Spelling suggestions: "subject:"fonctions à covariation bornée"" "subject:"fonctions à covariation cornée""
1 |
Modèles d'image aléatoires et synthèse de textureGalerne, Bruno 09 December 2010 (has links) (PDF)
Cette thèse est une étude de modèles d'image aléatoires avec des applications en synthèse de texture. La plupart des modèles de champs aléatoires étudiés sont des modèles germes-grains. Dans la première partie de la thèse, des algorithmes de synthèse de texture basés sur le modèle shot noise sont développés. Dans le cadre discret, deux processus aléatoires, à savoir le shot noise discret asymptotique et le bruit à phase aléatoire, sont étudiés. On élabore ensuite un algorithme rapide de synthèse de texture basé sur ces processus. De nombreuses expériences démontrent que cet algorithme permet de reproduire une certaine classe de textures naturelles que l'on nomme micro-textures. Dans le cadre continu, la convergence gaussienne des modèles shot noise est étudiée d'avantage et de nouvelles bornes pour la vitesse de cette convergence sont établies. Enfin, on présente un nouvel algorithme de synthèse de texture procédurale par l'exemple basé sur le récent modèle Gabor noise. Cet algorithme permet de calculer automatiquement un modèle procédural représentant des micro-textures naturelles. La deuxième partie de la thèse est consacrée à l'étude du processus feuilles mortes transparentes (FMT), un nouveau modèle germes-grains obtenu en superposant des objets semi-transparents. Le résultat principal de cette partie montre que, lorsque la transparence des objets varie, le processus FMT fournit une famille de modèles variant du modèle feuilles mortes à un champ gaussien. Dans la troisième partie de la thèse, les champs aléatoires à variation bornés sont étudiés et on établit des résultats généraux sur le calcul de la variation totale moyenne de ces champs. En particulier, ces résultats généraux permettent de calculer le périmètre moyen des ensembles aléatoires et de calculer explicitement la variation totale moyenne des modèles germes-grains classiques.
|
2 |
Sur une équation elliptique non linéaire dégénéréeObeid-El Hamidi, Amira 19 December 2002 (has links) (PDF)
L'objectif de ce travail est d'établir l'existence et l'unicité de la solution pour une équation elliptique non linéaire dégénérée, posée dans un domaine non borné. Dans un premier temps, on mène notre étude dans un domaine borné et ceci en tronquant le domaine infini. Dans la première partie, on introduit le problème variationnel associé qui se traduit en terme d'une fonctionnelle non coercive à minimiser. Ainsi, on associe au problème de minimisation un problème dual puis on montre pour ce dernier l'existence et l'unicité de la solution. Ensuite on prouve par l'extraction d'une sous-suite minimisante l'existence d'une "solution" liée à celle du problème dual. Dans la deuxième partie, on définit un problème relaxé ayant le même infimum que le problème initial. Ensuite on établit que cet infimum est un minimum pour le problème relaxé. Les résultats de la première partie sont ensuite étendus au cas non borné. Enfin, on donne quelques critères pour estimer l'erreur de troncature entre les solutions du problème dual définies dans le cas borné et non borné.
|
3 |
Stochastic image models and texture synthesisGalerne, Bruno 09 December 2010 (has links) (PDF)
Cette thèse est une étude de modèles d'image aléatoires avec des applications en synthèse de texture.Dans la première partie de la thèse, des algorithmes de synthèse de texture basés sur le modèle shot noise sont développés. Dans le cadre discret, deux processus aléatoires, à savoir le shot noise discret asymptotique et le bruit à phase aléatoire, sont étudiés. On élabore ensuite un algorithme rapide de synthèse de texture basé sur ces processus. De nombreuses expériences démontrent que cet algorithme permet de reproduire une certaine classe de textures naturelles que l'on nomme micro-textures. Dans le cadre continu, la convergence gaussienne des modèles shot noise est étudiée d'avantage et de nouvelles bornes pour la vitesse de cette convergence sont établies. Enfin, on présente un nouvel algorithme de synthèse de texture procédurale par l'exemple basé sur le récent modèle Gabor noise. Cet algorithme permet de calculer automatiquement un modèle procédural représentant des micro-textures naturelles.La deuxième partie de la thèse est consacrée à l'étude du processus feuilles mortes transparentes (FMT), un nouveau modèle germes-grains obtenu en superposant des objets semi-transparents. Le résultat principal de cette partie montre que, lorsque la transparence des objets varie, le processus FMT fournit une famille de modèles variant du modèle feuilles mortes à un champ gaussien. Dans la troisième partie de la thèse, les champs aléatoires à variation bornés sont étudiés et on établit des résultats généraux sur le calcul de la variation totale moyenne de ces champs. En particulier, ces résultats généraux permettent de calculer le périmètre moyen des ensembles aléatoires et de calculer explicitement la variation totale moyenne des modèles germes-grains classiques.
