• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fluxos de curvatura, soluções que se anulam em tempo finito e comportamento assintótico / Curvature flows, solutions quenching in finite time and asymptotic behavior

Ottoboni, Rafael Rodrigo, 1983- 19 August 2018 (has links)
Orientador: Marcelo da Silva Montenegro / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-19T06:20:04Z (GMT). No. of bitstreams: 1 Ottoboni_RafaelRodrigo_D.pdf: 3423937 bytes, checksum: 451302f125ad3220b825af6cd34d4b52 (MD5) Previous issue date: 2011 / Resumo: Neste trabalho apresentamos resultados sobre o fluxo de curvatura média, Gauss e harmônica de superfícies de revolução sujeito a condições de fronteira do tipo Dirichlet, Neumann ou singular. Soluções de alguns dos fluxos de curvatura com alguma destas condições de fronteira ou se anulam em tempo finito ou existem globalmente no tempo convergindo a um segmento de reta / Abstract: In this thesis we present results on mean curvature flow, Gaussian curvature flow and harmonic mean curvature flow subject to boundary conditions of Dirichlet type, Neumann or singular. Solutions to some of curvature flows with some of these boundary conditions quench in finite time or exist globally in time and converge to a straight line / Doutorado / Matematica / Doutor em Matemática
2

Capillary Problem and Mean Curvature Flow of Killing Graphs

Wanderley, Gabriela Albuquerque 13 May 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:15Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 577287 bytes, checksum: 05b66c45fbee6c87496fa2601f5736ea (MD5) Previous issue date: 2013-05-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We study two types of Neumann problem related to Capillary problem and to the evolution of graphs under mean curvature flow in Riemannian manifolds endowed with a Killing vector field. In particular, we prove the existence of Killing graphs with prescribed mean curvature and prescribed boundary conditions. / Estudamos dois tipos de problemas relacionados com a Neumann problema capilar e à evolução dos gráficos sob fluxo de curvatura média em variedades Riemannianas dotados com um campo de vetores Killing. Em particular, provamos a existência de Matar gráficos prescrito com curvatura média e condições de contorno prescritas.
3

Equações parabólicas quase lineares e fluxos de curvatura média em espaços euclidianos / Quasilinear parabolic equations and mean curvature flows in Euclidean spaces

Hitomi, Eduardo Eizo Aramaki, 1989- 03 June 2015 (has links)
Orientador: Olivâine Santana de Queiroz / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T03:06:43Z (GMT). No. of bitstreams: 1 Hitomi_EduardoEizoAramaki_M.pdf: 5800906 bytes, checksum: 04b93921a20d8ab0f71d4977b9e93e73 (MD5) Previous issue date: 2015 / Resumo: Nesta dissertação realizamos um estudo sobre o fluxo de curvatura média em espaços Euclidianos sob as perspectivas analítica e geométrica. Tratamos inicialmente da existência e regularidade de soluções em tempos pequenos de equações parabólicas quase lineares de segunda ordem em variedades Riemannianas, o que é essencial para garantirmos a existência de uma solução suave em tempo pequeno do fluxo de curvatura média. Em uma segunda parte, passamos a alguns resultados sobre o comportamento no intervalo maximal de existência de uma solução suave da hipersuperfície em evolução, por meio de equações das componentes geométricas associadas e de Princípios de Máximo. Próximo desse tempo maximal, analisamos a formação de singularidades do Tipo I por meio da Fórmula de Monotonicidade de Huisken e de rescalings, e do Tipo II por meio de uma técnica de blow-up devida a Hamilton. Em especial, reservamos o caso de curvas a um capítulo a parte e apresentamos resultados clássicos da teoria de curve-shortening flows / Abstract: In this dissertation we study the mean curvature flow in Euclidean spaces from the analytic and geometric point of view. We deal initially with short-time existence and regularity of a solution for second order quasilinear parabolic equations on Riemannian manifolds, which is essential to guarantee the short-time existence of a smooth solution to the mean curvature flow. In a second part, we present some results concerning the behavior of the evolving hypersurface close to the maximal time of existence of a smooth solution, by means of Maximum Principles and evolution equations of the associated geometric components. Close to this maximal time, we analyse the formation of singularities of Type I by means of rescalings and Huisken's Monotonicity Formula, and of Type II by means of a blow-up technique due to Hamilton. In particular, we reserve the case of curves to a separate chapter, where we present some classical results in curve-shortening flow theory / Mestrado / Matematica / Mestre em Matemática
4

Família de aplicações bilhares geradas pelo fluxo de curvatura / Family of billiards maps generated by curvature flow

Damasceno, Josué Geraldo, 1975- 12 July 2011 (has links)
Orientadores: Mário Jorge Dias Carneiro, Marco Antonio Teixeira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T10:54:43Z (GMT). No. of bitstreams: 1 Damasceno_JosueGeraldo_D.pdf: 1045427 bytes, checksum: 2cb1e5f51924e8667d69ad7267aeaa4e (MD5) Previous issue date: 2011 / Resumo: Descrevemos algumas propriedades dinâmicas de uma família de aplicações bilhares sobre curvas convexas (ovais) as quais são deformadas pelo fluxo de curvatura. Quando a mesa se deforma, a razão entre as curvaturas mínima e máxima converge a 1 e por um resultado clássico de Gage e Hamilton, depois de uma normalização, as curvas tendem a um círculo. Como conseqüência, a região de Lazutkin, isto é, a região que contém cáusticas convexas, cresce gradualmente. Descreveremos algumas bifurcações dinâmicas nesse processo, em particular, descreveremos o que acontece com a família de órbitas de período dois e as órbitas "zig-zag" / Abstract: We describe some dynamical properties of one parameter families of billiards on convex curves (ovals) which are deformed by the curvature flow. As the billiard table deforms, the ratio between minimal and maximal curvature converges to 1 and by a classical result of Gage and Hamilton [GH], after a normalization, the curves tend to a circle. As a consequence, the Lazutkin region, i.e. the region that contains convex caustics, gradually increases. We describe some dynamical bifurcations in this process, in particular, we describe what happens with the family of period two orbits and the "zig-zag"orbits / Doutorado / Matematica / Doutor em Matemática
5

Desigualdades de Penrose e um teorema da massa positiva para buracos negros carregados / Penrose inequalities and apositive mass theorem for charged black roles

Weslley Marinho LozÃrio 24 February 2014 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Apresentamos desigualdades do tipo Penrose e um teorema de massa positiva para buracos negros carregados, isto Ã, dados iniciais para soluÃÃes tempo-simÃtricas das equaÃÃes de Einstein-Maxwell, que podem ser isometricamente mergulhados no espaÃo euclidiano como grÃficos. As demonstraÃÃes usam uma fÃrmula integral para massa ADM de tais hipersuperfÃcies e o fluxo pela curvatura mÃdia inversa. / We present Penrose-type inequalities and a positive mass theorem to charged black roles, ie, initial data for time-symmetric solutions of the Einstein-Maxwell equations, which can be isometrically immersed in Euclidean space as graphics. The statements use an integral formula for the ADM mass of such hypersurfaces and the inverse mean curvature flow.

Page generated in 0.0938 seconds