Spelling suggestions: "subject:"fluid/structure 1interaction"" "subject:"fluid/structure 3dinteraction""
211 |
APPLICATIONS OF COMPUTATIONAL FLUID DYNAMICS IN THE INDUSTRYSyed Imran (17637327) 14 December 2023 (has links)
<p dir="ltr">Precise measurement of the flowrate is crucial for both process control and energy consumption evaluation. The main aim of this work is to develop a methodology to calibrate mechanical flowmeters, designed to measure high viscosity fluids, in water. In order to accomplish this, a series of computational fluid dynamics (CFD) analysis are carried out to determine how the motion of the mechanical component varies with different flow rates of water and high viscosity fluids. This data is recorded and analyzed to develop calibration curves that relate the motion of the mechanical component the flow rates. From the calibration curves, it can be determined the required water flow rate to achieve the equivalent motion of the mechanical component in a specified viscosity. This method provides an efficient and cost-effective calibration process because it eliminates the need for calibrating using heated engine oil to achieve the fluid viscosity of the flow meter is designed. Flowmeter sensitivity analysis was also performed and it was observed that the motion of the mechanical component curves converges as the size of the flowmeter increases suggesting that the effect of viscosity on flowmeter sensitivity decreases as the size of the flowmeter is increased, likely due to reduced resistance to flow and smaller pressure drops. </p><p dir="ltr">The Kanbara Reactor ladle is a commonly used method in the steelmaking industry for hot-metal desulfurization pre-treatment. The impeller's configuration is pivotal to the reactor's performance, yet its precise function remains partially understood. This study introduces a 3-dimensional Volume-of-Fluid (VOF) model integrated with the sliding mesh technique, investigating the influence of five different impeller speeds. After Validating the model through experimental data, this numerical model is applied to investigate the typical developmental phenomena and the consequences of impeller speed variations on fluid flow characteristics, interface profile, and vortex core depth. The findings reveal that the rotational impeller induces a double-recirculation flow pattern in the axial direction due to the centrifugal discharging flow. With increasing impeller rotation speed, the vortex core depth also rises, emphasizing the substantial impact of impeller speed on vortex core depth.</p>
|
212 |
Fluid-Structure Interaction Simulations of a Flapping Wing Micro Air VehicleByrd, Alex W. 04 June 2014 (has links)
No description available.
|
213 |
Fluid-Structure Interaction of a Variable Camber Compliant WingMiller, Samuel C. 27 May 2015 (has links)
No description available.
|
214 |
Numerical Investigations of Unobstructed and Obstructed Human Ureter PeristalsisTakaddus, Ahmed Tasnub January 2017 (has links)
No description available.
|
215 |
Dynamic Grid Motion in a High-Order Computational Aeroacoustic SolverHeminger, Michael Alan 09 September 2010 (has links)
No description available.
|
216 |
Flow-Induced Noise of Perforated Plates at Oblique Angles of IncidenceVanoostveen, Paul 11 1900 (has links)
In this thesis, the tonal noise produced by flow over perforated plates at oblique angles of incidence is studied experimentally. A two-dimensional model of a perforated plate is used, where the circular holes of a typical perforated plate are replaced by a series of long rectangular Aluminum slats with an adjustable gap width between them. The slats are 3.175 mm thick and the gap width between them is set to 3.175 mm, 6.35 mm, and 12.7 mm. This simplified model is mounted at the exit of an open-loop wind tunnel and tested at angles of incidence of 0° to 40° and flow velocities of 0 to 30 m/s. An angle of 0° is defined as flow parallel to the plate. The acoustic response is studied using microphone measurements, and flow visualization is done using particle image velocimetry. The effect of the angle of incidence, flow velocity, gap width, and streamwise position are investigated. The flow visualization reveals that tonal noise is produced by the periodic shedding and impingement of vortices at the trailing edge of the gaps. Vortices form in the unstable free shear layer originating at the leading edge of the gap and impinge on the downstream side of the gap. At the downstream corner, these vortices separate into vortex pairs, consisting of one positively rotating and one negatively rotating vortex. These vortices are shed periodically, leading to the production of tonal noise at the shedding frequency. The effect of the angle of incidence is investigated by changing the angle of the plate with respect to the flow. For a given gap width, tones are produced only for a specific range of angles. Depending on the plate geometry, this range of angles is typically around 5° to 30°. Within this range of angles, the free shear layer impinges on the downstream side of the gap. For angles which are too small or too large, the free shear layer misses this downstream side and tones are not produced. For a larger gap width, tones are produced at smaller angles of incidence. Similarly, for a given plate geometry, there is a preferred range of flow velocities at which tonal noise is produced. The velocity at which the free shear layer is the most unstable at the tone frequency produces the strongest vortices and the loudest tones. The optimal velocity is lower for larger gap widths. Finally, it is found that the magnitude of the produced tones increases in the streamwise direction over repeated gaps along the length of the plate. This is due to the local flow conditions changing in the streamwise direction, only reaching the optimal conditions after a certain length of the plate. / Thesis / Master of Applied Science (MASc)
