• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 7
  • 4
  • 2
  • 2
  • Tagged with
  • 53
  • 53
  • 53
  • 26
  • 9
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Combustion analysis and particulate mutagenicity characterization for a single-cylinder diesel engine fueled by Fischer-Tropsch derived liquids

McMillian, Michael H. January 2002 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xvi, 148 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 162-183).
32

Dynamic modelling of anaerobic digestion of Fischer-Tropsch reaction water.

Lees, Crispian McLintock. 26 September 2014 (has links)
Fischer-Tropsch Reaction Water (FTRW) is a high organic strength wastewater produced as a by-product in Sasol’s Fischer-Tropsch Reactors. Typically it has an organic load of 18000 mgCOD/L and is highly acidic with a pH of approximately 3.8. It is deficient in nutrients (N and P and other micronutrients). This dissertation deals with the biological and physico-chemical model development of a dynamic anaerobic digestion model, and explores two different approaches to representing the physico-chemical processes that complement and interact with the bioprocesses. The performances of the resultant two dynamic models (ADFTRW1 & AD-FTRW2) were compared in order to assess to what extent the more detailed and rigorous ionic speciation modeling in AD-FTRW2 addressed the shortcomings attributed to the simplified physicochemical modeling in AD-FTRW1. The ionic speciation model used in AD-FTRW2 uses a classic equilibrium formulation along the same lines as in the UCTADM2 model for anaerobic digestion of municipal wastewater sludges (Brouckaert et al., 2010), while AD-FTRW1 uses a simplification of the approach developed by Musvoto et al. (2000) in order to represent short chain fatty acid (SCFA) dissociation and the weak acid base chemistry of the inorganic carbon system. A 44 day extract from a 700 day laboratory-scale dataset (Van Zyl et al. 2008) was used as the basis for comparing the models. During this period the membrane bio-reactor was subjected to varying flow and load conditions. To validate the models, the experimentally measured and model predicted process variables of reactor alkalinity, reactor pH, biogas production and effluent SCFA concentration were compared. It was found that AD-FTRW2 provided superior agreement with pH data, but predictions of alkalinity, gas production rate and effluent short-chain fatty acids were not significantly improved in AD-FTRW2 relative to AD-FTRW1. This outcome was hypothesized since pH is strongly dependent on physico-chemical processes such as ionic interactions in solution and gas exchange which were the components to the models (AD-FTRW1 versus AD-FTRW2) which differed most significantly. Alkalinity, which is also highly influenced by physico-chemical model representations showed substantial improvement however statistical analysis could not show this improvement to be significant. The other two variables that were compared, biogas production and effluent SCFA concentration, displayed very similar agreement with experimental data. These variables depend more on mass balance effects and biological kinetics and were therefore not significantly altered by the more rigorous handling of aqueous chemistry in AD-FTRW2. It was concluded that AD-FTRW2 constitutes an improvement in model predictive power over AD-FTRW1 at a small cost in computing time. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2013.
33

Utilization of supercritical fluids in the Fischer-Tropsch synthesis over cobalt-based catalytic systems

Elbashir, Nimir O.M., Roberts, Christopher B. January 2004 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2004. / Abstract. Includes bibliographic references (269-292).
34

Modelling and exergy analysis of the natural gas to hydrocarbon liquids (GTL) process

Venter, Johann Adriaan 30 August 2007 (has links)
Please read the abstract (Synopsis) in the section 00front of this document / Dissertation (M Eng (Chemical Engineering))--University of Pretoria, 2007. / Chemical Engineering / MEng / unrestricted
35

Development of a microreactor system for unsteady-state Fischer- Tropsch synthesis