|
4 |
Décomposition d'image par modèles variationnels : débruitage et extraction de texturePiffet, Loïc 23 November 2010 (has links) (PDF)
Cette thèse est consacrée dans un premier temps à l'élaboration d'un modèle variationnel dedébruitage d'ordre deux, faisant intervenir l'espace BV 2 des fonctions à hessien borné. Nous nous inspirons ici directement du célèbre modèle de Rudin, Osher et Fatemi (ROF), remplaçant la minimisation de la variation totale de la fonction par la minimisation de la variation totale seconde, c'est à dire la variation totale de ses dérivées. Le but est ici d'obtenir un modèle aussi performant que le modèle ROF, permettant de plus de résoudre le problème de l'effet staircasing que celui-ci engendre. Le modèle que nous étudions ici semble efficace, entraînant toutefois l'apparition d'un léger effet de flou. C'est afin de réduire cet effet que nous introduisons finalement un modèle mixte, permettant d'obtenir des solutions à la fois non constantes par morceaux et sans effet de flou au niveau des détails. Dans une seconde partie, nous nous intéressons au problème d'extraction de texture. Un modèle reconnu comme étant l'un des plus performants est le modèle T V -L1, qui consiste simplement à remplacer dans le modèle ROF la norme L2 du terme d'attache aux données par la norme L1. Nous proposons ici une méthode originale permettant de résoudre ce problème utilisant des méthodes de Lagrangien augmenté. Pour les mêmes raisons que dans le cas du débruitage, nous introduisons également le modèle T V 2-L1, consistant encore une fois à remplacer la variation totale par la variation totale seconde. Un modèle d'extraction de texture mixte est enfin très brièvement introduit. Ce manuscrit est ponctué d'un vaste chapitre dédié aux tests numériques.
|
5 |
Modélisation de l'imagerie biomédicale hybride par perturbations mécaniques / Mathematical modelling of hybrid biomedical imaging by mechanical perturbationsSeppecher, Laurent 20 June 2014 (has links)
Dans cette thèse, nous introduisons et développons une approche mathématiques originale des techniques d'imagerie biomédicales dites "hybrides". L'idée et d'appliquer une méthode d'imagerie mal posée, tout en perturbant le milieu à imager par des déplacements mécaniques. Ces déplacements provenant d'une équation de type onde élastique perturbent les mesures effectuées. En utilisant ces mesures perturbées, et profitant du caractère local des perturbations mécaniques, il est possible d'augmenter considérablement la résolution de la méthode de base. Le problème direct est donc un couplage d'une EDP décrivant la propagation utilisée pour la méthode de base et d'une seconde décrivant les champs de déplacement mécaniques. Dans toutes cette thèse, on fait l'hypothèse d'un milieu mécaniquement homogène afin d'assurer le contrôle et la géométrie des ondes perturbatrices utilisées. A partir des mesures perturbées, une étape d'interprétation permet de construire une donnée interne au domaine considéré. Cette étape nécessite en général l'inversion d'opérateurs géométriques intégraux de type Radon, afin d'utiliser le caractère localisant des perturbations utilisées. A partir de cette donnée interne, il est possible d'initier une procédure de reconstruction du paramètre physique recherché. Dans le chapitre 1, il est question d'un couplage entre micro-ondes et perturbations sphériques. Dans les chapitres 2, 3 et 4, nous étudions l'imagerie optique diffuse toujours couplée avec des perturbations sphériques. Enfin dans le chapitre cinq, nous donnons une méthode originale de reconstruction de la conductivité électrique par un couplage entre champs magnétique et perturbations acoustiques focalisées. / This thesis aims at developing an original mathematical approach for modeling hybrid biomedical imaging modalities. The core idea is to run an ill-posed imaging method while perturbing the medium using mechanical displacements. These displacements described by an elastic wave equation perturb the collected measurements. Using these perturbed measurements and taking advantage of the perturbation localizing e↵ect, it is possible to significantly overcome the resolution of the basic method. The direct problem here is a coupling between a PDE describing the