|
217 |
Development of a Model for Predicting the Transmission of Sonic Booms into Buildings at Low FrequencyRemillieux, Marcel C. 06 May 2010 (has links)
Recent progresses by the aircraft industry in the development of a quieter supersonic transport have opened the possibility of overland supersonic flights, which are currently banned by aviation authorities in most countries. For the ban to be lifted, the sonic booms the aircraft generate at supersonic speed must be acceptable from a human-perception point of view, in particular inside buildings. The problem of the transmission of sonic booms inside buildings can be divided in several aspects such as the external pressure loading, structure vibration, and interior acoustic response. Past investigations on this problem have tackled all these aspects but were limited to simple structures and often did not account for the coupled fluid-structure interaction. A more comprehensive work that includes all the effects of sonic booms to ultimately predict the noise exposure inside realistic building structures, e.g. residential houses, has never been reported. Thus far, these effects could only be investigated experimentally, e.g. flight tests.
In this research, a numerical model and a computer code are developed within the above context to predict the vibro-acoustic response of simplified building structures exposed to sonic booms, at low frequency. The model is applicable to structures with multiple rectangular cavities, isolated or interconnected with openings. The response of the fluid-structure system, including their fully coupled interaction, is computed in the time domain using a modal-decomposition approach for both the structural and acoustic systems. In the dynamic equations, the structural displacement is expressed in terms of summations over the "in vacuo" normal modes of vibration. The interior pressure is expressed in terms of summations over the acoustic modes of the rooms with perfectly reflecting surfaces (hard walls). This approach is simple to implement and computationally efficient at low frequency, when the modal density is relatively low.
The numerical model is designed specifically for this application and includes several novel formulations. Firstly, a new shell finite-element is derived to model the structural components typically used in building construction that have orthotropic characteristics such as plaster-wood walls, floors, and siding panels. The constitutive matrix for these types of components is formulated using simple analytical expressions based on the orthotropic constants of an equivalent orthotropic plate. This approach is computationally efficient since there is no need to model all the individual subcomponents of the assembly (studs, sheathing, etc.) and their interconnections. Secondly, a dedicated finite-element module is developed that implements the new shell element for orthotropic components as well as a conventional shell element for isotropic components, e.g. window panels and doors. The finite element module computes the "in vacuo" structural modes of vibration. The modes and external pressure distribution are then used to compute modal loads. This dedicated finite-element module has the main advantage of overcoming the need, and subsequent complications, for using a large commercial finite-element program. Lastly, a novel formulation is developed for the fully coupled fluid-structure model to handle room openings and compute the acoustic response of interconnected rooms. The formulation is based on the Helmholtz resonator approach and is applicable to the very low frequency-range, when the acoustic wavelength is much larger than the opening dimensions.
Experimental validation of the numerical model and computer code is presented for three test cases of increasing complexity. The first test structure consists of a single plaster-wood wall backed by a rigid rectangular enclosure. The structure is excited by sonic booms generated with a speaker. The second test structure is a single room made of plaster-wood walls with two double-panel windows and a door. The third test structure consists of the first room to which a second room with a large window assembly was added. Several door configurations of the structure are tested to validate the formulation for room openings. This latter case is the most realistic one as it involves the interaction of several structural components with several interior cavities. For the last two test cases, sonic booms with realistic durations and amplitudes were generated using an explosive technique. Numerical predictions are compared to the experimental data for the three test cases and show a good overall agreement.