Whiting, Gary Ken January 1985 (has links)
Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the “heat-tray.” This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition infonnation under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor. The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395°C using a feed gas of H₂/CO ratio of 2:1 or less. Above 395°C, the probability of hydrocarbon chain growth (α) on the fused-iron catalyst was low enough (α < 0.50) to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395°C when a feed gas of H₂/CO ratio of 2:1 or less was used. Spent catalyst fractions in the form of free-flowing catalyst and "bugdust" were quantitatively analyzed for carbon and iron. Mössbauer spectroscopic analysis of free-flowing catalyst showed mainly Hägg carbide (x-Fe₅C₂) and magnetite (Fe₃O₄) with a smaller fraction present as α-Fe. Scanning electron microscopic analysis of the bugdust revealed a mass of highly porous, fine particles with a high carbon content (18-30 wt%). Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized-bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm³/s. Further, cold-flow microreactor model studies showed intense solid mixing when a -150+300 µ bed of fused-iron catalyst was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of this microreactor system has provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. Further, the unique ability of the microreactor system to rapidly switch feed gases over an intensely-mixed solid has important applications in chemical kinetics and reaction engineering. / Ph. D.
36

Metal carboxylate complexes relevant to the Fischer-Tropsch synthesis

Pienaar, Andrew 03 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2005. / In a Fischer-Tropsch refinery environment carboxylate complexes are of interest since the carboxylic acids present in product streams lead to formation of carboxylate salts through leaching of process equipment and catalysts. It is widely accepted that decomposition of organic (carboxylic) acids catalysed by metals is controlled by the decomposition of metal salts or complexes previously formed with such an acid. The determination of physical and structural properties of caboxylate complexes could contribute to the explanation of the mechanism involved in the decarboxylation of carboxylic acids. We have successfully determined the molecular structures of copper(II) allyl acetate, zinc(II) formiate, zinc(II) isovaleroate, yttrium(III) acetate and lanthanum(III) propionate. It has been established that zinc has a preferred tetrahedral coordination in carboxylate complexes compared to the octahedral coordination of copper, lanthanum and yttrium complexes considered. The carboxylate O-C-O angle in these complexes range between 119° and 125° and the conformation of the carbon chains is anti in all cases except for copper(II) allyl acetate, where a gauche conformation is adopted. Using structural methods such as TGA, infrared spectroscopy and X-Ray powder diffraction and combining it with existing knowledge of yttrium carboxylates and the effective use of computational chemistry – to calculate favourable internal parameters, using DFT calculations and B-LYP level theory - a likely structure for yttrium(III) propionate is proposed. The use of infrared measurements were especially valuable towards predictions of possible structures and the postulations of Nakamoto, on the relation between carboxylate carbonyl stretching frequencies and the nature of the carboxylate bond, could be used to accurately identify – except for the formiate salts of zinc(II) and yttrium(III) – the bonding mode present in the relevant compounds. We systematically tuned the non-cyclic organic part of the mono carboxylate ligand by lengthening and branching of the alkyl chain and determined that thermal decomposition and heat capacity of zinc complexes are a strong function of the ligand, while the behaviour of analogous yttrium complexes is hardly affected. The thermal investigation of lanthanum(III) propionate yielded a result that is in contrast with a previous study - where only CO2 was reported as byproduct - and we report an alternative result which indicates formation of symmetric ketones when the compound is heated to a high enough temperature. Earlier general assumptions about the layer-like crystal structure of lanthanum complexes coordinated by alkyl chain carboxylate are contradicted by the crystallographic data we collected for this compound. The crystal packing of lanthanum(III) propionate clearly shows a layered structure which is unexpected for a carboxylate with such a short alkyl.
37

The use of multidimensional GC techniques for the analysis of complex petrochemical products

