• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 125
  • 20
  • 18
  • 18
  • 17
  • 16
  • 14
  • 14
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 502
  • 105
  • 100
  • 83
  • 59
  • 55
  • 51
  • 50
  • 50
  • 43
  • 37
  • 36
  • 31
  • 30
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Spatially Resolved Heat Transfer Studies in Louvered Fins for Compact Heat Exchangers

Lyman, Andrew C. 18 September 2000 (has links)
Understanding the mechanisms that serve to increase heat transfer provides valuable knowledge to minimize the size and maximize the performance of compact heat exchangers. This document presents a detailed experimental heat transfer study of six scaled up louvered fin geometries that are typical of those found in modern louvered fin compact heat exchangers. Heat transfer measurements were performed over a range of Reynolds numbers and with two different boundary conditions. A fully heated boundary condition allowed the effects of the thermal field to be observed while an adiabatic boundary condition allowed the effects of the flow field to be observed. The results indicated that the complex thermal and flow field patterns that developed within the louvered fin geometries strongly affected the heat transfer of individual louvers. In the entrance region of the louvered array, the effects of the flow field were dominant while in the fully developed region of the louvered arrays, the effects of the thermal field were dominant. A companion two-dimensional CFD study indicated that the heat transfer trends of the louvers resulting from both the thermal and flow fields were well predicted. Based on heat transfer performance, it was determined that the theta = 27°, Fp/Lp = 1.52 geometry performed the best at Re = 230 and Re = 370, while the theta = 39°, Fp/Lp = 0.91 geometry performed best at Re = 1016. / Master of Science
22

Film condensation on curvilinear fin: Preparation of SAFIR and EMERALD experiments aboard International Space Station

Glushchuk, Andrey 29 October 2010 (has links)
In 21 century finned surfaces are used in almost all condensers to enhance their heat transfer capabilities. A lot of different models are presented in the literature: on horizontal and vertical finned tubes, inside finned tubes. The validation method of the theoretical models is based on comparison between measurement of average heat transfer coefficient and one calculated by the model. But in this case it is impossible to validate all approaches made in the theory. The presented work aims to understand the real relation between assumptions made in the theory and flow of the condensate film along a fin. Therefore a comprehensive investigation of the film condensation phenomena on curvilinear surfaces has been done. This investigation has been done in the framework of the preparation of “SAFIR” and “EMERALD” space experiments aboard International Space Station. A special attention has been given to clarify some technical and technological problems that could eventually have a positive feedback for industrial applications. The model of the fin shape optimization has been developed. It takes into account surface tension forces and finite heat conductivity of the fin material. Developed model allows to significantly increase the condensate outflow as compared with the case of the optimal isothermal fin shape at the finite heat transfer conductivity. Enhancement coefficient increases with fin heat conductivity decreasing. The experimental and theoretical investigation of film condensation on a disk-shaped fin has been done under groun condition. 3D condensation model at different gravity levels has been developed. This model allows to reveal the area of dominant influence of surface tension forces. First prototype of experimental cell for the space experiments has been developed and tested. The temperature distribution along the curvilinear fin surface has been measured. The measurements of the film thickness at the fin top shows that the film thickness does not equal to zero as was assumed in some previous theoretical models. Developed model is in a good agreement with experimental results. In the ground set-up the measurement techniques as in future space experiments were realized: local temperature measurement of the fin surface, measurement of non-condensable gas mole fraction, optical system for local film thickness measurement and system of average heat transfer coefficient measurement. Experimental results approve the usefulness of these systems. Optical system based on schlieren technique for film surface deformation has been investigated and developed. This system was used for the investigation of shear driven liquid film on the mirror like substrate under microgravity condition. The microgravity condition was simulated during ESA Parabolic Flight Campaign of October-November 2009. The experimental results show the high capabilities of this system. In the framework of the space experiments preparation the analysis of appropriate liquid has been done. Three candidates have been compared: Water, Ethyl alcohol and FC-72. Third liquid has been chosen as applicable liquid for the “SAFIR” and “EMERALD” experiments. The optimal fin shapes and film thickness distribution have been calculated for the working liquid. Using obtained results requirements for space experiments have been prepared.
23

