• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 24
  • 21
  • 15
  • 14
  • 3
  • 2
  • Tagged with
  • 171
  • 62
  • 46
  • 38
  • 33
  • 29
  • 27
  • 23
  • 22
  • 22
  • 20
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

LAMINAR AND TURBULENT STUDY OF COMBUSTION IN STRATIFIED ENVIRONMENTS USING LASER BASED MEASUREMENTS

Grib, Stephen William 01 January 2018 (has links)
Practical gas turbine engine combustors create extremely non-uniform flowfields, which are highly stratified making it imperative that similar environments are well understood. Laser diagnostics were utilized in a variety of stratified environments, which led to temperature or chemical composition gradients, to better understand autoignition, extinction, and flame stability behavior. This work ranged from laminar and steady flames to turbulent flame studies in which time resolved measurements were used. Edge flames, formed in the presence of species stratification, were studied by first developing a simple measurement technique which is capable of estimating an important quantity for edge flames, the advective heat flux, using only velocity measurements. Both hydroxyl planar laser induced fluorescence (OH PLIF) and particle image velocimetry (PIV) were used along with numerical simulations in the development of this technique. Interacting triple flames were also created in a laboratory scale burner producing a laminar and steady flowfield with symmetric equivalence ratio gradients. Studies were conducted in order to characterize and model the propagation speed as a function of the flame base curvature and separation distance between the neighboring flames. OH PLIF, PIV and Rayleigh scattering measurements were used in order to characterize the propagation speed. A model was developed which is capable of accurately representing the propagation speed for three different fuels. Negative edge flames were first studied by developing a one-dimensional model capable of reproducing the energy equation along the stoichiometric line, which was dependent on different boundary conditions. Unsteady and laminar negative edge flames were also simulated with periodic boundary conditions in order to assess the difference between the steady and unsteady cases. The diffusive heat loss was unbalanced with the chemical heat release and advective heat flux energy gain terms which led to the flame proceeding and receding. The temporal derivative balanced the energy equation, but also aided in the understanding of negative edge flame speeds. Turbulent negative edge flame velocities were measured for extinguishing flames in a separate experiment as a function of the bulk advective heat flux through the edge and turbulence level. A burner was designed and built for this study which created statistically stationary negative edge flames. The edge velocity was dependent on both the bulk advective heat flux and turbulence levels. The negative edge flame velocities were obtained with high speed stereo-view chemiluminescence and two dimensional PIV measurements. Autoignition stabilization was studied in the presence of both temperature and species stratification, using a simple laminar flowfield. OH and CH2O PLIF measurements showed autoignition characteristics ahead of the flame base. Numerical chemical and flow simulations also revealed lower temperature chemistry characteristics ahead of the flame base leading to the conclusion of lower temperature chemistry dominating the stabilization behavior. An energy budget analysis was conducted which described the stabilization behavior.
72

Impact des suies issues de biocarburants sur le filtre à particules / Impact of soot derived from biofuels on diesel particulate filter