propagation used for the basic method and a second one describing the mechanical displacements fields. In the whole thesis, we only consider mechanically homogeneous medium in order to assure the control and the geometry of the perturbing wavefronts. From these perturbed measurements, an interpretation step leads to an internal data map inside the considered medium. This step usually requires inversion of geometric integral operators such as Radon transform. This allows to use the geometrical localizing behavior of the perturbations. From this internal data, one can start a recovering procedure for the unknown physical parameter. This recovering step involves a new non physical PDE, non linearly coupled with the main modality equation. In the first chapter, we study a coupling between micro-waves and spherical perturbations. In chapter 2, 3 and 4, we propose a model for di↵use optical imaging coupled with spherical perturbations. In chapter 5, we introduce a new method for imaging the electric conductivity by a coupling between magnetic field and focused acoustic perturbations
|
6 |
Réduction dimensionnelle pour des milieux hétérogènes, troués ou fissurésBabadjian, Jean-François 14 October 2005 (has links) (PDF)
Cette thèse traite de la justification de modèles de membranes comme limites de "comportements élastiques" non linéaires tridimensionnels (les guillemets ont trait à l'absence de l'hypothèse classique d'explosion de l'énergie lorsque le Jacobien de la transformation tend vers zéro). La réduction dimensionnelle est vue comme un problème de $\Gamma$-convergence sur l'énergie élastique, lorsque l'\épaisseur tend vers zéro. Dans un premier temps, nous décrirons des hétérogénéités macroscopiques où les forces de surface peuvent engendrer une densité de moment fléchissant, produisant un vecteur de Cosserat. Puis nous considérerons des hétérogénéités microscopiques réparties périodiquement, donnant lieu à prendre en compte deux types de problèmes simultanés: la réduction de dimension et l'homogénéisation réitérée. Ensuite, des films minces possédant une microstructure dégénérée due à la présence de vide sur la surface moyenne seront étudiés dans le cas où l'épaisseur est beaucoup plus petite que la période de distribution des perforations. Enfin, nous envisagerons la possibilité de rupture et analyserons l'évolution quasistatique des fissures pour une énergie de surface de type Griffith.
|
7 |
Modélisation de l'imagerie biomédicale hybride par perturbations mécaniquesSeppecher, Laurent 20 June 2014 (has links) (PDF)
Dans cette thèse, nous introduisons et développons une approche mathématiques originale des techniques d'imagerie biomédicales dites "hybrides". L'idée et d'appliquer une méthode d'imagerie mal posée, tout en perturbant le milieu à imager par des déplacements mécaniques. Ces déplacements provenant d'une équation de type onde élastique perturbent les mesures effectuées. En utilisant ces mesures perturbées, et profitant du caractère local des perturbations mécaniques, il est possible d'augmenter considérablement la résolution de la méthode de base. Le problème direct est donc un couplage d'une EDP décrivant la propagation utilisée pour la méthode de base et d'une seconde décrivant les champs de déplacement mécaniques. Dans toutes cette thèse, on fait l'hypothèse d'un milieu mécaniquement homogène afin d'assurer le contrôle et la géométrie des ondes perturbatrices utilisées. A partir des mesures perturbées, une étape d'interprétation permet de construire une donnée interne au domaine considéré. Cette étape nécessite en général l'inversion d'opérateurs géométriques intégraux de type Radon, afin d'utiliser le caractère localisant des perturbations utilisées. A partir de cette donnée interne, il est possible d'initier une procédure de reconstruction du paramètre physique recherché. Dans le chapitre 1, il est question d'un couplage entre micro-ondes et perturbations sphériques. Dans les chapitres 2, 3 et 4, nous étudions l'imagerie optique diffuse toujours couplée avec des perturbations sphériques. Enfin dans le chapitre cinq, nous donnons une méthode originale de reconstruction de la conductivité électrique par un couplage entre champs magnétique et perturbations acoustiques focalisées.