Characterizing, Correlating, and Evaluating Swirl Flow and Heat Transfer in Wavy Plate-Fin Channels with Novel Enhancement Attributes

Shi, Dantong January 2020 (has links)
No description available.
24

Development and three-dimensional histology of vertebrate dermal fin spines

Jerve, Anna January 2016 (has links)
Jawed vertebrates (gnathostomes) consist of two clades with living representatives, the chondricthyans (cartilaginous fish including sharks, rays, and chimaeras) and the osteichthyans (bony fish and tetrapods), and two fossil groups, the "placoderms" and "acanthodians". These extinct forms were thought to be monophyletic, but are now considered to be paraphyletic partly due to the discovery of early chondrichthyans and osteichthyans with characters that had been previously used to define them. Among these are fin spines, large dermal structures that, when present, sit anterior to both median and/or paired fins in many extant and fossil jawed vertebrates. Making comparisons among early gnathostomes is difficult since the early chondrichthyans and "acanthodians", which have less mineralized skeleton, do not have large dermal bones on their skulls. As a result, fossil fin spines are potential sources for phylogenetic characters that could help in the study of the gnathostome evolutionary history. This thesis examines the development and internal structure of fin spines in jawed vertebrates using two-dimensional (2D) thin sections and three-dimensional (3D) synchrotron datasets. The development of the dorsal fin spine of the holocephalan, Callorhinchus milii, was described from embryos and compared to that of the neoselachian, Squalus acanthias, whose spine has been the model for studying fossil shark spines. It was found that the development of the C. milii fin presents differences from S. acanthias that suggest it might be a better candidate for studying "acanthodian" fin spines. The 3D histology of fossil fin spines was studied in Romundina stellina, a "placoderm"; Lophosteus superbus, a probable stem-osteichthyan; and sever­­al "acanthodians". The 3D vascularization reconstructed from synchrotron radiation microtomographic data reveal that "acanthodian" and Lophosteus spines grew similarly to what is observed in chondrichthyans, which differs slightly from the growth of the Romundina spine. Chondrichthyans and "acanthodians" also share similarities in their internal organization. Overall, Lophosteus and Romundina spines are more similar in terms of morphology and histology compared to chondrichthyans and "acanthodians". These results support the current hypothesis of gnathostome phylogeny, which places "acanthodians" on the chondrichthyan stem. They also emphasize the need for further study of vertebrate fin spines using 3D approaches.
25

Oscillating foil propulsion

Lai, Peter Shung Kin January 1990 (has links)
No description available.
26

Charlus entre deux sexes : les représentations du dandy et de la femme à travers un personnage de Proust

Hallé, Stéphanie January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
27

"Behold, He comes with clouds" : Untersuchungen zur eschatologischen Dichtung in der englischen Literaturgeschichte des 17. und 18. Jahrhunderts /

Pago, Annegret, January 1992 (has links)
Diss.--Münster--Univ., 1992. / Bibliogr. p. 327-355.
28

Kunst der verbannten Kirche : Apokalyptik und das Jüngste Gericht in der sakralen Kunst des russischen Altgläubigentums.

Tchernodarov, Andrej. January 2006 (has links)
Texte remanié de: Dissertation--Halle an der Saale, 2004. / Bibliogr. p. 326-340.
29

L'Apocalypse selon Michel Tremblay /

Arino, Marc, January 1900 (has links)
Texte remanié de: Thèse de doctorat--Littérature québécoise--Bordeaux 3, 2004. Titre de soutenance : Figures d'apocalypses dans l'oeuvre de Michel Tremblay. / Bibliogr. p. 349-360.
30

An experimental study of endwall heat transfer enhancement for flow past staggered non-conducting pin fin arrays

Achanta, Vamsee Satish 30 September 2004 (has links)
In this work, we study the enhanced endwall heat transfer for flow past non conducting pin fin arrays. The aim is to resolve the controversy over the heat transfer that is taking place from the endwall and the pin surface.Various parameters were studied and results were obtained. Our results are found to be consistent with some of the results that have been previously published. The results were surprisingly found to be dependent on the height of the pin fin.

Page generated in 0.0389 seconds