Spelling suggestions: "subject:"finitedifference"" "subject:"clinicaldifferences""
221 |
DFLD-EXP: uma solução semi-analítica para a equação de advecção-dispersão / DFLD-EXP: a semi-analytic solution for the advection-dispersion equationAndré da Silva Cardoso 29 February 2008 (has links)
A equação de advecção-dispersão possui grande importância na engenharia e nas ciências aplicadas. No entanto, como é bem conhecido, a obtenção de uma solução numérica apropriada para essa equação é um problema desafiador tanto para engenheiros como para matemáticos, físicos e outros profissionais que trabalham com a modelagem de fenômenos associados a ela. Muitos métodos numéricos desenvolvidos podem apresentar uma série de inconvenientes, tais como oscilações, dispersão e/ou dissipação numérica e instabilidade, além de serem inapropriados para determinadas condições de contorno. O presente trabalho apresenta e analisa a metodologia DFLD-exp, uma nova abordagem para a obtenção de soluções semi-analíticas da equação de advecção-dispersão, a qual utiliza um tipo particular de diferenças finitas para a discretização espacial juntamente com técnicas de exponencial de matrizes para a resolução temporal. Uma cuidadosa análise numérica mostra que a metodologia resultante é não-oscilatória, essencialmente não-dispersiva e não-dissipativa, e incondicionalmente estável. Resoluções de vários exemplos numéricos, através de um código desenvolvido em linguagem MATLAB, confirmam os resultados teóricos. / The advection-dispersion equation has been very important in engineering and the applied sciences. However, the obtainment of an appropriate numerical solution to that equation has been challenging problem to engineers, mathematicians, physicians and others that work in the modeling of phenomena associate to advection-dispersion equation. Many developed numerical methods may produce a succession of mistakes, just as oscillations, numerical dispersion and/or dissipation, instability and those methods also may be inappropriate to determined boundary conditions. The present work shows and analyses the DFLD-exp methodology, a new way to obtain semi-analytic solutions to advection-dispersion equation, that make use of a particular form of finite differencing to the spatial discretization with techniques of matrix exponential to the time solving. A detailed numerical analysis shows the methodology is non-oscillatory, essentially non-dispersive and non-dissipative, and unconditionally stable. Resolutions of any numerical examples, by a computational code developed in MATLAB language, confirm the theoretical results.
|
222 |
DFLD-EXP: uma solução semi-analítica para a equação de advecção-dispersão / DFLD-EXP: a semi-analytic solution for the advection-dispersion equationAndré da Silva Cardoso 29 February 2008 (has links)
A equação de advecção-dispersão possui grande importância na engenharia e nas ciências aplicadas. No entanto, como é bem conhecido, a obtenção de uma solução numérica apropriada para essa equação é um problema desafiador tanto para engenheiros como para matemáticos, físicos e outros profissionais que trabalham com a modelagem de fenômenos associados a ela. Muitos métodos numéricos desenvolvidos podem apresentar uma série de inconvenientes, tais como oscilações, dispersão e/ou dissipação numérica e instabilidade, além de serem inapropriados para determinadas condições de contorno. O presente trabalho apresenta e analisa a metodologia DFLD-exp, uma nova abordagem para a obtenção de soluções semi-analíticas da equação de advecção-dispersão, a qual utiliza um tipo particular de diferenças finitas para a discretização espacial juntamente com técnicas de exponencial de matrizes para a resolução temporal. Uma cuidadosa análise numérica mostra que a metodologia resultante é não-oscilatória, essencialmente não-dispersiva e não-dissipativa, e incondicionalmente estável. Resoluções de vários exemplos numéricos, através de um código desenvolvido em linguagem MATLAB, confirmam os resultados teóricos. / The advection-dispersion equation has been very important in engineering and the applied sciences. However, the obtainment of an appropriate numerical solution to that equation has been challenging problem to engineers, mathematicians, physicians and others that work in the modeling of phenomena associate to advection-dispersion equation. Many developed numerical methods may produce a succession of mistakes, just as oscillations, numerical dispersion and/or dissipation, instability and those methods also may be inappropriate to determined boundary conditions. The present work shows and analyses the DFLD-exp methodology, a new way to obtain semi-analytic solutions to advection-dispersion equation, that make use of a particular form of finite differencing to the spatial discretization with techniques of matrix exponential to the time solving. A detailed numerical analysis shows the methodology is non-oscillatory, essentially non-dispersive and non-dissipative, and unconditionally stable. Resolutions of any numerical examples, by a computational code developed in MATLAB language, confirm the theoretical results.
|
223 |
3-D inversion of helicopter-borne electromagnetic dataScheunert, Mathias 27 November 2015 (has links)
In an effort to improve the accuracy of common 1-D analysis for frequency domain helicopter-borne electromagnetic data at reasonable computing costs, a 3-D inversion approach is developed. The strategy is based on the prior localization of an entire helicopter-borne electromagnetic survey to parts which are actually affected by expected local 3-D anomalies and a separate inversion of those sections of the surveys (cut-&-paste strategy).