Finally, results from a parametric study are presented for the case of the single wall backed by a rigid enclosure. The effects of sonic-boom shape, e.g. rise time and duration, and effects of the structure geometry on the fluid-structure response to sonic booms are investigated. / Ph. D.
|
218 |
Fluid-Structure Interaction Modeling of a Flexible-Inflatable Heaving Wave Energy Converter Through Generalized ModesLenderink, Corbin Robert 12 June 2024 (has links)
The point absorber, one of the most popular types of ocean wave energy converter (WEC), usually consists of a rigid body buoy that can be efficiently modeled using existing WEC simulation tools. However, new wave energy technologies have looked to utilize flexible buoy structures to decrease costs, improve power generation, and increase portability. In addition to replacing rigid body designs, the combination of multiple renewable energy sources is another area that shows promising potential for increasing WEC power generation. With these concepts in mind, this work considers a new WEC design that features a flexible-inflatable buoy, an ocean current harvesting turbine, and a buoy shape that has been optimized for simultaneous wave and current energy harvesting. For this device, conventional modeling techniques cannot be used due to the highly nonlinear hydrodynamic interactions that result between the flexible buoy and the ocean waves. As a result, a Fluid-Structure Interaction (FSI) model must be used to determine how the flexibility of the buoy will influence the device's power generation. Currently, high-fidelity FSI modeling approaches are computationally expensive and unsuitable for early design decisions. As a result, this thesis utilizes a mid-fidelity method, the generalized modes modeling approach, to accurately and efficiently model the FSI of a WEC's flexible buoy. The resulting flexible buoy model was then compared to a rigid design to determine the performance differences between a rigid and flexible buoy, with a complex, optimized shape. / Master of Science / The ocean is a vast potential energy resource with a variety of different sources of renewable energy. Of these sources, ocean waves and ocean currents are two potentially massive power reserves present in many coastal areas. To capture energy from these sources, this work discusses the development of a device that can harvest energy from ocean waves and ocean currents simultaneously. In addition to harvesting energy from multiple sources, this device also features a flexible-inflatable buoy, with a shape that has been optimized for this unique application. However, since this device utilizes flexible materials, traditional modeling techniques used for rigid body designs would not be applicable. As a result, this work looks to model the interaction between the flexible buoy and the ocean waves to accurately predict the power generation of this device's wave energy converter.
|
219 |
Characterization of Fluid Structure Interaction mechanisms and its application to vibroacoustic phenomenaQuintero Igeño, Pedro Manuel 15 October 2019 (has links)
[ES] La Interacción Fluido Estructura consiste en un problema físico en el
que dos materiales, gobernados por conjuntos de ecuaciones distintas, se
acoplan de diferentes formas.
La investigación en el campo de la Interacción Fluido Esructura
experimentó un importante desarrollo desde principios del siglo XX, de la
mano del campo de la aeroelasticdad. Durante el desarrollo de la industria
aeroespacial en el contexto de las guerras mundiales, el uso de materiales
más ligeros (y flexibles) comenzó a hacerse obligatorio para la obtención de
aeronaves con un comportamiento (y costes) aceptable.
A lo largo de los últimos años, el uso de materiales de construcción
cada vez más ligeros, se ha extendido al resto de campos de la industria.
A modo de ejemplo, podría servir el desarrollo de trackers en la producción
de energia solar; la utilización de materiales ligeros en ingeniería
civil o el desarrollo de elementos constructivos de plástico en la industria
del automóvil. Como consecuencia, la predicción con exactitud de las
deformaciones inducidas por un fluido y, si aplica, la influencia de estas
deformaciones en el propio flujo, ha adquirido una importancia vital.
Este documento intenta porporcionar, en primer lugar, una profunda
revisión de los métodos experimentales y computacionales que se han utilizado
en este contexto en la bibliografía, así como los análisis en problemas
de este tipo realizados por otros investigadores de cara a presentar una
primera aproximación a la Interacción Fluido Estructura.
Se verá cómo existe una importante cantidad de herramientas y
metodologías aplicables a cualquier tipo de problema y para cualquier
combinación de flujos y estructuras. Sin embargo, no existe una aproximación
general que, en función de valores de números adimensionales,
permita establecer cuáles de ellos son los de mayor importancia en este
tipo de problemas. En este sentido, se llevará a cabo un completo análisis
paramétrico durante el desarrollo del Capítulo 2 para establecer cuáles de
ellos son de mayor importancia.
Una vez se establezca la importancia de estos parámetros, se analizará
un caso que es de especial interés en la industria: la aerovibroacústica. Éste
es un caso particular de Interacción Fluido Estructura en el que, debido a
la combinación de parámetros adimensionales, la interacción se puede considerar
como prácticamente unidireccional, permitiendo extender estudios
mediante un conste computacional relativamente acotado. La Aerovibroacústica
y la vibroacústica se analizarán mediante la presentación de
dos casos de referencia, permitiendo proponer una metodología que se
podrá extender a otros problemas similares. / [CA] La Interacció Fluid Estructura consisteix en un problema físic en què
dos materials, governats per conjunts d'equacions diferents, s'acoblen de
diferents formes.