Van der Westhuizen, Rina 12 1900 (has links)
90 leaves on CD format, preliminary i-ix pages and numbered pages 1-81. Includes bibliography, list of figures in color to pdf format (OCR). / Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2005. / ENGLISH ABSTRACT: The composition of petrochemical products obtained from Fischer Tropsch (FT) technologies is of the highest complexity possible and may contain thousands of components. Chemicals produced from FT feedstocks often contain trace level contaminants that can poison catalysts or that affect product performance in down-line processes. Single dimension GC analysis of these mixtures provides incomplete information because of lack of separation power. This study evaluates the separation power of heart-cut GC-GC, comprehensive GCxGC and sequential GC-GC for three selected challenging petrochemical applications. The fundamental theoretical aspects of the techniques are discussed. Oxygenates are removed as far as possible in C10 – C13 alkylation feedstocks, used in the production of linear alkyl benzenes, because the oxygenates may have deactivating effects on some expensive alkylation catalysts. Residual oxygenates may still be present and can consist of hundreds of components. Detection of individual components at ng/g levels is required. Heart-cut GC-GC is used to illustrate the separation and enrichment power for oxygenates in an alkylation feedstock. The stationary phase in the first dimension column was selected to provide separation of the oxygenates from the hydrocarbons in a relatively narrow window. The oxygenate fraction is then enriched by repeated injections and collection on the cryotrap. After sufficient enrichment, the trap is heated and the oxygenates are analysed on the second dimension column. Comprehensive GCxGC and Sequential GC-GC are compared for the separation and analysis of the oxygenated chemical component classes in the alkylation feedstock, before removal of oxygenates. Cyclic alcohols can occur in detergent alcohols produced from FT feedstocks. These cyclics are regarded as impurities because they affect the physical properties of the detergents. The cyclic and noncyclic alcohols in a narrow C12 – C13 detergent alcohol distillation cut have similar boiling points and polarities, and separation of individual components is thus difficult to achieve. Comprehensive GCxGC and sequential GC-GC are evaluated for the separation of the alcohol component classes. The study shows that both approaches provide component class separation but the high resolving power of the second column and the optimal chromatographic operating conditions of sequential GC-GC provide better separation of the individual components. The study illustrates the immense power of the three multidimensional GC techniques namely heart-cut GC-GC, comprehensive GCxGC and sequential GC-GC. The three multidimensional GC techniques each have their own advantages, disadvantages and unique applications and should be used as complementary rather than as competitive analytical tools. / AFRIKAANSE OPSOMMING: Fischer Tropsch (FT) petrochemiese produkte is van baie hoë kompleksiteit en kan uit duisende komponente bestaan. Chemikalië afkomstig van dié voerstrome bevat soms spoorhoeveelhede onsuiwerhede wat deaktiverend op kataliste kan inwerk of wat die werkverrrigting van finale produkte kan beïnvloed. Enkeldimensie GC analises van die komplekse mengsels is meesal onakkuraat as gevolg van geweldige piekoorvleueling. Die studie evalueer die skeidingsvermoë van drie multidimensionele tegnieke, Heart-cut GC-GC, Comprehensive GCxGC en Sequential GC-GC vir geselekteerde petrochemiese toepassings. Die fundamentele teoretiese aspekte van die tegnieke word bespreek en drie analitiese toepassings word beskryf. Oksigenate word so ver moontlik verwyder uit C10 – C13 paraffien-voerstrome, wat gebruik word in die vervaardiging van liniêre alkielbenzene, aangesien dit deaktiverend kan inwerk op alkileringskataliste. Die oorblywende oksigenate kan uit honderde komponente bestaan sodat analise van individuele komponente tot op lae ng/g vlakke nodig is. Heart-cut GC-GC word gebruik om die skeiding en verryking van die oksigenate in die alkileringsvoerstroom te illustreer. Die stationêre fase in die eerste-dimensie kolom is so gekies dat skeiding tussen oksigenate en koolwaterstowwe verkry word. Met herhaalde inspuitings verhoog die oksigenaat-konsentrasie op die cryo val en - na voldoende verryking - word die val verhit en die oksigenate geanaliseer op die tweede dimensie kolom. Die skeiding en analises verkry met Comprehensive GCxGC en Sequential GC-GC word vergelyk vir die chemiese klasse-skeiding van die alkileringsvoer (voor verwydering van oksigenate). Sikliese alkohole kan voorkom in detergent-alkohole vervaardig vanaf FT voerstrome. Dit word as onsuiwerhede beskou aangesien dit die fisiese eienskappe van die finale produkte beïnvloed. Die sikliese en nie-sikliese alkohole se kookpunte en polariteite is baie naby aanmekaar sodat skeiding van individuele komponente moeilik verkry word. Comprehensive GCxGC en Sequential GC-GC word evalueer vir die skeiding van die alkohol. Die studie toon aan dat albei die tegnieke skeiding gee van die chemiese komponent-klasse maar dat die hoë-resolusie tweede-dimensie kolom en die optimisering van die experimentele kondisies van die Sequential GC-GC sisteem beter skeiding van individuele komponente gee. Die uitsonderlike skeidingsvermoë van die drie multidimensionele tegnieke, Heart-cut GC-GC, Comprehensive GCxGC en Sequential GC-GC word geïllustreer in die studie. Elke tegniek het sy eie voordele, nadele en unieke toepassings en die drie tegnieke behoort as komplementêre eerder as kompeterende tegnieke gebruik te word.
38

