Spelling suggestions: "subject:"flexible black"" "subject:"lexible black""
1 |
The Effect of Blade Aeroelasticity and Turbine Parameters on Wind Turbine NoiseWu, Daniel 18 August 2017 (has links)
In recent years, the demand for wind energy has dramatically increased as well as the number and size of commercial wind turbines. These large turbines are loud and can cause annoyance to nearby communities. Therefore, the prediction of large wind turbine noise over long distances is critical. The wind turbine noise prediction is a very complex problem since it has to account for atmospheric conditions (wind and temperature), ground absorption, un-even terrain, turbine wake, and blade deformation. In these large turbines, the blade deflection is significant and it can potentially influence the noise emissions. However, the effects of blade flexibility on turbine noise predictions have not been addressed yet, i.e. all previous research efforts have assumed rigid blades. To address this shortcoming, the present work merges a wind turbine aeroelastic code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to a wind turbine noise code, WTNoise, to compute turbine noise accounting for blade aeroelasticity. Using the newly developed simulation tool, the effects flexible blades on wind turbine noise are investigated, as well as the effects of turbine parameters, e.g. wind conditions, rotor size, tilt, yaw, and pre-cone angles. The acoustic results are shown as long term average overall sound power level distribution over the rotor, ground noise map over a large flat terrain, and noise spectrum at selected locations downwind. To this end, two large wind turbines are modeled. The first one is the NREL 5MW turbine that has a rotor diameter of 126 m. The second wind turbine, the Sandia 13.2MW, has a rotor diameter of 206 m. The results show that the wind condition has strong effects on the noise propagation over long distances, primarily in the upwind direction. In general, the turbine parameters have no significant effects on the average noise level. However, the turbine yaw impacts significantly the turbine noise footprint by affecting the noise propagation paths. The rotor size is also a dominating factor in the turbine noise level. Finally, the blade aeroelasticity has minor effects on the turbine noise. In summary, a comprehensive tool for wind turbine noise prediction including blade aeroelasticity was developed and it was used to address its impact on modern large turbine noise emissions. / Master of Science / Large wind turbines provide sustainable renewable energy but create loud noise that causes annoyance to nearby communities. Therefore, the prediction of large wind turbine noise is critical, but a complex problem, especially for the propagation over a long distance. The noise prediction needs to account for the turbine design, atmospheric factors, terrain, and airflow. Furthermore, in these large turbines, the blade deflection is significant and it can potentially influence the noise prediction. The present work addresses the above factors in the wind turbine noise prediction by merging a wind turbine structural code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to a wind turbine noise code, WTNoise, to compute turbine noise accounting for blade deflection. Two turbines that have rotor diameter larger than 100 m were modeled and studied under different wind turbine design specifications, wind conditions, and blade deflection assumptions. The results showed that the rotor size is one of the dominating factor of turbine noise level. The blade deflection only has minor effects on the turbine noise. In summary, a comprehensive tool for wind turbine noise prediction including blade deflection was developed and used to address its impact on modern large turbine noise emissions.
