew John January 2014 (has links)
No description available.
24

Spectrum-Aware Orthogonal Frequency Division Multiplexing

Recio, Adolfo Leon 30 December 2010 (has links)
Reconfigurable computing architectures are well suited for the dynamic data flow processing requirements of software-defined radio. The software radio concept has quickly evolved to include spectrum sensing, awareness, and cognitive algorithms for machine learning resulting in the cognitive radio model. This work explores the application of reconfigurable hardware to the physical layer of cognitive radios using non-contiguous multi-carrier radio techniques. The practical tasks of spectrum sensing, frame detection, synchronization, channel estimation, and mutual interference mitigation are challenges in the communications and the computing fields that are addressed to optimally utilize the capacity of opportunistically allocated spectrum bands. FPGA implementations of parameterizable OFDM and filter bank multi-carrier (FBMC) radio prototypes with spectrum awareness and non-contiguous sub-carrier allocation were completed and tested over-the-air. Sub-carrier sparseness assumptions were validated under practical implementation and performance considerations. A novel algorithm for frame detection and synchronization with mutual interference rejection applicable to the FBMC case was proposed and tested. / Ph. D.
25

Analog and Digital Approaches to UWB Narrowband Interference Cancellation

Omid, Abedi 02 October 2012 (has links)
Ultra wide band (UWB) is an extremely promising wireless technology for researchers and industrials. One of the most interesting is its high data rate and fading robustness due to selective frequency fading. However, beside such advantages, UWB system performance is highly affected by existing narrowband interference (NBI), undesired UWB signals and tone/multi-tone noises. For this reason, research about NBI cancellation is still a challenge to improve the system performance vs. receiver complexity, power consumption, linearity, etc. In this work, the two major receiver sections, i.e., analog (radiofrequency or RF) and digital (digital signal processing or DSP), were considered and new techniques proposed to reduce circuit complexity and power consumption, while improving signal parameters. In the RF section, different multiband UWB low-noise amplifier key design parameters were investigated like circuit configuration, input matching and desired/undesired frequency band filtering, highlighting the most suitable filtering package for efficient UWB NBI cancellation. In the DSP section, due to pulse transmitter signals, different issues like modulation type and level, pulse variety, shape and color noise/tone noise assumptions, were addressed for efficient NBI cancelation. A comparison was performed in terms of bit-error rate, signal-to-interference ratio, signal-to-noise ratio, and channel capacity to highlight the most suitable parameters for efficient DSP design. The optimum number of filters that allows the filter bandwidth to be reduced by following the required low sampling rate and thus improving the system bit error rate was also investigated.
26

Analog and Digital Approaches to UWB Narrowband Interference Cancellation

Omid, Abedi 02 October 2012 (has links)
Ultra wide band (UWB) is an extremely promising wireless technology for researchers and industrials. One of the most interesting is its high data rate and fading robustness due to selective frequency fading. However, beside such advantages, UWB system performance is highly affected by existing narrowband interference (NBI), undesired UWB signals and tone/multi-tone noises. For this reason, research about NBI cancellation is still a challenge to improve the system performance vs. receiver complexity, power consumption, linearity, etc. In this work, the two major receiver sections, i.e., analog (radiofrequency or RF) and digital (digital signal processing or DSP), were considered and new techniques proposed to reduce circuit complexity and power consumption, while improving signal parameters. In the RF section, different multiband UWB low-noise amplifier key design parameters were investigated like circuit configuration, input matching and desired/undesired frequency band filtering, highlighting the most suitable filtering package for efficient UWB NBI cancellation. In the DSP section, due to pulse transmitter signals, different issues like modulation type and level, pulse variety, shape and color noise/tone noise assumptions, were addressed for efficient NBI cancelation. A comparison was performed in terms of bit-error rate, signal-to-interference ratio, signal-to-noise ratio, and channel capacity to highlight the most suitable parameters for efficient DSP design. The optimum number of filters that allows the filter bandwidth to be reduced by following the required low sampling rate and thus improving the system bit error rate was also investigated.
27

Implementation and Evaluation of Spectral Subtraction with Minimum Statistics using WOLA and FFT Modulated Filter Banks