|
8 |
Stochastic image models and texture synthesis / Modèles d’image aléatoires et synthèse de textureGalerne, Bruno 09 December 2010 (has links)
Cette thèse est une étude de modèles d'image aléatoires avec des applications en synthèse de texture.Dans la première partie de la thèse, des algorithmes de synthèse de texture basés sur le modèle shot noise sont développés. Dans le cadre discret, deux processus aléatoires, à savoir le shot noise discret asymptotique et le bruit à phase aléatoire, sont étudiés. On élabore ensuite un algorithme rapide de synthèse de texture basé sur ces processus. De nombreuses expériences démontrent que cet algorithme permet de reproduire une certaine classe de textures naturelles que l'on nomme micro-textures. Dans le cadre continu, la convergence gaussienne des modèles shot noise est étudiée d'avantage et de nouvelles bornes pour la vitesse de cette convergence sont établies. Enfin, on présente un nouvel algorithme de synthèse de texture procédurale par l'exemple basé sur le récent modèle Gabor noise. Cet algorithme permet de calculer automatiquement un modèle procédural représentant des micro-textures naturelles.La deuxième partie de la thèse est consacrée à l'étude du processus feuilles mortes transparentes (FMT), un nouveau modèle germes-grains obtenu en superposant des objets semi-transparents. Le résultat principal de cette partie montre que, lorsque la transparence des objets varie, le processus FMT fournit une famille de modèles variant du modèle feuilles mortes à un champ gaussien. Dans la troisième partie de la thèse, les champs aléatoires à variation bornés sont étudiés et on établit des résultats généraux sur le calcul de la variation totale moyenne de ces champs. En particulier, ces résultats généraux permettent de calculer le périmètre moyen des ensembles aléatoires et de calculer explicitement la variation totale moyenne des modèles germes-grains classiques. / This thesis is a study of stochastic image models with applications to texture synthesis. Most of the stochastic texture models under investigation are germ-grain models. In the first part of the thesis, texture synthesis algorithms relying on the shot noise model are developed. In the discrete framework, two different random processes, namely the asymptotic discrete spot noise and the random phase noise, are theoretically and experimentally studied. A fast texture synthesis algorithm relying on these random processes is then elaborated. Numerous results demonstrate that the algorithm is able to reproduce a class of real-world textures which we call micro-textures. In the continuous framework, the Gaussian convergence of shot noise models is further studied and new bounds for the rate of this convergence are established. Finally, a new algorithm for procedural texture synthesis from example relying on the recent Gabor noise model is presented. This new algorithm permits to automatically compute procedural models for real-world micro-textures. The second part of the thesis is devoted to the introduction and study of the transparent dead leaves (TDL) process, a new germ-grain model obtained by superimposing semi-transparent objects. The main result of this part shows that, when varying the transparency of the objects, the TDL process provides a family of models varying from the dead leaves model to a Gaussian random field. In the third part of the thesis, general results on random fields with bounded variation are established with an emphasis on the computation of the mean total variation of random fields. As particular cases of interest, these general results permit the computation of the mean perimeter of random sets and of the mean total variation of classical germ-grain models.