|
2 |
Optimisation des éoliennes à axe horizontal par l'utilisation de pales flexibles. / Horizontal-axis wind turbines optimization by the use of flexible bladesCognet, Vincent 27 October 2017 (has links)
L’éolien est un secteur industriel en pleine expansion, qui joue un rôle fondamental dans le développement des énergies renouvelables. Cependant ces machines sont performantes sur une plage de fonctionnement étroite. Afin d’adapter l’éolienne aux changements de vent, une solution actuellement mise en place sur certaines éoliennes commerciales consiste à faire varier l’angle de calage (ie l’inclinaison) des pales au cours de son fonctionnement. Cette méthode de contrôle actif élargit la plage de hauts rendements ainsi que la plage de fonctionnement global, et améliore le démarrage de l’éolienne, mais elle n’augmente pas le rendement maximal atteint par une éolienne à angle de calage optimal fixé. Cependant la complexité́ de cette méthode ainsi que ses coûts de conception, de construction et de maintenance la rende inaccessible pour beaucoup d’éoliennes, en particulier celles de petite taille. Récemment des recherches se sont orientées vers un contrôle passif de l’angle de calage. Dans cette thèse nous examinons expérimentalement et théoriquement l’intérêt d’utiliser des pales flexibles suivant la corde sur une éolienne à axe horizontal. L’étude se concentre sur deux questions : - comprendre le mécanisme de reconfiguration de la pale flexible bio-inspirée : la déformation de la pale est due à la compétition entre les forces aérodynamiques, qui augmentent l’angle de calage moyen, et la force centrifuge qui le diminue. Ces effets sont gouvernés par deux nombres adimensionnés, respectivement le nombre de Cauchy et le nombre centrifuge. - qualifier et quantifier le gain en performances de l’éolienne : une flexibilité́ de pale modérée élargit la plage de fonctionnement, et augmente significativement le rendement de l’éolienne, expérimentalement jusqu’à 35% sur la plage de hauts rendements. Une procédure d’optimisation visant à déterminer le matériau optimal de la pale flexible est présentée. Ces gains obtenus en régime stationnaire sont conservés expérimentalement en moyenne en régime instationnaire. Deux temps caractéristiques sont identifiés : le temps de reconfiguration de la pale flexible et le temps de variation de la fréquence de rotation de l’éolienne / Wind energy is a rapidly growing branch of industry, playing a significant role in the development of renewable energies. However these machines are efficient only on a narrow working range. In order to adapt wind turbines to wind changes, some commercial machines are pitch controlled during rotation. This active control method extends the high-efficiency range and the total working range, and improves the starting phase, but it does not increase the maximum efficiency reached by a wind turbine with the fixed optimal pitch angle. However this method is complex and costly (design, construction, maintenance). Thus it becomes cost-effective only for large wind turbines. Research recently focused on passive pitch control. In this thesis, the contribution of chord wise flexible blades is studied both experimentally and theoretically. The thesis concentrates on: - the reconfiguration mechanism of the bio-inspired flexible blade : the deformation is the result of the competition between aerodynamic forces, which increase the pitch angle, and the centrifugal force, which reduces it. These two effects are governed by two dimensionless numbers, respectively the Cauchy number and the centrifugal number. - how to qualify and quantify the efficiency gains : a moderate flexibility extends the working range, and significantly increases wind turbine efficiency, up to 35% on the high-efficiency working range. An optimization procedure is presented, which aims at determining the optimal material to construct the blade. These improvements measured in steady regime are maintained on average when rotational speed is unsteady. Two characteristic times are identified: the reconfiguration time of the flexible blade and the time of variation of the rotational speed of the wind turbine
|
3 |
Análise do efeito da interação fluido-estrutura nas forças fluidodinâmicas em um elemento de pá flexível 3DBordin, Franciele Stail January 2014 (has links)