Comprehensive multidimensional gas chromatography for the analysis of Fischer-Tropsch products

Van der Westhuizen, Katriena Elizabet 12 1900 (has links)
Thesis (PhD)--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: The analysis of Fischer–Tropsch–derived (FT–derived) synthetic crude and derived products is very challenging because of the highly complex nature of these products. In this study, the use of comprehensive multidimensional gas chromatography (GCxGC) with time-of-flight mass spectrometry (TOF-MS) and flame ionisation detection (FID) was investigated for the analysis of these products and the technique was found to be invaluable for the analysis of these complex mixtures. The compositions of FT synthetic crude, produced at low temperature (LT–FT) and high temperature (HT–FT) processes were compared and the effect that changes in FT reaction temperature has on product formation was investigated. Results for conventional onedimensional GC (1D-GC) and GCxGC were compared. It was found that conventional 1D–GC does not have sufficient peak capacity to separate the thousands of compounds in the HT FT products. GCxGC provides a huge peak capacity of tens-of-thousands to separate highly complex mixtures. Structured chromatograms, where groups of compounds with similar properties are grouped together, aid in peak identification. Moreover, sensitivity at low microgram per milliliter levels is obtained. These attributes enabled accurate analysis of various complex feed and product streams in the FT refinery, and also various final fuel products. The use of GCxGC alone was demonstrated, and also combined with high performance liquid chromatography (HPLC), supercritical fluid chromatography (SFC) and nuclear magnetic resonance (NMR) when even more separation power was needed. HPLC–GCxGC enabled the separation of alkene and cyclic alkane compound classes in oligomerisation products. These compound classes have similar mass spectra, elute in adjacent regions and co–elute even to some extent on the GCxGC contour plot, making differentiation difficult. SFC is a good replacement for HPLC for these applications because it does not use solvents as mobile phases. CO2 is easily evaporated after the separation and does not interfere with the GCxGC separation of the analytes. SFC is also a very good technique to separate the compound classes of alkanes, alkenes, aromatics and oxygenates, and is therefore highly complementary to GCxGC. The combination of GCxGC with NMR data was also found to be very valuable for the identification of branched alkane isomers in LT–FT diesels. GCxGC provides excellent separation of individual compounds but the identification of isomers (except for mono–methyl branching) is difficult because the mass spectra of most of these isomers are similar and not all compounds are in the mass spectral libraries. NMR, on the other hand, is able to distinguish between the individual types of branched isomers but has limited separation power for the complex mixtures. By combining the two techniques, the best of both was obtained. The