• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude du métabolisme du flavopiridol par les enzymes UDP-glucuronosyltransférases(UGTs) humains /

Journault, Kim. January 2002 (has links)
Thèse (M.Sc.)--Université Laval, 2002. / Bibliogr.: f. 85-95. Publ. aussi en version électronique.
2

Zebrafish Model of MLL-Rearranged Acute Myeloid Leukemia

Belt, Alex J 01 January 2018 (has links)
Acute myeloid leukemia (AML) is the second most common type of leukemia and accounts for 80% of adult acute leukemia cases and is characterized by the accumulation of poorly or undifferentiated myeloid blast cells. Standard treatment includes chemotherapy, which if unsuccessful, is followed by more rigorous chemotherapy as well as stem cell transplantation. Considering most patients are over the age of 45, these more rigorous therapies are not always possible, and as such, new therapies must be developed. Furthermore, AML patients harboring a chromosomal rearrangement involving Multiple Lineage Leukemia (MLL) that results in the expression of an MLL fusion protein exhibit far worse prognoses than patients without. In recent years, Danio rerio (zebrafish) has emerged as a powerful model organism for investigating human blood malignancies due to the conservation of hematopoiesis between humans and zebrafish. The first objective of this study was to develop a transient transgenic AML model in zebrafish, and the second objective was to determine if co-treatment with two medications currently in human trials for AML, Venetoclax and Flavopiridol, would be more effective than using either drug individually. In order to develop a transient transgenic AML model, we first developed a DNA construct encoding a known mixed lineage leukemia (MLL) fusion protein associated with human AML, MLL-ENL, driven by the zebrafish lysozyme C (lyz) promoter, which drives myeloid specific expression in zebrafish. We then microinjected single-cell zebrafish embryos with DNA encoding lyz driven MLL-ENL along with transposase mRNA to facilitate the genomic integration of MLL-ENL. Injected embryos were first tested for MLL-ENL expression, and subsequently tested for AML phenotypic characteristics, via whole mount in-situ hybridization (WISH) at 72 hours post fertilization (hpf). First, WISH analysis utilizing a human MLL riboprobe verified MLL-ENL expression in injected embryos, and WISH analysis utilizing the same MLL riboprobe revealed an expansion and clustering of MLL positive cells in injected embryos, characteristic of an AML phenotype. Embryos injected with MLL-ENL DNA were then treated with either DMSO (vehicle), 200 nanomolar (nM) Venetoclax, 200 nM Flavopiridol, or 200 nM Venetoclax and 200 nM Flavopiridol from 24 hpf to 72 hpf. MLL WISH analysis of injected and treated embryos revealed a reduction in MLL positive cells in both Venetoclax treated embryos and Flavopiridol treated embryos, and an even greater reduction in MLL positive cells in embryos treated with both Venetoclax and Flavopiridol, compared to controls. Although further analysis is required to be confident, these data suggest that we successfully developed an AML transient transgenic model in zebrafish. Furthermore, these data suggest that Venetoclax and Flavopiridol co-treatment could yield better outcomes for AML patients than treatment with either drug individually.
3

Bcl-2 related ovarian killer, Bok, is cell cycle regulated and sensitizes to stress-induced apoptosis

Rodríguez, José M. 01 January 2007 (has links)
Bok/Mtd (Bcl-2-related ovarian killer/Matador) is considered a pro-apoptotic member of the Bcl-2 family. Though identified in 1997, little is known about its biological role. We have previously demonstrated that Bok mRNA is upregulated following E2F1 over-expression. In the current work, we demonstrate that Bok RNA is low in quiescent cells and rises upon serum stimulation. To determine the mechanism underlying this regulation, we cloned and characterized the mouse Bok promoter. We find that the mouse promoter contains a conserved E2F binding site (-43 to -49) and that a Bok promoter-driven luciferase reporter is activated by serum stimulation dependent on this site. Chromatin immunoprecipitation assays demonstrate that endogenous E2F1 and E2F3 associate with the Bok promoter in vivo. Surprisingly, we find that H1299 cells can stably express high levels of exogenous Bok. However, these cells are highly sensitive to chemotherapeutic drug treatment. Taken together these results demonstrate that Bok represents a cell cycle-regulated pro-apoptotic member of the Bcl-2 family, which may predispose growing cells to chemotherapeutic treatment.
4