Elementos de materiais flexíveis são empregados em diversas aplicações na engenharia, como por exemplo, em pás de turbinas eólicas. O comportamento do escoamento é afetado pela alteração na forma da estrutura. Muitas vezes, seu movimento e deformação são induzidos pelas próprias forças fluidodinâmicas. O trabalho apresenta o estudo de escoamentos externos envolvendo a interação fluido-estrutura, com o interesse voltado ao comportamento de pás de turbinas eólicas. Simulações numéricas são realizadas com o intuito de avaliar o efeito que a deformação da estrutura, devido à resposta elástica às forças oriundas do escoamento, tem nas próprias forças fluidodinâmicas. A plataforma ANSYS Workbench é utilizada, combinando o software ANSYS CFX para a análise do fluido e o ANSYS Mechanical para a análise da estrutura. Como validação do método, o escoamento laminar sobre um cilindro apoiado elasticamente é estudado e comparado com dados da literatura. O caso escolhido para o presente trabalho é o de um escoamento turbulento sobre um elemento de pá, fixo em uma das suas extremidades e livre na outra. A geometria da pá é retangular com o perfil NACA 0012 e o modelo de turbulência utilizado é o k-ω SST. Os resultados demonstram a influência significativa que a deformação da estrutura tem nas forças fluidodinâmicas de sustentação e arrasto e concordam com a literatura existente. / Elements of flexible materials are employed in several engineering applications, for instance, in wind turbine blades. The flow behavior is affected by any change in the shape of the structure. Often, its displacement and deformation are induced by the fluid-dynamic forces themselves. This paper presents the study of an external flow using fluid-structure interaction (FSI), focused on the behavior of wind turbine blades. Numerical simulations are performed in order to evaluate the effect that the deformation of the structure, caused by the elastic response to the flow forces, has on the fluid-dynamic forces themselves. The ANSYS Workbench platform is used, combining the software ANSYS CFX for the fluid analysis and ANSYS Mechanical for the structural analysis. As a form of validation of this method, the laminar flow over an elastically mounted cylinder is studied and compared with literature data. The chosen case for this work is a turbulent flow over a 3D blade element, fixed at one end and free at the other. The blade geometry is rectangular with the NACA 0012 profile and the turbulence model used is the k-ω SST. The results demonstrate the significant influence that the deformation of the structure has on the fluid-dynamic lift and drag forces, leading to an agreement with the existing literature.
|
4 |
Análise do efeito da interação fluido-estrutura nas forças fluidodinâmicas em um elemento de pá flexível 3DBordin, Franciele Stail January 2014 (has links)
Elementos de materiais flexíveis são empregados em diversas aplicações na engenharia, como por exemplo, em pás de turbinas eólicas. O comportamento do escoamento é afetado pela alteração na forma da estrutura. Muitas vezes, seu movimento e deformação são induzidos pelas próprias forças fluidodinâmicas. O trabalho apresenta o estudo de escoamentos externos envolvendo a interação fluido-estrutura, com o interesse voltado ao comportamento de pás de turbinas eólicas. Simulações numéricas são realizadas com o intuito de avaliar o efeito que a deformação da estrutura, devido à resposta elástica às forças oriundas do escoamento, tem nas próprias forças fluidodinâmicas. A plataforma ANSYS Workbench é utilizada, combinando o software ANSYS CFX para a análise do fluido e o ANSYS Mechanical para a análise da estrutura. Como validação do método, o escoamento laminar sobre um cilindro apoiado elasticamente é estudado e comparado com dados da literatura. O caso escolhido para o presente trabalho é o de um escoamento turbulento sobre um elemento de pá, fixo em uma das suas extremidades e livre na outra. A geometria da pá é retangular com o perfil NACA 0012 e o modelo de turbulência utilizado é o k-ω SST. Os resultados demonstram a influência significativa que a deformação da estrutura tem nas forças fluidodinâmicas de sustentação e arrasto e concordam com a literatura existente. / Elements of flexible materials are employed in several engineering applications, for instance, in wind turbine blades. The flow behavior is affected by any change in the shape of the structure. Often, its displacement and deformation are induced by the fluid-dynamic forces themselves. This paper presents the study of an external flow using fluid-structure interaction (FSI), focused on the behavior of wind turbine blades. Numerical simulations are performed in order to evaluate the effect that the deformation of the structure, caused by the elastic response to the flow forces, has on the fluid-dynamic forces themselves. The ANSYS Workbench platform is used, combining the software ANSYS CFX for the fluid analysis and ANSYS Mechanical for the structural analysis. As a form of validation of this method, the laminar flow over an elastically mounted cylinder is studied and compared with literature data. The chosen case for this work is a turbulent flow over a 3D blade element, fixed at one end and free at the other. The blade geometry is rectangular with the NACA 0012 profile and the turbulence model used is the k-ω SST. The results demonstrate the significant influence that the deformation of the structure has on the fluid-dynamic lift and drag forces, leading to an agreement with the existing literature.
