• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 35
  • 20
  • 10
  • 6
  • Tagged with
  • 276
  • 276
  • 276
  • 103
  • 49
  • 38
  • 36
  • 35
  • 31
  • 30
  • 24
  • 24
  • 22
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Bridge Design for Earthquake Fault Crossings – Synthesis of Design Issues and Strategies

Rodriguez, Osmar 01 March 2012 (has links) (PDF)
This research evaluates the seismic demands for a three-span curved bridge crossing fault-rupture zones. Two approximate procedures which have been proved adequate for ordinary straight bridges crossing fault-rupture zones, i.e., the fault-rupture response spectrum analysis (FR-RSA) procedure and the fault-rupture linear static analysis (FR-LSA) procedure, were considered in this investigation. These two procedures estimate the seismic demands by superposing the peak values of quasi-static and dynamic bridge responses. The peak quasi-static response in both methods is computed by nonlinear static analysis of the bridge under the ground displacement offset associated with fault-rupture. In FR-RSA and FR-LSA, the peak dynamic responses are respectively estimated from combination of the peak modal responses using the complete-quadratic-combination rule and the linear static analysis of the bridge under appropriate equivalent seismic forces. The results from the two approximate procedures were compared to those obtained from the nonlinear response history analysis (RHA) which is more rigorous but may be too onerous for seismic demand evaluation. It is shown that the FR-RSA and FR-LSA procedures which require less modeling and analysis efforts provide reasonable seismic demand estimates for practical applications.
102

Investigation of Polymer-Filled Honeycomb Composites with Applications as Variable Stiffness Morphing Aircraft Structures

Squibb, Carson Owen 12 April 2023 (has links)
Shape morphing in aerospace structures has the potential to reduce noise, improve efficiency, and increase the adaptability of aircraft. Among the many challenges in developing morphing technologies is finding suitable wing skin materials that can be both stiff to support the structural loads, while being elastic and compliant to support this shape morphing an minimize actuation energy. This remains an open challenge, but many possible solutions have been found in smart materials, namely shape memory alloys and polymers. Of these, shape memory polymers have received more attention for wing skins due to their low density and cost, and high elastic limits in excess of 100% strain, but they suffer from generally low overall moduli. Shape memory polymer composites have been considered to address this, typically in the form of particulate/nanoscale reinforcements or by using them as matrix materials in laminate composites. While these can serve to increase the stiffness of the composite, there is still a present need for reinforcement strategies that can also maintain the large changes in stiffness of shape memory polymers. An alternative shape memory composite relies on honeycomb materials with shape memory polymer infills. Previous research has shown that polymer filled honeycombs exhibit greater in-plane moduli greater than the infill or honeycomb alone, but there has been little research focused on understanding this behavior. Moreover, while most engineered cellular structures are comprised of symmetric and periodic cells, cellular structures in nature are commonly spatially varying, asymmetric networks, which have not been considered in these composites. Motivated by these challenges in designing materials for shape morphing, this work seeks to explore the use of shape memory polymer-filled honeycomb composites for use as variable stiffness materials. First, the interaction between infill and the honeycomb, and the relationship between the honeycomb geometry and the effective composite properties is not well understood. This research first investigates the mechanisms of stiffening in these composites through both unit cell finite element models and through experimental characterization. Parametric studies are completed for selected honeycomb geometry design variables, and three key mechanisms of stiffening are identified. Next, these mechanisms are further supported by experimental studies, and comparisons are made showing the limitations of the few existing analytic models. With the knowledge gained from these studies, shape memory polymer infills are considered to create variable stiffness composites. In the first study, sizing design variables are selected to parametric the honeycomb cell geometry, with the designs constrained to be symmetric in-plane. A constrained multiobjective design optimization is completed for two chosen performance objectives, and corresponding local sensitivity studies are completed as well. The results predict that these composites meet and exceed the current bounds of both shape memory polymers and their composites, but also variable stiffness materials in general. A great degree of tailorability is demonstrated, and the model predictions are validated against experimental results from fabricated honeycomb composite samples. Next, generally asymmetric cell geometries are considered by defining shape design variables for the cell geometry. These cells are constrained to be periodic but not symmetric, allowing for the possible benefits of asymmetric to be investigated. Additionally, interconnected and spatially varying multicell unit cells are considered, further allowing for the study of spatially varying cell geometries. Multiobjective optimizations are completed for two unit cell cases, and Pareto fronts are identified. The results are compared to both those from the sizing optimization study and to the current state of the art, and are similarly found to demonstrate high performance and a great degree of tailorability in effective properties. / Doctor of Philosophy / Vehicle shape morphing, the smooth, continuous change of an aircraft's external shape, can greatly improve the efficiency and reduce noise in modern and future vehicles. Among the is challenges in this field is finding suitable skin materials that can be both stiff to support the forces exerted on an aircraft, while being soft and compliant to support this shape morphing. Smart materials, namely shape memory polymers, present many attractive options for this need, but generally need to have a higher stiffness to be suitable for large scale applications. To address this, adding reinforcements to shape memory polymers has been of interest, and current work has largely been focused on using long fiber composites or particulate and nano-reinforcements. As an alternative to these strategies, inspiration can be found in nature where polygon cells are a common means of reinforcement in both plants and animals. Motivated by the current state of the art and the promise of shape morphing structures, this work seeks to investigate cellular structures in the form of hexagonal honeycombs as a means of increasing the stiffness of shape memory polymer infills. This is done by first improving the understanding of more general polymer-filled honeycomb, which exhibit effective stiffnesses greater than the honeycomb or polymer alone. With a working understanding of how the honeycomb stiffens the infill and how the cell geometry influences this behavior, variable modulus infills are next considered. First, sizing design variables (i.e. the lengths and thicknesses of the honeycomb geometry) are selected to describe cell geometries. Design optimization problems are considered and used to estimate the bounds of possible performance for these composites. Relationships between the design variables and the composite performance are investigated, and an improved understanding of these composites is developed. Next, shape design variables are selected to allow for the asymmetry and spatial variation found in natural cellular structures, and similar design optimizations are completed. The results of this work are experimentally validated, and demonstrate that these composites allow for combinations of stiffness and stiffness change that meet and exceed the current state of the art. Furthermore, tailoring the cell geometry allows for an easy means of changing the behavior of the composite. This work represents a great improvement and an important step in overcoming the challenges in developing shape morphing systems.
103