La investigació en el camp de la Interacció Fluid Esructura va experimentar
un important desenvolupament des de principis del segle XX,
de la mà del camp de la aeroelasticdad. Durant el desenvolupament de
la indústria aeroespacial en el context de les guerres mundials, l'ús de
materials més lleugers (i flexibles) va començar a fer-se obligatori per a
l'obtenció d'aeronaus amb un comportament (i costos) acceptable.
Al llarg dels últims anys, l'ús de materials de construcció cada vegada
més lleugers, s'ha estès a la resta de camps de la indústria. A tall
d'exemple, podria servir el desenvolupament de textit trackers en la producció
d'energia solar; la utilització de materials lleugers en enginyeria
civil, el desenvolupament d'elements constructius de plàstic a la indústria
de l'automòbil. Com a conseqüència, la predicció amb exactitud de les
deformacions induïdes per un fluid i, si escau, la influència d'aquestes
deformacions en el propi flux, ha adquirit una importància vital.
Aquest document intenta porporcionar, en primer lloc, una profunda
revisió dels mètodes experimentals i computacionals que s'han utilitzat
en aquest context en la bibliografia, així com les anàlisis en problemes
d'aquest tipus realitzats per altres investigadors de cara a presentar una
primera aproximació a la Interacció Fluid Estructura.
Es veurà com, encara que existeix una important quantitat d'eines
i metodologies aplicables a qualsevol tipus de problema i per a qualsevol
combinació de fluxos i estructures, no hi ha una aproximació general que,
en funció de valors de nombres adimensionals, permeti establir quins
d'ells són els de major importància en aquest tipus de problemes. En
aquest sentit, es durà a terme una completa anàlisi paramètric durant
el desenvolupament del Capítol 2 per a establir quins d'ells són de major
importància.
Un cop s'estableixi la importància d'aquests paràmetres, s'analitzarà
un cas que és d'especial interès en la indústria: la aerovibroacústica. Això
és un cas particular d'Interacció Fluid Estructura en què, a causa de la
combinació de paràmetres adimensionals, la interacció es pot considerar
com pràcticament unidireccional, permetent estendre estudis mitjançant
un consti computacional relativament acotat. La Aerovibroacústica i la
vibroacústica s'analitzaran mitjançant la presentació de dos casos de referència,
permetent proposar una metodologia que es podrà estendre a altres
problemes similars. / [EN] Fluid Structure Interaction is a physical problem where two different
materials, governed by different set of fundamental equation, are coupled
on different ways.
The research on the field of Fluid Structure Interaction experienced
a noticeable growth since the beginnings of the XXth century, by means
of the field of aeroelasticity. During the development of the aerospace
industry in the context of first and second Wolrd War, as the use of lighter
(and softer) materials became mandatory for the correct behavior (and cost
savings) of the produced aircrafts.
During these past years, the use of use of increasingly lighter construction
materials has extended to the rest of fields of the industry. As an
example, it could be mentioned the use of solar trackers on the solar energy
sector; the use of light materials on civil engineering or the use of plastic
for some constructive elements in the context of the automotive field. As a
consequence, the accurate prediction of the deformations induced to a fluid
flow over a structure and, if needed, the influence of this deformation on
the fluid flow itself is becoming of primal importance.
This document intends to provide with a deep review of the computational
and experimental reported methodologies already available on the
literature and the previous works performed by other researches in order
to infer a first approximation to the Fluid Structure Interaction Problem.
It will be observed how an important amount of solving methodologies
is available in order to face these problems regarding with the strength
of the interaction. However, a general approximation allowing to predict
this strength as a function of a set of dimensional number is rarely
known. In this sense, a full parametric study will be performed during the
development of Chapter 2 showing which of them are of higher importance.
Once the influence of these parameters is determined, a case of special
interest will be analyzed: aerovibroacoustics. This, is a particular case
of Fluid Structure Interaction where, due to the combination of its nondimensional
parameters, one directional coupling can be supposed for most
of the cases. Aerovibroacoustics and vibroacoustics will be analyzed by
means of two reference cases, allowing finally to propose a methodology
which could be extended for other related problems. / Quintero Igeño, PM. (2019). Characterization of Fluid Structure Interaction mechanisms and its application to vibroacoustic phenomena [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/128412
|
220 |
Numerical Simulations of Multi-physics Phenomena in Fluid Film Lubrication Using a Physically Consistent Particle Method / 物理的健全性を有する粒子法を用いた流体潤滑のマルチフィジックスシミュレーションNegishi, Hideyo 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第25279号 / 工博第5238号 / 新制||工||1998(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 黒瀬 良一, 教授 長田 孝二, 教授 平山 朋子 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
Page generated in 0.1436 seconds