Abboud, Johnny 25 January 2018 (has links)
Ce manuscrit constitue la synthèse d'efforts visant à évaluer l'impact des composés oxygénés contenus dans des mélanges représentatifs de Biodiesel, sur leur tendance à la production de suie d'une part, et sur les propriétés physico-chimiques et la réactivité des suies d'autre part. Pour ce faire, une production stationnaire de particules de suie par un brûleur académique générant des flammes non-prémélangées a été mise en point. Dans un premier temps, nous avons montré que la teneur ainsi que la structure des additifs oxygénés à base d'ester méthylique affectent la formation de suie dans la flamme. Ainsi, les résultats ont démontré que l'efficacité d'un carburant à réduire la tendance à la production de suie en terme d'indice YSI est de plus en plus importante lorsque le contenu et/ou la longueur de la chaîne aliphatique carbonée de l'ester méthylique augmentent dans le carburant de référence. Dans un second temps, les suies " modèles " récupérées dans la région post-flamme ont été caractérisées puis comparées entre elles ainsi qu'avec une suie Biodiesel " réelle ". Les analyses ont montré que les suies issues des " surrogates " Biodiesel contenant la teneur en ester la plus élevée et la chaîne aliphatique carbonée la plus longue présentaient la distribution de taille la plus étroite, le diamètre des agrégats le plus petit, les teneurs en oxygène et en fraction organique soluble les plus faibles et étaient moins réactives. Enfin, nous avons observé que les suies " modèles " issue du brûleur académique de SANTORO et la suie " réelle " possèdent des propriétés physico-chimiques très proches et une réactivité similaire. / The aim of this work was to evaluate the effect of oxygenated compounds concentration and structure on sooting tendencies of surrogate Diesel and Biodiesel, and to investigate the properties and the oxidative reactivity of soot obtained by their combustion using an atmospheric axi-symmetric co-flow non-premixed flame burner. Results evidenced that ester functions contained in Biodiesel surrogates reduce soot production. This decrease was more pronounced when the concentration of the oxygenated additive investigated was higher. However, it has been determined that YSI decreases when the aliphatic carbon chain of the ester additive is longer. On the other hand, physico-chemical characterizations of the generated model soot revealed that oxygen and soluble organic fraction (SOF) content decreases when the amount of methyl ester based additives increases in the reference fuel. Moreover, the behavior towards oxidation indicated that the Biodiesel-derived soot was less reactive than the Diesel-derived one. Finally, it was noticed from the results obtained from laser granulometry and TPOs that the particle size distribution and the reactivity of model soot collected from the burner are in the same range of size and of maximum oxidation temperature as soot derived from a Diesel engine functioning under specific conditions and with different type of fuel blending.
73

A High-order Finite-volume Scheme for Large-Eddy Simulation of Premixed Flames on Multi-block Cartesian Mesh

Regmi, Prabhakar 26 November 2012 (has links)
Large-eddy simulation (LES) is emerging as a promising computational tool for reacting flows. High-order schemes for LES are desirable to achieve improved solution accuracy with reduced computational cost. In this study, a parallel, block-based, three-dimensional high-order central essentially non-oscillatory (CENO) finite-volume scheme for LES of premixed turbulent combustion is developed for Cartesian mesh. This LES formulation makes use of the flame surface density (FSD) for subfilter-scale reaction rate modelling. An algebraic model is used to approximate the FSD. A detailed explanation of the governing equations for LES and the mathematical framework for CENO schemes are presented. The CENO reconstruction is validated and is also applied to three-dimensional Euler equations prior to its application to the equations governing LES of reacting flows.
74

Soot Formation in Diffusion Flames of Alternative Turbine Fuels at Elevated Pressures

Barua, Arup 20 November 2012 (has links)
Laminar axisymmetric syngas-air, syngas-methane mixture-air and biogas-air diffusion fames were studied over the pressure range of 5 to 20 atm to investigate the effect of pressure and dilution on soot formation. Spectral soot emission (SSE) optical diagnostic technique was used to measure the soot volume fraction and soot temperature in these flames. The fuel matrix consisted of three syngas fuels, two syngas-methane mixtures and two biogas fuels. In general, soot formation in syngas-methane mixtures and biogas diffusion flames showed strong pressure dependence at lower pressures but this dependence got weaker at elevated pressures. No soot was detected by SSE diagnostic technique in syngas-air flames at all pressures. The suppressive effect of carbon dioxide on soot formation prevailed at all pressures in syngas-methane mixtures and biogas flames.
75

A High-order Finite-volume Scheme for Large-Eddy Simulation of Premixed Flames on Multi-block Cartesian Mesh