MODELING OF MECHANICAL BEHAVIOUR OF ANISOTROPIC ROCKS

Rezapour, Aida 11 1900 (has links)
The natural soils and sedimentary rocks are typically formed by deposition and progressive consolidation of marine sediments. Consequently, they are characterized by the presence of closely spaced bedding planes, resulting in anisotropy in their mechanical behaviour. Among anisotropic rocks, the group of sedimentary rocks known as shales is of a particular interest as it is often the host rock in nuclear waste storage and oil industry. The Tournemire shales are anisotropic in terms of deformability and the failure mode, which means that complex constitutive models should be used to describe their mechanical response. In this thesis a pragmatic methodology based on the notion of a microstructure tensor, as suggested by Pietruszczak and Mroz (2001), has been employed for the description of orientation dependent characteristics of Tournemire shale. This has been combined with a plasticity framework that incorporates an anisotropic deviatoric hardening. The formulation requires identification of several parameters including strength descriptors associated with the failure criterion and constants that are involved in describing the anisotropy and strain hardening. All the material functions/parameters have been identified here based on the experimental results reported by Niandou et al. (1997). Using those parameters, the numerical simulations of a number of triaxial tests were conducted and the results compared with the experimental data in order to verify the performance of the model. After the verification stage, the formulation was incorporated in a commercial FE code (Abaqus/standard) using the UMAT interface and was then applied to a numerical analysis of a tunnel excavation within the anisotropic rock mass. The numerical results, including the distribution of the damage and vertical/horizontal displacements, have been compared for different orientations of the bedding planes. / Thesis / Master of Applied Science (MASc)
104

Effective Prestress Evaluation of the Varina-Enon Bridge Using a Long-Term Monitoring System and Finite Element Model

Brodsky, Rachel Amanda 22 July 2020 (has links)
The Varina-Enon Bridge is a cable-stayed, precast, segmental, post-tensioned box girder bridge located in Richmond, Virginia. Inspectors noticed flexural cracking in July of 2012 that prompted concerns regarding long-term prestress losses in the structure. Prestress losses could impact the future performance, serviceability, and flexural strength of the bridge. Accurately quantifying prestress losses is critical for understanding and maintaining the structure during its remaining service life. Long-term prestress losses are estimated in the Varina-Enon Bridge using two methods. The first utilizes a time-dependent staged-construction analysis in a finite element model of the full structure to obtain predicted prestress losses using the CEB-FIP '90 code expressions for creep and shrinkage. The second method involves collecting data from instrumentation installed in the bridge that is used to back-calculate the effective prestress force. The prestress losses predicted by the finite element model were 44.9 ksi in Span 5, 47.8 ksi in Span 6, and 45.3 ksi in Span 9. The prestress losses estimated from field data were 50.0 ksi in Span 5, 48.0 ksi in Span 6, and 46.7 ksi in Span 9. The field data estimates were consistently greater than the finite element model predictions, but the discrepancies are relatively small. Therefore, the methods used to estimate the effective prestress from field data are validated. In addition, long-term prestress losses in the Varina-Enon Bridge are not significantly greater than expected. / Master of Science / Post-tensioned concrete uses stressed steel strands to apply a precompression force to concrete structures. This popular building technology can be used to create lighter, stiffer structures. Over time, the steel strands experience a reduction in force known as prestress losses. Accurately quantifying prestress losses is critical for understanding and maintaining a structure during its remaining service life. The Varina-Enon Bridge is a cable-stayed, prestressed box girder bridge located in Richmond, Virginia. Inspectors noticed cracking in July of 2012 that prompted concerns regarding long-term prestress losses in the structure. Prestress losses were estimated using two methods. The first method utilized a computer model of the full bridge. The second method used data from sensors installed on the bridge to back calculate prestress losses. It was found that the prestress losses estimated from field data were slightly greater than, but closely aligned with, the computer model results. Therefore, it was concluded that the Varina-Enon Bridge has not experienced significantly more prestress losses than expected.
105

Modelling Liquid Crystal Elastomer Coatings: Forward and Inverse Design Studies via Finite Element and Machine Learning Methods

Golestani, Youssef M. 28 November 2022 (has links)
No description available.
106

Investigation of Measurement Distortion and Application of Finite Element Modeling to Magnetic Material Characterization in a Closed-Circuit

Pugh, Barry K. January 2012 (has links)
No description available.
107

Finite Element Modeling of the Load Transfer Mechanism in Adjacent Prestressed Concrete Box-Beams

Giraldo-Londono, Oliver 10 June 2014 (has links)
No description available.
108

Analytical Investigation of Adjacent Box Beam Ultra-High Performance ConcreteConnections

Ubbing, John Lawrence 24 September 2014 (has links)
No description available.
109

Validation and Modeling of a Subject-Driven Device for In Vivo Finger Indentation Using a Finger Mimic

Engel, Andrew 15 June 2017 (has links)
No description available.
110

Design, Analysis and Optimization of Rear Sub-frame using Finite Element Modeling and Modal Analysis

Kesireddy, Gaurav January 2017 (has links)
No description available.

Page generated in 0.1214 seconds