study found GCxGC to be invaluable for the analysis of the highly complex FT–derived products, while its combination with other techniques such as HPLC, SFC and NMR provided even more separation power. / AFRIKAANSE OPSOMMING: Die hoogs komplekse samestelling van sintetiese ru–olie en afgeleide produkte, afkomstig van Fischer–Tropsch (FT) sintese, bied groot uitdagings aan die analis. Die studie het die gebruik van GCxGC met ’n TOF-MS en FID bestudeer vir die analise van FT produkte en het bevind dat die tegniek van onskatbare waarde is vir die analise van die hoogs komplekse mengsels. Die samestellings van produkte van lae- en hoë-temperatuur FT prossesse is vergelyk en die effek van ’n verhoging in die reaksie–temperatuur op die produk samestelling is ondersoek. Resultate vir 1D–GC and GCxGC is vergelyk en dit was duidelik dat 1D-GC nie naastenby voldoende piekkapasiteit het om al die komponente van die produkte wat tydens die hoëtemperatuur prosses gevorm word, te kan skei nie. Die GCxGC se piekkapasiteit daarteenoor is in die orde van tienduisende wat die skeiding van hoogs komplekse mensels moontlik maak terwyl die tegniek hoogs gestruktureerde kontoerplotte verskaf wat help met identfikasie van komponente. Die tegniek is verder ook baie sensitief en kan komponente op lae μg/mL vlakke waarneem. Hierdie eienskappe het akkurate analise van verskeie FT produkstrome moontlik gemaak. Die kombinasie van GCxGC met HPLC, SFC en KMR het selfs meer skeidingskrag verskaf waar nodig. HPLC–GCxGC het die skeiding van alkene en sikliese alkane moontlik gemaak. Hierdie komponent klasse se massaspektra is feitlik dieselfde en terselfdertyd elueer die twee groepe reg langs mekaar, en oorvleuel soms selfs tot ’n mate, op die GCxGC kontoerplot, sodat dit moeilik is om daartussen te onderskei. SFC is ’n goeie alternatief vir HPLC in meeste toepassings aangesien die tegniek net CO2 gebruik, wat maklik verdamp by kamertemperatuur en nie oplosmiddels gebruik wat se pieke steur met die van die laekookpunt komponente op die GCxGC kontoerplot nie. Skeidings van die komponentgroepe alkane, alkene, aromate en oksigenate is moontlik met SFC en daarom komplimenteer dit die GCxGC skeiding goed aan. Die kombinasie van GCxGC met kern–magnetiese resonansie (KMR) is van waarde gevind om die verskillende tipes vertakkings in ’n lae-temperatuur FT diesel te identifiseer. GCxGC verskaf uitstekende skeiding van individuele komponente maar die identifikasie van die verskilende isomere, behalwe vir die mono-metiel vertakkings, is moeilik aangesien die massaspektra van baie van die komponente soortgelyk is en die komponente nie in die massa spektrum–biblioteke voorkom nie. KMR, aan die ander kant, kan tussen die individuele vertakkings onderskei maar het beperkte skeidingskrag vir komplekse mensels. Deur die twee tegnieke te kombineer is die beste van albei tegnieke bekom. Die studie het bevind dat GCxGC van onskatbare waarde is vir die analise van die komplekse sintetiese FT produkte terwyl die kombinasie met ander tegnieke soos HPLC, SFC and KMR selfs meer skeidingskrag verskaf.
39