|
5 |
Análise do efeito da interação fluido-estrutura nas forças fluidodinâmicas em um elemento de pá flexível 3DBordin, Franciele Stail January 2014 (has links)
Elementos de materiais flexíveis são empregados em diversas aplicações na engenharia, como por exemplo, em pás de turbinas eólicas. O comportamento do escoamento é afetado pela alteração na forma da estrutura. Muitas vezes, seu movimento e deformação são induzidos pelas próprias forças fluidodinâmicas. O trabalho apresenta o estudo de escoamentos externos envolvendo a interação fluido-estrutura, com o interesse voltado ao comportamento de pás de turbinas eólicas. Simulações numéricas são realizadas com o intuito de avaliar o efeito que a deformação da estrutura, devido à resposta elástica às forças oriundas do escoamento, tem nas próprias forças fluidodinâmicas. A plataforma ANSYS Workbench é utilizada, combinando o software ANSYS CFX para a análise do fluido e o ANSYS Mechanical para a análise da estrutura. Como validação do método, o escoamento laminar sobre um cilindro apoiado elasticamente é estudado e comparado com dados da literatura. O caso escolhido para o presente trabalho é o de um escoamento turbulento sobre um elemento de pá, fixo em uma das suas extremidades e livre na outra. A geometria da pá é retangular com o perfil NACA 0012 e o modelo de turbulência utilizado é o k-ω SST. Os resultados demonstram a influência significativa que a deformação da estrutura tem nas forças fluidodinâmicas de sustentação e arrasto e concordam com a literatura existente. / Elements of flexible materials are employed in several engineering applications, for instance, in wind turbine blades. The flow behavior is affected by any change in the shape of the structure. Often, its displacement and deformation are induced by the fluid-dynamic forces themselves. This paper presents the study of an external flow using fluid-structure interaction (FSI), focused on the behavior of wind turbine blades. Numerical simulations are performed in order to evaluate the effect that the deformation of the structure, caused by the elastic response to the flow forces, has on the fluid-dynamic forces themselves. The ANSYS Workbench platform is used, combining the software ANSYS CFX for the fluid analysis and ANSYS Mechanical for the structural analysis. As a form of validation of this method, the laminar flow over an elastically mounted cylinder is studied and compared with literature data. The chosen case for this work is a turbulent flow over a 3D blade element, fixed at one end and free at the other. The blade geometry is rectangular with the NACA 0012 profile and the turbulence model used is the k-ω SST. The results demonstrate the significant influence that the deformation of the structure has on the fluid-dynamic lift and drag forces, leading to an agreement with the existing literature.
|
6 |
Performance aérodynamique et structurelle du rotor flexible pour micro-drones / Aerodynamic and Structural Performance of Flexible Blades for MAVsLv, Peng 19 December 2014 (has links)
Les essais en environnement libre et en soufflerie ont été effectués pour étudier la performance propulsive et la déformation de pales de référence et de pales souples. La poussée et le couple ont été évalués par deux méthodes: une mesure directe par balance et une estimation indirecte par bilan de quantité de mouvement, les deux méthodes ayant leurs avantages et limitations respectifs. La méthode indirecte s’est construite sur l’acquisition de champs de vitesse obtenus par PIV et s’appuie sur une estimation de la pression par mise en œuvre de l’équation de Poisson. En vol stationnaire, les pales flexibles ne peuvent pas aider à l’amélioration du rendement en mode rotor (FM), à chargement faible, puisque la distribution de vrillage est sans doute assez éloignée de l’optimal de vol stationnaire. En vol avancé, le rendement propulsif des pales flexibles est la plupart du temps plus élevé que l’hélice rigide de référence en raison de la torsion bénéfique généré en rotation. Dans le cas des pales flexibles, la vitesse axiale se trouve être inférieure au cas rigide, à même station aval; ceci correspondant à la la déformation de vrillage négatif. Pour les deux pales, la différence de poussée entre celle déduite du champ PIV test 2et celle obtenue avec la balance est plus grande que la différence entre les valeurs déduites du champ PIV test 1 et de la mesure directe. La technique de mesure