• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A flexible system for digital waveform shaping and equalization

Hoerig, Craig January 1991 (has links)
No description available.
2

A Modular Approach to Hardened Subminiature Telemetry and Sensor System (HSTSS) Development

Carpenter, Robert E., Schneider, Dennis 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / In the past, typical telemetry systems for munitions and small missiles have often comprised adaptations of monolithic components originally conceived for aircraft or large missile applications. Programs have developed expensive monolithic systems to meet the needs of specific programs, but they often require extensive redesign for use by other potential users. The tri-service HSTSS Integrated Product Team (IPT) determined that a monolithic “one size fits all” approach has technical and fiscal risks. Thus, a modular approach to system development has been adopted. The HSTSS IPT is flight qualifying commercial microelectronic products designed for environments similar to that of munition interiors, and is developing microelectronic components required to complete a subminiature system. HSTSS components can then be integrated to support the form factor and measurement needs of any given user. In addition to offering a flexible system to the user, the HSTSS lends itself to upgradability (modernization through spares).
3

Mobile Exhibition System

Columbus, Sanford Jillian 06 August 2009 (has links)
Through the development and design of a Mobile Exhibition System (MES) in this thesis, I will demonstrate the benefits and possibilities of a flexible and mobile system within an exhibition environment. A flexible system will be able to adapt to a wide range of content, while at the same time, maintaining a synergy between its form and function. By the reuse and reappropriation of shipping containers as the exhibition envelope, the goal of mobility can be achieved, reaching out to those who might not otherwise experience learning through an exhibition environment.
4

K-modification and a novel approach to output feedback adaptive control

Kim, Kilsoo 04 April 2011 (has links)
This dissertation presents novel adaptive control laws in both state feedback and output feedback forms. In the setting of state feedback adaptive control K-modification provides a tunable stiffness term that results in a frequency dependent filtering effect, smoother transient responses, and time delay robustness in an adaptive system. K-modification is combined with the recently developed Kalman filter (KF) based adaptive control and derivative-free (DF) adaptive control. K-modification and its combinations with KF adaptive control and DF adaptive control preserve the advantages of each of these methods and can also be combined with other modification methods such as - and e-modification. An adaptive output feedback control law based on a state observer is also developed. The main idea behind this approach is to apply a parameter dependent Riccati equation to output feedback adaptive control. The adaptive output feedback approach assumes that a state observer is employed in the nominal controller design. The observer design is modified and employed in the adaptive part of the design in place of a reference model. This is combined with a novel adaptive weight update law. The weight update law ensures that estimated states follow both the reference model states and the true states so that both state estimation errors and state tracking errors are bounded. Although the formulation is in the setting of model following adaptive control, the realization of the adaptive controller uses the observer of the nominal controller in place of the reference model to generate an error signal. Thus the only components that are added by the adaptive controller are the realizations of the basis functions and the weight adaptation law. The realization is even less complex than that of implementing a model reference adaptive controller in the case of state feedback. The design procedure of output feedback adaptive control is illustrated with two examples: a simple wingrock dynamics model and a more complex aeroelastic aircraft transport model.
5

Comparison of polynomial profiles and input shaping for industrial applications

Pridgen, Brice 05 April 2011 (has links)
Command shaping creates reference commands that reduce residual vibrations in a flexible system. This thesis examines the use of command shaping for flexible system control in three industrial applications: cam-follower systems, sloshing liquids, and cherrypickers. One common type of command shaping is command smoothing which creates a smooth transition between setpoints. A specific type of command smoothing used in cam-follower systems is the polynomial profile. An alternative technique to reduce vibration in flexible systems is input shaping. In this thesis, input-shaped commands are compared to polynomial profiles for applications requiring both vibration suppression and fast motion. Simulation and experimental results show that input shaping is faster than polynomial profiles and provides a simple approach to suppressing residual vibration. Secondly, significant experimental contributions have been made in the area of slosh control. The oscillation of liquids in a container can cause liquid spillage or can cause stability issues, especially in space vehicles. In the past, a number of control techniques have been proposed, but only a few recommend the use of input shaping. This thesis describes the use of command shaping to limit slosh. Results are supported by numerical and experimental testing. Input-shaped commands reduce residual slosh amplitude compared to unshaped commands and polynomial profiles. Input-shaped commands can also accommodate uncertainties and changes in the sloshing frequencies. Lastly, a small-scale cherrypicker was constructed to study the use of input-shaping control on these types of aerial lifts. Cherrypickers have flexible dynamic effects that can cause dangerous and life-threatening situations. To study this class of machines and to provide future students an experimental testbed, several design criteria were established before construction began. The resulting machine achieved most design objectives, including a simple-to-use graphical user interface and accurate state measurements. Robust input-shaping controllers were implemented to limit endpoint vibration. The design of the cherrypicker is discussed and experimental results are reported.
6

Synthèse croisée de régulateurs et d'observateurs pour le contrôle robuste de la machine synchrone / Cross-synthesis of controler and observer parameters for robust control of synchronous drive