Study of the selectivity to light hydrocarbons in Fischer-Tropsch synthesis

Muleja, Adolph Anga January 2016 (has links)
School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa 26 February 2016 / Many reports in the open literature have focused on Fischer-Tropsch (FT) kinetics, yet none of them appear to be able to explain FTS completely. Few of the FT models consider the production of olefins and paraffins separately. To study whether the selectivity to olefins and paraffins follows similar trends and if kinetics alone suffices to explain FT phenomena, a series of FT experiments were conducted in a fixed bed reactor loaded with 10% Co/TiO2. FT feeds were periodically switched from syngas to syngas + N2 by adjusting the total reactor pressure so that the reactant partial pressures (PCO and PH2) remained constant. During the initial deactivation (the first 1200 hours), it was found that the formation rates of olefins remained fairly constant (in some cases they increased) while those of paraffins decreased. This indicates the deactivation is mainly caused by the decrease in the paraffin formation rate. Currently, none of the published kinetic models can explain the phenomenon that the decay of the reaction rates of olefins and paraffins were not the same during the deactivation. At steady state (1055 to 2700 hours, overall reaction rate fairly constant), adding extra N2 decreased the selectivity to the light hydrocarbons. These results suggest that by feeding the extra N2 there could be an increase in selectivity and formation rates to long chain hydrocarbons (C5+). Plotting molar ratios of paraffin to olefin (P/O) with carbon number n+1 versus the ratio with carbon number n revealed linear relationships which are independent of feed gases, catalyst activity and reaction temperature. These results imply that product distributions might be determined by some sort of equilibrium. Another plot of normalised mole fractions of CnH2n, Cn+1H2n+2, and CnH2n+2 in ternary diagrams showed that after disturbances these product distributions tended to stable points. It is suggested that this could be due to slow changes in the liquid composition after the disturbances. Although not all the results are explained, the researcher emphasises that normal kinetics alone cannot explain these results completely. There might be factors, iii including vapour-liquid equilibrium or reactive distillation, which are worthy of consideration to explain FTS. / MT2016
40

Comparative Life Cycle Assessments of Lignocellulosic and Algae Biomass Conversion to Various Energy Products through Different Pathways

Pinilla, Maria Juliana 01 January 2011 (has links)
Bioenergy has the potential to reduce the world's dependence on fossil fuels, and to decrease the CO2 emissions due to fossil combustion. Lignocellulosic and algae biomass have been presented as promising feedstocks for bioenergy production. In this study, a comparative Life Cycle Assessment (LCA) has been developed to evaluate the environmental impacts associated with different energy products via different routes across the whole life of algal and lignocellulosic bioenergy. Results were compared per energy basis, the production of 1 million BTU of energy products. For the development of the comparative algae biomass conversion LCA, algal biomass was converted to liquid biofuels via a thermochemical gasification and Fisher-Tropsch Synthesis (FTS) process; and to electricity and heat via anaerobic digestion and combined heat and power (CHP) process. Overall results from the algae biomass conversion LCA showed that the process that converts algae biomass through anaerobic digestion and CHP process to electricity and heat had the highest overall environmental impact. Results also showed that the impact categories that appear to contribute the most to the overall impacts are ecotoxicity, human health non-cancer, and human health cancer. For the development of the comparative lignocellulosic biomass conversion LCA, lignocellulosic biomass was converted to ethanol and higher alcohols through thermochemical gasification and alcohol synthesis process, to liquid biofuels via thermochemical gasification and FTS process, and to liquid biofuels via a thermochemical gasification and FTS process that uses methane. Overall results from the lignocellulosic biomass conversion LCA showed that the process that converts lignocellulosic biomass into alcohols has the highest overall environmental impact. Results also showed that the impact categories that appear to contribute the most to the overall impacts are ecotoxicity, human health non-cancer, human health cancer, and global warming. This study determined that cultivated algae biomass feedstock has much higher environmental impacts compared with lignocellulosic biomass feedstock from forestation and agriculture byproducts. It was also concluded that thermochemical gasification and FTS process showed higher efficiency when converting biomass to bioenergy. In addition, the five biomass to bioenergy conversion pathways used in the development of this LCA study were compared. Results showed that the pathway with lignocellulosic biomass (feedstock), thermochemical gasification and alcohol synthesis process (conversion process), and ethanol and higher alcohols (energy products) has the largest environmental impact.

Page generated in 0.0927 seconds