Potential of Plant-Derived Natural Products in the Treatment of Leukemia and Lymphoma

Lucas, David M., Still, Patrick C., Bueno Pérez, Lynette, Grever, Michael R., Douglas Kinghorn, A. 23 July 2010 (has links)
Hematologic malignancies account for a substantial percentage of cancers worldwide, and the heterogeneity and biological characteristics of leukemias and lymphomas present unique therapeutic challenges. Although treatment options exist for most of these diseases, many types remain incurable and the emergence of drug resistance is pervasive. Thus, novel treatment approaches are essential to improve outcome. Nearly half of the agents used in cancer therapy today are either natural products or derivatives of natural products. The e l,normous chemical diversity in nature, coupled with millennia of biological selection, has generated a vast and underexplored reservoir of unique chemical structures with biologic activity. This review will describe the investigation and application of natural products derived from higher plants in the treatment of leukemia and lymphoma and the rationale behind these efforts. In addition to the approved vinca alkaloids and the epipodophyllotoxin derivatives, a number of other plant compounds have shown promise in clinical trials and in preclinical investigations. In particular, we will focus on the discovery and biological evaluation of the plant- derived agent silvestrol, which shows potential for additional development as a new therapeutic agent for B-cell malignancies including chronic lymphocytic leukemia.
5

The Role of Cell Cycle Machinery in Ischemic Neuronal Death

Iyirhiaro, Grace O. 09 October 2013 (has links)
Ischemic stroke occurs as a result of a lack or severe reduction of blood supply to the brain. Presently therapeutic interventions are limited and there is a need to develop new and efficacious stroke treatments. To this end, a great deal of research effort has been devoted to studying the potential molecular mechanisms involved in ischemic neuronal death. Correlative evidence demonstrated a paradoxical activation of the cell cycle machinery in ischemic neurons. The levels and activity of key cell cycle regulators including cyclin D1, Cdk2 and Cdk4 are upregulated following ischemic insults. However, the functional relevance of these various signals following ischemic injury was unclear. Accordingly, the research described in this thesis address the functional relevance of the activation of the cell cycle machinery in ischemic neuronal death. The data indicate that the inhibition of Cdk4 protects neurons from ischemia-induced delayed death, whereas abrogation of Cdk5 activity prevents excitotoxicity-induced damage in vitro and in vivo. Examination of upstream activators of mitotic-Cdks showed that Cdc25A is a critical mediator of delayed ischemic neuronal death. Investigation of the potential molecular mechanism by which cell cycle regulators induced neuronal death revealed perturbations in the levels and activity of key downstream targets of Cdk4. The retinoblastoma protein family members, pRb and p130 are increasingly phosphorylated following ischemic stresses. Importantly, p130 and E2F4 proteins are drastically reduced following ischemic insults. Additionally, E2F1 association with promoters of pro-apoptotic genes are induced while that of E2F4 is reduced. These changes appear to be important determinants in ischemic neuronal death. Cumulatively, the data supports the activation of the cell cycle machinery as a pathogenic signal contributing to ischemic neuronal death. The development of neuroprotectant strategies for stroke has been hampered in part by its complex pathophysiology. Previous research indicated that flavopiridol, a general CDK-inhibitor, is unable to provide sustained neuroprotection beyond one week following cerebral ischemia. The potential benefit of combining flavopiridol with another neuroprotectant, minocycline, was explored. The data indicate that while this approach provided histological protection 10 weeks after insult, the protected neurons are not functional due to progressive dendritic degeneration. This evidence indicates that targeting cell cycle pathways in stroke while important must be combined with other therapeutic modalities to fully treat stroke-induced damage.
6