Carrière, Sébastien 28 May 2010 (has links)
Cette étude se concentre sur la synthèse de lois de commande de servo-entraînements accouplés à une charge flexible à paramètres incertains avec l’unique mesure de la position du moteur. La loi de commande a pour but de minimiser les effets de ces variations tout en gardant la maîtrise d’un cahier des charges de type industriel (temps de réponse, dépassement, simplicité d’implantation et de synthèse). De ce fait, un contrôleur et un observateur sont implantés. Un contrôleur de type retour d’état avec une minimisation d’un critère linéaire quadratique assurant un placement du pôle dominant est associé à un observateur de type Kalman. Ces deux structures utilisent des méthodologies classiques de synthèse : placement de pôles et choix de pondération des matrices de Kalman. Pour ce dernier, deux stratégies sont abordées. La première utilise les matrices de pondération diagonale standard. De nombreux degrés de liberté sont disponibles et donnent de bons résultats. La seconde défini la matrice des bruits d’état avec la variation de la matrice dynamique du système. Le nombre de degrés de liberté est réduit, les résultats restent similaires à la stratégie précédente, mais la synthèse est simplifiée. Ceci permet d’obtenir une méthode n’exigeant que peu d’investissement théorique de la part d’un ingénieur mais non robuste. Pour ceci, la méthode de micro-analyse caractérisant la stabilité robuste est appliquée en parallèle à un algorithme évolutionnaire autorisant une synthèse, plus rapide et plus précise qu’un opérateur humain. Cette méthode complète permet de voir les avantages d’une synthèse croisée de l’observateur et du correcteur au lieu d’une synthèse séparée. En effet, le placement optimal des dynamiques de commande et d’observation dans le cadre des systèmes à paramètres variants ne suit plus une stratégie classique découplée. Ici, les dynamiques se retrouvent couplées voire meme inversées (dynamique de la commande inférieure à celle de l’observateur). Des résultats expérimentaux corroborent les simulations et permettent d’expliquer les effets des observateurs et régulateurs sur le comportement du système. / This thesis is performing a study on the law control synthesis for PMSM direct driving to a load having its mechanical parameters variant. Furthermore, only the motor position is sensored. The control law aim is to minimize the eects of these variations while keeping the performance inside industrial specifications (response time at 5%, overshoot, implementation and synthesis simplicity). As a result, an observer is programmed jointly with a controller. A state feedback controller deduced from a linear quadratic minimization is associated with a Kalman observer. These both structures employ standard method definitions : poles placement and arbitrary weight of Kalman matrices choice. Two definitions strategies are employed for the observer. The first is the classical arbitrary weights choice. A lot of degrees of freedom are accessible and allow this observer to impose a good behaviour to the system. The second defines the system dynamic matrix variation as the state space noise matrix. The number of degrees of freedom decreases dramatically. However the behaviour is kept as well as the previous case. This method is then easy to understand for an engineer, gives good result but non robust in an automatic sense. Consequently, an automatic study on robustness, the micro- analysis, is added to this control definition for theoretically checking. In parallel with the study robustness, an evolutionnary algorithm leads to a quicker and more accurate synthesis than a human operator. Indeed, in the case of systems having variant parameters, the optimal dynamics choice for the controller and the observer is not following the classical way. The dynamics are coupled or even mirrored ( the controller dynamic is slower than the observer one). At the end, experimental results allow to understand the way that observer or controller operate on the system.
7

Input-shaped manual control of helicopters with suspended loads

Potter, James Jackson 13 January 2014 (has links)
A helicopter can be used to transport a load hanging from a suspension cable. This technique is frequently used in construction, firefighting, and disaster relief operations, among other applications. Unfortunately, the suspended load swings, which makes load positioning difficult and can degrade control of the helicopter. This dissertation investigates the use of input shaping (a command-filtering technique for reducing vibration) to mitigate the load swing problem. The investigation is conducted using two different, but complementary, approaches. One approach studies manual tracking tasks, where a human attempts to make a cursor follow an unpredictably moving target. The second approach studies horizontal repositioning maneuvers on small-scale helicopter systems, including a novel testbed that limits the helicopter and suspended load to move in a vertical plane. Both approaches are used to study how input shaping affects control of a flexible element (the suspended load) and a driven base (the helicopter). In manual tracking experiments, conventional input shapers somewhat degraded control of the driven base but greatly improved control of the flexible element. New input shapers were designed to improve load control without negatively affecting base control. A method for adjusting the vibration-limiting aggressiveness of any input shaper between unshaped and fully shaped was also developed. Next, horizontal repositioning maneuvers were performed on the helicopter testbed using a human-pilot-like feedback controller from the literature, with parameter values scaled to match the fast dynamics of the model helicopter. It was found that some input shapers reduced settling time and peak load swing when applied to Attitude Command or Translational Rate Command response types. When the load was used as a position reference instead of the helicopter, the system was unstable without input shaping, and adding input shaping to a Translational Rate Command was able to stabilize the load-positioning system. These results show the potential to improve the safety and efficiency of helicopter suspended load operations.
8

Partner satisfaction and renewal likelihood in consumer supported agriculture (CSA) : a case study of The Equiterre CSA network

Achuo, George January 2003 (has links)
No description available.
9

Partner satisfaction and renewal likelihood in consumer supported agriculture (CSA) : a case study of The Equiterre CSA network

Achuo, George January 2003 (has links)
No description available.

Page generated in 0.0371 seconds