Rao, Peddi Srinivas, Sreelatha, Vallabhaneni January 2014 (has links)
In communication system environment speech signal is corrupted due to presence of additive acoustic noise, so with this distortion the effective communication is degraded in terms of the quality and intelligibility of speech. Now present research is going how effectively acoustic noise can be eliminated without affecting the original speech quality, this tends to be our challenging in this current research thesis work. Here this work proposes multi-tiered detection method that is based on time-frequency analysis (i.e. filter banks concept) of the noisy speech signals, by using standard speech enhancement method based on the proven spectral subtraction, for single channel speech data and for a wide range of noise types at various noise levels. There were various variants have been introduced to standard spectral subtraction proposed by S.F.Boll. In this thesis we designed and implemented a novel approach of Spectral Subtraction based on Minimum Statistics [MinSSS]. This means that the power spectrum of the non-stationary noise signal is estimated by finding the minimum values of a smoothed power spectrum of the noisy speech signal and thus circumvents the speech activity detection problem. This approach is also capable of dealing with non-stationary noise signals. In order to analyze the system in time frequency domain, we have implemented two different filter bank approaches such as Weighted OverLap Added (WOLA) and Fast Fourier Transform Modulated (FFTMod). The proposed systems were implemented and evaluated offline using simulation tool Matlab and then validated their performances based on the objective quality measures such as Signal to Noise Ratio Improvement (SNRI) and Perceptual Evaluation Speech Quality (PESQ) measure. The systems were tested with a pure speech combination of male and female sampled at 8 kHz, these signals were corrupted with various kinds of noises at different noise power levels. The MinSSS algorithm implemented using FFTMod filter bank approach outperforms when compared the WOLA filter bank approach.
28

Improved subband-based and normal-mesh-based image coding

Xu, Di 19 December 2007 (has links)
Image coding is studied, with the work consisting of two distinct parts. Each part focuses on different coding paradigm. The first part of the research examines subband coding of images. An optimization-based method for the design of high-performance separable filter banks for image coding is proposed. This method yields linear-phase perfect-reconstruction systems with high coding gain, good frequency selectivity, and certain prescribed vanishing-moment properties. Several filter banks designed with the proposed method are presented and shown to work extremely well for image coding, outperforming the well-known 9/7 filter bank (from the JPEG-2000 standard) in most cases. Several families of perfect reconstruction filter banks exist, where the filter banks in each family have some common structural properties. New filter banks in each family are designed with the proposed method. Experimental results show that these new filter banks outperform previously known filter banks from the same family. The second part of the research explores normal meshes as a tool for image coding, with a particular interest in the normal-mesh-based image coder of Jansen, Baraniuk, and Lavu. Three modifications to this coder are proposed, namely, the use of a data-dependent base mesh, an alternative representation for normal/vertical offsets, and a different scan-conversion scheme based on bicubic interpolation. Experimental results show that our proposed changes lead to improved coding performance in terms of both objective and subjective image quality measures.
29

Transmitter and receiver design for inherent interference cancellation in MIMO filter-bank based multicarrier systems / Conception d’émetteur et récepteur pour l’élimination des interférences intrinsèques dans les systèmes multiporteuses à base de bancs de filtres et à antennes multiples