The discrete forward problem, adapted from the complete Helmholtz equation, is formulated in terms of the secondary electric field employing the finite difference method. The analytical primary field calculation incorporates an interpolation strategy that allows to effectively handle the enormous number of transmitters. For solving the inverse problem, a straightforward Gauss-Newton method and a Tikhonov-type regularization scheme are applied. In addition, different strategies for the restriction of the domain where the inverse problem is solved are used as an implicit regularization. The derived linear least squares problem is solved with Krylov-subspace methods, such as the LSQR algorithm, that are able to deal with the inherent ill-conditioning.
As the helicopter-borne electromagnetic problem is characterized by a unique transmitter-receiver relation, an explicit representation of the Jacobian matrix is used. It is shown that this ansatz is the crucial component of the 3-D HEM inversion. Furthermore, a tensor-based formulation is introduced that provides a fast update of the linear system of the forward problem and an effective handling of the sensitivity related algebraic quantities.
Based on a synthetic data set of a predefined model problem, different application examples are used to demonstrate the principal functionality of the presented algorithm. Finally, the algorithm is applied to a data set obtained from a real field survey in the Northern German Lowlands. / Die vorliegende Arbeit beschäftigt sich mit der 3-D Inversion von Hubschrauberelektromagnetikdaten im Frequenzbereich. Das vorgestellte Verfahren basiert auf einer vorhergehenden Eingrenzung des Messgebiets auf diejenigen Bereiche, in denen tatsächliche 3-D Strukturen im Untergrund vermutet werden. Die Resultate der 3-D Inversion dieser Teilbereiche können im Anschluss wieder in die Ergebnisse der Auswertung des komplementären Gesamtdatensatzes integriert werden, welche auf herkömmlichen 1-D Verfahren beruht (sog. Cut-&-Paste-Strategie).
Die Diskretisierung des Vorwärtsproblems, abgeleitet von einer Sekundärfeldformulierung der vollständigen Helmholtzgleichung, erfolgt mithilfe der Methode der Finiten Differenzen. Zur analytischen Berechnung der zugehörigen Primärfelder wird ein Interpolationsansatz verwendet, welcher den Umgang mit der enorm hohen Anzahl an Quellen ermöglicht. Die Lösung des inversen Problems basiert auf dem Gauß-Newton-Verfahren und dem Tichonow-Regularisierungsansatz. Als Mittel der zusätzlichen impliziten Regularisierung dient eine räumliche Eingrenzung des Gebiets, auf welchem das inverse Problem gelöst wird. Zur iterativen Lösung des zugrundeliegenden Kleinste-Quadrate-Problems werden Krylov-Unterraum-Verfahren, wie der LSQR Algorithmus, verwendet.
Aufgrund der charakteristischen Sender-Empfänger-Beziehung wird eine explizit berechnete Jakobimatrix genutzt. Ferner wird eine tensorbasierte Problemformulierung vorgestellt, welche die schnelle Assemblierung leitfähigkeitsabhängiger Systemmatrizen und die effektive Handhabung der zur Berechnung der Jakobimatrix notwendigen algebraischen Größen ermöglicht.
Die Funktionalität des beschriebenen Ansatzes wird anhand eines synthetischen Datensatzes zu einem definierten Testproblem überprüft. Abschließend werden Inversionsergebnisse zu Felddaten gezeigt, welche im Norddeutschen Tiefland erhoben worden.
|
224 |
Numerical simulation of acoustic wave propagation with a focus on modeling sediment layers and large domainsEstensen, Elias January 2022 (has links)
In this report, we study how finite differences can be used to simulate acoustic wave propagation originating from a point source in the ocean using the Helmholtz equation. How to model sediment layers and the vast size of the ocean is studied in particular. The finite differences are implemented with summation by parts operators with boundary conditions enforced with simultaneous approximation terms and projection. The numerical solver is combined with the WaveHoltz method to improve the performance. Sediment layers are handled with interface conditions and the domain is artificially expanded using absorbing layers. The absorbing layer is implemented with an alternative approach to the super-grid method where the domain expansion is accomplished by altering the wave speed rather than with coordinate transformations. To isolate these issues, other parameters such as variations in the ocean floor are neglected. With this simplification, cylindrical coordinates are used and the angular variation is assumed to be zero. This reduces the problem to a quasi-three-dimensional system. We study how the parameters of the alternative absorbing layer approach affect its quality. The numerical solver is verified on several test cases and appears to work according to theory. Finally, a semi-realistic simulation is carried out and the solution seems correct in this setting.
|
Page generated in 0.1456 seconds