The Role of Cell Cycle Machinery in Ischemic Neuronal Death

Iyirhiaro, Grace O. January 2013 (has links)
Ischemic stroke occurs as a result of a lack or severe reduction of blood supply to the brain. Presently therapeutic interventions are limited and there is a need to develop new and efficacious stroke treatments. To this end, a great deal of research effort has been devoted to studying the potential molecular mechanisms involved in ischemic neuronal death. Correlative evidence demonstrated a paradoxical activation of the cell cycle machinery in ischemic neurons. The levels and activity of key cell cycle regulators including cyclin D1, Cdk2 and Cdk4 are upregulated following ischemic insults. However, the functional relevance of these various signals following ischemic injury was unclear. Accordingly, the research described in this thesis address the functional relevance of the activation of the cell cycle machinery in ischemic neuronal death. The data indicate that the inhibition of Cdk4 protects neurons from ischemia-induced delayed death, whereas abrogation of Cdk5 activity prevents excitotoxicity-induced damage in vitro and in vivo. Examination of upstream activators of mitotic-Cdks showed that Cdc25A is a critical mediator of delayed ischemic neuronal death. Investigation of the potential molecular mechanism by which cell cycle regulators induced neuronal death revealed perturbations in the levels and activity of key downstream targets of Cdk4. The retinoblastoma protein family members, pRb and p130 are increasingly phosphorylated following ischemic stresses. Importantly, p130 and E2F4 proteins are drastically reduced following ischemic insults. Additionally, E2F1 association with promoters of pro-apoptotic genes are induced while that of E2F4 is reduced. These changes appear to be important determinants in ischemic neuronal death. Cumulatively, the data supports the activation of the cell cycle machinery as a pathogenic signal contributing to ischemic neuronal death. The development of neuroprotectant strategies for stroke has been hampered in part by its complex pathophysiology. Previous research indicated that flavopiridol, a general CDK-inhibitor, is unable to provide sustained neuroprotection beyond one week following cerebral ischemia. The potential benefit of combining flavopiridol with another neuroprotectant, minocycline, was explored. The data indicate that while this approach provided histological protection 10 weeks after insult, the protected neurons are not functional due to progressive dendritic degeneration. This evidence indicates that targeting cell cycle pathways in stroke while important must be combined with other therapeutic modalities to fully treat stroke-induced damage.
7

Application of Mixture Design Response Surface Methodology for Combination Chemotherapy in PC-3 Human Prostate Cancer Cells

Oblad, Richard Vernon 01 April 2018 (has links)
Combining chemotherapeutics to treat malignant tumors has been shown to be effectivein preventing drug resistance, tumor recurrence, and reducing tumor size. We modeledcombination drug therapy in PC-3 human prostate cancer cells using mixture design responsesurface methodology (MDRSM), a statistical technique designed to optimize compositions thatwe applied in a novel manner to design combinations of chemotherapeutics. Conventionalchemotherapeutics (mitoxantrone, cabazitaxel, and docetaxel) and natural bioactive compounds(resveratrol, piperlongumine, and flavopiridol) were used in twelve different combinationscontaining three drugs at varying concentrations. Cell viability and cell cycle data werecollected and used to plot response surfaces in MDRSM that identified the most effectiveconcentrations of each drug in combination. MDRSM allows for extrapolation of data fromthree or more compounds in variable ratio combinations, unlike the Chou-Talalay method.MDRSM combinations were compared with combination index data from the Chou-Talalaymethod and were found to coincide. We propose MDRSM as an effective tool in devisingcombination treatments that can improve treatment effectiveness, and increase treatmentpersonalization because MDRSM measures effectiveness rather than synergism, potentiation orantagonism.
8

Signaling Networks as Possible Therapeutic Implications in Breast Cancer

Hicks, Mellissa 17 October 2014 (has links)
No description available.

Page generated in 0.0454 seconds