Zakaria, Rostom 07 November 2012 (has links)
Grâce à leur capacité de faire face à la sélectivité fréquentielle des canaux de transmission, les modulations multi-porteuses (MC) attirent de plus en plus d’attention. De nos jours, la modulation OFDM avec le préfixe cyclique (CP) est la plus utilisée, et cela grâce à sa simplicité et à sa robustesse. Cependant, la technique CP-OFDM présente une perte dans l’efficacité spectrale à cause de l’introduction du CP puisqu’il contient des informations redondantes. De plus, la réponse rectangulaire du filtre de mise en forme utilisé en OFDM a une mauvaise localisation fréquentielle. Afin de surmonter ces inconvénients, la modulation multi-porteuse à base des bancs de filtres (FBMC) a été proposée en tant qu’une approche alternative à la modulation OFDM. En effet, on n’a pas besoin d’insérer un intervalle de garde, tel que le CP, dans la modulation FBMC. D’autre part, la bonne localisation fréquentielle de la réponse du filtre de mise en forme permet un meilleur contrôle de la radiation hors-bande du système. Dans la littérature, on trouve plusieurs types de la modulations FBMC basés sur différentes structures. Dans cette thèse, nous ne nous intéressons que sur le schéma de Saltzberg appelé OFDM/OQAM ou FBMC/OQAM. Dans ce schéma, les symboles envoyés sur chaque sous-porteuse sont tirés d’une constellation PAM réelle, et les symboles réels sont envoyés à une cadence de 2/T . La condition d’orthogonalité est réduite sur l’ensemble des réels uniquement. En conséquence, le symbole démodulé et égalisé est infecté par un terme d’interférence purement imaginaire. Ce terme d’interférence est une combinaison linaire des symboles transmis dans le voisinage du symbole concerné. La présence de cette interférence inhérente cause des difficultés de détection dans certains schéma multi-antennes (MIMO).L’objectif de cette thèse est d’étudier l’association de la modulation FBMC aux techniques MIMO, à savoir le multiplexage spatiale avec détection de maximum de vraisemblance (ML). Dans un premier temps, nous proposons d’analyser différentes techniques d’annulation d’interférence que nous adaptons au contexte de MIMO-FBMC. Nous montrons que, dans certains cas, nous pouvons bien retirer l’interférence et appliquer la détection ML. Ensuite, nous proposons d’apporter une légère modification dans la modulation FBMC en transmettant des symbole QAM complexes. Évidement, cela brise la condition d’orthogonalité mais nous montrons qu’ainsi la puissance d’interférence sera considérablement réduite. Enfin, nous introduisons un nouveau schéma basé sur la modulation FBMC. Ce schéma, que nous avons baptisé FFT-FBMC, transforme le modèle du système à un modèle équivalent à celui de l’OFDM. Ainsi, n’importe quelle technique multi-antennes pourra être appliquée sans aucune difficulté. D’abord, nous développons le système FFT-FBMC dans un contexte SISO, et puis nous évaluons ces performances dans le contexte MIMO. / Multicarrier (MC) Modulation attracts a lot of attention for high speed wireless transmissions because of its capability to cope with frequency selective fading channels turning the wideband transmission link into several narrowband subchannels whose equalization, in some situations, can be performed independently and in a simple manner. Nowadays, orthogonal frequency division multiplexing (OFDM) with the cyclic prefix (CP) insertion is the most widespread modulation among all MC modulations, and this thanks to its simplicity and its robustness against multipath fading using the cyclic prefix. Systems or standards such as ADSL or IEEE802.11a have already implemented the CP-OFDM modulation. Other standards like IEEE802.11n combine CP-OFDM and multiple-input multiple-output (MIMO) in order to increase the bit rate and to provide a better use of the channel spatial diversity. Nevertheless, CP-OFDM technique causes a loss of spectral efficiency due to the CP as it contains redundant information. Moreover, the rectangular prototype filter used in CP-OFDM has a poor frequency localization. This poor frequency localization makes it difficult for CP-OFDM systems to respect stringent specifications of spectrum masks.To overcome these drawbacks, filter-bank multicarrier (FBMC) was proposed as an alternative approach to CP-OFDM. Indeed, FBMC does not need any CP, and it furthermore offers the possibility to use different time-frequency well-localized prototype filters which allow much better control of the out-of-band emission. In the literature we find several FBMC systems based on different structures. In this thesis, we focus on the Saltzberg’s scheme called OFDM/OQAM (or FBMC/OQAM). The orthogonality constraint for FBMC/OQAM is relaxed being limited only to the real field while for OFDM it has to be satisfied in the complex field. Consequently, one of the characteristics of FBMC/OQAM is that the demodulated transmitted symbols are accompanied by interference terms caused by the neighboring transmitted data in time-frequency domain. The presence of this interference is an issue for some MIMO schemes and until today their combination with FBMC remains an open problem.The aim of this thesis is to study the combination between FBMC and MIMO techniques, namely spatial multiplexing with ML detection. In the first part, we propose to analyze different intersymbol interference (ISI) cancellation techniques that we adapt to the FBMC/OQAM with MIMO context. We show that, in some cases, we can cope with the presence of the inherent FBMC interference and overcome the difficulties of performing ML detection in spatial multiplexing with FBMC/OQAM. After that, we propose a modification in the conventional FBMC/OQAM modulation by transmitting complex QAM symbols instead of OQAM ones. This proposal allows to reduce considerably the inherent interference but at the expense of the orthogonality condition. Indeed, in the proposed FBMC/QAM,the data symbol and the inherent interference term are both complex. Finally, we introduce a novel FBMC scheme and a transmission strategy in order to avoid the inherent interference terms. This proposed scheme (that we call FFT-FBMC) transforms the FBMC system into an equivalent system formulated as OFDM regardless of some residual interference. Thus, any OFDM transmission technique can be performed straightforwardly to the proposed FBMC scheme with a corresponding complexity growth. We develop the FFT-FBMC in the case of single-input single-output (SISO) configuration. Then, we extend its application to SM-MIMO configuration with ML detection and Alamouti coding scheme.
30

Analog and Digital Approaches to UWB Narrowband Interference Cancellation

Omid, Abedi January 2012 (has links)
Ultra wide band (UWB) is an extremely promising wireless technology for researchers and industrials. One of the most interesting is its high data rate and fading robustness due to selective frequency fading. However, beside such advantages, UWB system performance is highly affected by existing narrowband interference (NBI), undesired UWB signals and tone/multi-tone noises. For this reason, research about NBI cancellation is still a challenge to improve the system performance vs. receiver complexity, power consumption, linearity, etc. In this work, the two major receiver sections, i.e., analog (radiofrequency or RF) and digital (digital signal processing or DSP), were considered and new techniques proposed to reduce circuit complexity and power consumption, while improving signal parameters. In the RF section, different multiband UWB low-noise amplifier key design parameters were investigated like circuit configuration, input matching and desired/undesired frequency band filtering, highlighting the most suitable filtering package for efficient UWB NBI cancellation. In the DSP section, due to pulse transmitter signals, different issues like modulation type and level, pulse variety, shape and color noise/tone noise assumptions, were addressed for efficient NBI cancelation. A comparison was performed in terms of bit-error rate, signal-to-interference ratio, signal-to-noise ratio, and channel capacity to highlight the most suitable parameters for efficient DSP design. The optimum number of filters that allows the filter bandwidth to be reduced by following the required low sampling rate and thus improving the system bit error rate was also investigated.

Page generated in 0.0604 seconds