Regmi, Prabhakar 26 November 2012 (has links)
Large-eddy simulation (LES) is emerging as a promising computational tool for reacting flows. High-order schemes for LES are desirable to achieve improved solution accuracy with reduced computational cost. In this study, a parallel, block-based, three-dimensional high-order central essentially non-oscillatory (CENO) finite-volume scheme for LES of premixed turbulent combustion is developed for Cartesian mesh. This LES formulation makes use of the flame surface density (FSD) for subfilter-scale reaction rate modelling. An algebraic model is used to approximate the FSD. A detailed explanation of the governing equations for LES and the mathematical framework for CENO schemes are presented. The CENO reconstruction is validated and is also applied to three-dimensional Euler equations prior to its application to the equations governing LES of reacting flows.
76

Soot Formation in Diffusion Flames of Alternative Turbine Fuels at Elevated Pressures

Barua, Arup 20 November 2012 (has links)
Laminar axisymmetric syngas-air, syngas-methane mixture-air and biogas-air diffusion fames were studied over the pressure range of 5 to 20 atm to investigate the effect of pressure and dilution on soot formation. Spectral soot emission (SSE) optical diagnostic technique was used to measure the soot volume fraction and soot temperature in these flames. The fuel matrix consisted of three syngas fuels, two syngas-methane mixtures and two biogas fuels. In general, soot formation in syngas-methane mixtures and biogas diffusion flames showed strong pressure dependence at lower pressures but this dependence got weaker at elevated pressures. No soot was detected by SSE diagnostic technique in syngas-air flames at all pressures. The suppressive effect of carbon dioxide on soot formation prevailed at all pressures in syngas-methane mixtures and biogas flames.
77

Development of numerical codes for the evaluation of combustion processes. Detailed numerical simulations of laminar flames

Cònsul Serracanta, Ricard 27 September 2002 (has links)
Deep knowledge of combustion phenomenon is of great scientific and technological interest due to its presence in a wide range of industrial processes and equipment. Being the most important worldwide energy support provided by combustion of fossil fuels, the goal of developing more efficient and cleaner systems or equipment is clearly justified. In the last decade, the importance of the reduction of pollutant emissions has increased considerably due to both environmental consciousness and to governmental policies, being one of the most important aspects to assure the competitiveness of combustion-related industries.Traditionally, a high number of experimental studies based on trial-and-error analysis were necessary on the optimisation of thermal equipment, where heat and mass transfer and fluid flow have a dominant role. In the last decades, in agreement with the development of computational capabilities, CFD simulations have become a worthful complement to experimental investigations, reducing in this sense production costs and time to market. However, the considerable complexity of combustion phenomena and the strong feedback between the flow and the chemistry, makes more difficult the task of develop accurate, computationally capable and robust numerical codes for combustion phenomena in industrial applications. This goal remains a promising challenge today and for the foreseeable future.The work developed in this thesis contributes to this objective. Rather than assuming less accurate mathematical approaches and consider their application to engineering problems, our main intention has been centred to the development of numerical tools that enable the feasible resolution of combustion problems with the highest level of detail.On the detailed numerical simulation of combustion problems, main difficulties arise from the stiffness of the governing equations, the presence of flame fronts, and the huge number of species and reactions involved in the reaction mechanisms. In order to overcome these numerical difficulties, a parallel multiblock algorithm able to work efficiently with loosely coupled computers, has been developed. The employment of numerical strategies to deal with the commented stiffness, and the use of multiblock techniques to optimise the discretisation and to parallelise the code, are the main attributes that can be pointed out. An excellent ratio between computational time and resources have been obtained.In the analysis of the numerical solutions, special attention is given to their verification. The accuracy of the results has been analysed providing uncertainty estimations. The numerical methodology employed in this thesis to simulate reactive flows is one of the most relevant contributions presented.The numerical infrastructure developed has been applied to the numerical analysis of laminar flames. Although combustion nearly always takes place within a turbulence flow field to increase the mixing process and thereby enhance combustion, laminar flames are considered as an illustrative example of combustion phenomenon and its experimental and detailed numerical analysis is a basic ingredient on the modelling of turbulent combustion processes as well as for pollutant formation. Special attention has been given to co-flow non-premixed and partially premixed methane-air laminar flames. The wide application of these flames in house-hold and industrial heating systems due to both their intense combustion process and the relatively clean nature of natural gas (composed mainly by methane), has motivated extensive research on the experimental and numerical modelling of such flames.Detailed numerical simulations have been performed to analyse fundamental aspects of these flames, and the adequacy of several mathematical approaches employed on their modelling. Available experimental data have been taken into account both on the analysis of the influence of partially premixing to main flame properties and on the mathematical approaches comparison. Special attention has also been given to pollutant formation, NOx and CO emission indexes.
78