laser pour les déplacements(LDS) a été utilisée pour mesurer la déformation stationnaire des pales lors de leur rotation. Par analyse du nuage de points mesurés par la LDS, la flexion et la torsion de la lame en rotation ont été identifiées à l’aide des régressions multiples. / The wind tunnel tests were conducted to explore the performance difference caused by the potential twist deformation between baseline blades and flexible blades. The balance was built in SaBre wind tunnel for measuring the thrust and torque of blades. The BEMT predictions of blades with varied twist were also performed in hover and forward flight, respectively. In hover,flexible blades cannot help in improving the FM at light disk loading since the twist generated on flexible blades is probably beyond the ideal hover twist. In forward flight, the propulsive efficiency η of flexible blades is mostly higher than baseline blades due to the beneficial twist generated in rotation. A Particle Image Velocimetry (PIV) approach of loads determination was developed based on control volume method to obtain thrust and torque of small-scale proprotor,especially for off-optimum conditions. The pressure Poisson equation was implemented for the pressure estimation based on the PIV velocity data. The axial velocity of flexible blades is found to be lower than baseline blades on the same station at downstream. This corresponds to the lower inflow ratio distribution along flexible blade, which results from the negative twist deformation. For both baseline blades and flexible blades, the thrust differences between PIV test 2 and balance are larger when compared to the differences between PIV test 1 based on nearfield and balance. The Laser Displacement Sensor (LDS) technique was employed for measuring the stationary deformation of rotating flexible blades. By obtaining the LDS point cloud, the bending and torsion of the rotating blade were identified using the multiple regressions.
|
7 |
Etalement de fluides complexes / Spreading of complex fluidsDeblais, Antoine 08 December 2016 (has links)
Ce travail de thèse porte sur l'étalement de fluides complexes. Il met en évidence la riche phénoménologie d'un acte simple : celui d'étaler avec un racloir (rigide ou souple) une émulsion ou une solution de polymères sur un substrat. Pour chacun des fluides modèles étudiés, nous nous sommes focalisés expérimentalement sur l'observation de l'écoulement au cours de l'entraînement de la solution. Dans des conditions données d'étalement, il apparaît qu'une émulsion o/w peut s'inverser via plusieurs mécanismes de déstabilisation, ou encore, dans le cas d'une solution de polymères, exhiber une instabilité de sa ligne de contact, donnant naissance à des filaments de tailles et de longueurs d'ondes spécifiques. Nous montrons que les différents paramètres d'étalement, comme par exemple la hauteur du racloir, la vitesse d'étalement, les propriétés du substrat ou encore la rhéologie des solutions, doivent être pris en compte pour construire des diagrammes de phase d'étalement séparant les domaines d'existence des instabilités observées (régime de recouvrement partiel), des domaines où la solution transite vers le recouvrement total du substrat. D'autre part, nous tirons l'avantage de ces instabilités pour nous permettre de déposer de façon contrôlée des structures variées, offrant d'intéressantes perspectives en termes d'applications. / This study shows the rich phenomenology of a simple act : spreading complex solutions such as emulsion and polymer solution on a plate, by using a rigid and flexible blade respectively. Here, we experimentally study the flow of the solution over the course of its spreading. During the spreading and in certain conditions, different phenomena occur, namely, emulsion inversion in the case of o/w emulsion or a contact line instability in the case of the polymer solution, which gives rise to the formation of polymer filaments with a well-defined wavelength and characteristic sizes. We showed, thanks to spreading phase diagrams, that the the existence of the instability (partial wetting regime) is separated to a domain where the solution cover the substrate. Spreading parameters such as the height of the scraper, spreading velocity or properties of the fluids turns out to be crucial. Finally, we take advantage of the instabilities to print a variety of interesting patterns for further applications.
|
Page generated in 0.0455 seconds