Effects of long-term forest fire retardants on fire intensity, heat of combustion of the fuel and flame emissivity

Àgueda Costafreda, Alba 30 October 2009 (has links)
Cada any milers d'hectàrees forestals es destrueixen a causa dels incendis forestals. Investigar quins són els mecanismes que controlen la ignició i la propagació dels incendis forestals és necessari per planificar estratègies eficients de lluita contra els incendis forestals i per establir plans de gestió de les àrees forestals. Durant aquests darrers seixanta anys des del món de la recerca s'han formulat models per descriure el comportament dels focs forestals de superfície, principalment, i en un menor grau els focs de capçades. No obstant, aquests models tenen un punt feble significatiu: cap d'ells ha estat desenvolupat per ser utilitzat com a eina predictiva del comportament del foc després d'actuacions d'atac indirecte amb retardants a llarg termini (o retardants). A més, la majoria de treballs desenvolupats fins ara amb retardants a llarg termini han tingut l'objectiu d'avaluar diferents productes per al seu ús públic per comparació amb un de referència.L'objectiu del present estudi ha estat millorar el coneixement sobre l'efecte dels retardants a llarg termini en el comportament dels incendis forestals. L'efecte dels retardants sobre la intensitat del front de flames ha estat quantificat per a diferents condicions (sense pendent/sense vent, sota la influència del vent, sota la influència del pendent), així com l'efecte dels retardants sobre la calor de combustió del combustible forestal i l'emissivitat de la flama. Avaluar com varien aquests dos últims paràmetres per la presència de retardant al combustible és un primer pas per incloure en els models de propagació l'efecte de les operacions d'atac indirecte amb retardants.Per a les condicions experimentals provades en aquest estudi, hem trobat que la intensitat del front de flames es redueix en un factor de 0.8 per la presència de retardant. També s'ha observat que la quantitat de calor alliberada durant la combustió amb flama es redueix en un factor de 0.18 per la presència de retardants i que l'emissivitat de la flama no es veu afectada per la presència de retardants. Aquests resultats indiquen que la presència de retardant redueix la intensitat del front de flames fonamentalment perquè es redueix la quantitat de calor efectivament alliberada per unitat de massa de combustible, més que perquè les propietats radiatives de la flama es canviïn. / Every year, thousands of hectares of forest are destroyed by wildland fires. It is necessary to investigate the mechanisms that influence the ignition and propagation of wildland fires in order to successfully devise strategies for fighting wildland fires and to establish plans for managing forest areas or grasslands. Researchers have been formulating models to describe surface fires and, to a lesser extent, crown fires, for more than sixty years. However, these models have a significant shortcoming: none of them has been developed for use as a tool to predict fire behavior after indirect attack operations with long-term retardants. Furthermore, most of the work done to date on long-term retardants has been with the goal of evaluating these products for commercial purposes.The goal of the present study was to improve knowledge of the effects of long-term retardants on the spread of forest fires. Retardants' effects on fire intensity were quantified for varying fire situations (no-slope/no-wind, upslope, upwind), together with retardants' effects on the heat of combustion of the fuel and flame emissivity. Assessing how these last two parameters change due to the presence of retardants on the fuel is a first step towards including the effects of indirect attack operations with long-term retardants in propagation models. We found that the presence of retardants reduced fire intensity by a factor of 0.8 under the experimental conditions tested in this study. The amount of heat effectively released during flaming combustion under the presence of retardants was observed to decrease by a factor of 0.18 in comparison with untreated samples and flame emissivity was observed to be unaffected by the presence of retardants. These results indicated that the presence of retardants reduces fire intensity primarily by reducing the amount of heat effectively released per unit mass of fuel, rather than by affecting the radiation properties of the flames.
79

Modeling the Response of Premixed Flames to Flow Disturbances

Preetham, Preetham 27 September 2007 (has links)
Modeling the Response of Premixed Flames to Flow Disturbances Preetham 178 pages Directed by Dr. Tim Lieuwen Low emissions combustion systems for land based gas turbines rely on a premixed or partially premixed combustion process. These systems are exceptionally prone to combustion instabilities which are destructive to hardware and adversely affect performance and emissions. The success of dynamics prediction codes is critically dependent on the heat release model which couples the flame dynamics to the system acoustics. So the principal objective of the current research work is to predict the heat release response of premixed flames and to isolate the key non-dimensional parameters which characterize its linear and nonlinear dynamics. Explicit analytical solutions of the G- equation are derived in the linear and weakly nonlinear regime using the Small Perturbation Method (SPM). For the fully nonlinear case, the flame-flow interaction effects are captured by developing an unsteady, compressible, coupled Euler-G-equation solver with a Ghost Fluid Method (GFM) module for applying the jump conditions across the flame. The flame s nonlinear response is shown to exhibit two qualitatively different behaviors. Depending on the operating conditions and the disturbance field characteristics, it is shown that a combustor may exhibit supercritical bifurcations leading to a single stable limit cycle amplitude or exhibit sub-critical bifurcations wherein multiple stable solutions for the instability amplitude are possible. In addition, this study presents the first analytical model which captures the effects of unsteady flame stretch on the heat release response and thus extends the applicability of current models to high frequency instabilities, such as occurring during screech. It is shown that unsteady stretch effects, negligible at low frequencies (100 s of Hz) become significant at screeching frequencies (1000 s of Hz). Furthermore, the analysis also yields insight into the significant spatial dependence of the mean and perturbation velocity field induced by the coupling between the flame and the flow field. In order to meaningfully compare the heat release response across different flame configurations, this study has identified that the reference velocity (for defining the transfer function) should be based on the effective normal velocity perturbing the flame and the Strouhal number should be based on the effective residence time of the flame wrinkles.
80

Effect of harmonic forcing on turbulent flame properties

Thumuluru, Sai Kumar 15 November 2010 (has links)
Lean premixed combustors are highly susceptible to combustion instabilities, caused by the coupling between heat release fluctuations and combustor acoustics. In order to predict the conditions under which these instabilities occur and their limit cycle amplitudes, understanding of the amplitude dependent response of the flame to acoustic excitation is required. Extensive maps of the flame response were obtained as a function of perturbation amplitude, frequency, and flow velocity. These maps illustrated substantial nonlinearity in the perturbation velocity - heat release relationship, with complex topological dependencies that illustrate folds and kinks when plotted in frequency-amplitude-heat release space. A detailed analysis of phase locked OH PLIF images of acoustically excited swirl flames was used to identify the key controlling physical processes and qualitatively discuss their characteristics. The results illustrate that the flame response is not controlled by any single physical process but rather by several simultaneously occurring processes which are potentially competing, and whose relative significance depends upon forcing frequency, amplitude of excitation, and flame stabilization dynamics. An in-depth study on the effect of acoustic forcing on the turbulent flame properties was conducted in a turbulent Bunsen flame using PIV measurements. The results showed that the flame brush thickness and the local consumption speed were modulated in the presence of acoustic forcing. These results will not only be a useful input to help improve combustion dynamics predictions but will also help serve as validation data for models.

Page generated in 0.022 seconds