|
9 |
Décomposition d’image par modèles variationnels : débruitage et extraction de texture / Variational models for image decomposition : denoising and texture extractionPiffet, Loïc 23 November 2010 (has links)
Cette thèse est consacrée dans un premier temps à l’élaboration d’un modèle variationnel dedébruitage d’ordre deux, faisant intervenir l’espace BV 2 des fonctions à hessien borné. Nous nous inspirons ici directement du célèbre modèle de Rudin, Osher et Fatemi (ROF), remplaçant la minimisation de la variation totale de la fonction par la minimisation de la variation totale seconde, c’est à dire la variation totale de ses dérivées. Le but est ici d’obtenir un modèle aussi performant que le modèle ROF, permettant de plus de résoudre le problème de l’effet staircasing que celui-ci engendre. Le modèle que nous étudions ici semble efficace, entraînant toutefois l’apparition d’un léger effet de flou. C’est afin de réduire cet effet que nous introduisons finalement un modèle mixte, permettant d’obtenir des solutions à la fois non constantes par morceaux et sans effet de flou au niveau des détails. Dans une seconde partie, nous nous intéressons au problème d’extraction de texture. Un modèle reconnu comme étant l’un des plus performants est le modèle T V -L1, qui consiste simplement à remplacer dans le modèle ROF la norme L2 du terme d’attache aux données par la norme L1. Nous proposons ici une méthode originale permettant de résoudre ce problème utilisant des méthodes de Lagrangien augmenté. Pour les mêmes raisons que dans le cas du débruitage, nous introduisons également le modèle T V 2-L1, consistant encore une fois à remplacer la variation totale par la variation totale seconde. Un modèle d’extraction de texture mixte est enfin très brièvement introduit. Ce manuscrit est ponctué d’un vaste chapitre dédié aux tests numériques. / This thesis is devoted in a first part to the elaboration of a second order variational modelfor image denoising, using the BV 2 space of bounded hessian functions. We here take a leaf out of the well known Rudin, Osher and Fatemi (ROF) model, where we replace the minimization of the total variation of the function with the minimization of the second order total variation of the function, that is to say the total variation of its partial derivatives. The goal is to get a competitive model with no staircasing effect that generates the ROF model anymore. The model we study seems to be efficient, but generates a blurry effect. In order to deal with it, we introduce a mixed model that permits to get solutions with no staircasing and without blurry effect on details. In a second part, we take an interset to the texture extraction problem. A model known as one of the most efficient is the T V -L1 model. It just consits in replacing the L2 norm of the fitting data term with the L1 norm.We propose here an original way to solve this problem by the use of augmented Lagrangian methods. For the same reason than for the denoising case, we also take an interest to the T V 2-L1 model, replacing again the total variation of the function by the second order total variation. A mixed model for texture extraction is finally briefly introduced. This manuscript ends with a huge chapter of numerical tests.
|
10 |
APPROCHE HAMILTONIENNE POUR LES ESPACES DE FORMES DANS LE CADRE DES DIFFÉOMORPHISMES: DU PROBLÈME DE RECALAGE D'IMAGES DISCONTINUES À UN MODÈLE STOCHASTIQUE DE CROISSANCE DE FORMESVialard, François-Xavier 07 May 2009 (has links) (PDF)
Ce travail de thèse se situe dans le contexte de l'appariement d'images par difféomorphismes qui a été récemment développé dans le but d'applications à l'anatomie computationnelle et l'imagerie médicale. D'un point de vue mathématique, on utilise l'action de groupe de difféomorphismes de l'espace euclidien pour décrire la variabilité des formes biologiques. <br /><br />Le cas des images discontinues n'était compris que partiellement. La première contribution de ce travail est de traiter complètement le cas des images discontinues en considérant comme modèle d'image discontinues l'espace des fonctions à variations bornées. On apporte des outils techniques pour traiter les discontinuités dans le cadre d'appariement par difféomorphismes. Ces résultats sont appliqués à la formulation Hamiltonienne des géodésiques dans le cadre d'un nouveau modèle qui incorpore l'action d'un difféomorphisme sur les niveaux de grille de l'image pour prendre en compte un changement d'intensité. La seconde application permet d'étendre la théorie des métamorphoses développée par A.Trouvé et L.Younes aux fonctions discontinues. Il apparait que la géométrie de ces espaces est plus compliquée que pour des fonctions lisses.<br /><br />La seconde partie de cette thèse aborde des aspects plus probabilistes du domaine. On étudie une perturbation stochastique du système Hamiltonien pour le cas de particules (ou landmarks). D'un point de vue physique, on peut interpréter cette perturbation comme des forces aléatoires agissant sur les particules. Il est donc naturel de considérer ce modèle comme un premier modèle de croissance de forme ou au moins d'évolutions aléatoires de formes.<br /><br />On montre que les solutions n'explosent pas en temps fini presque sûrement et on étend ce modèle stochastique en dimension infinie sur un espace de Hilbert bien choisi (en quelque sorte un espace de Besov ou Sobolev sur une base de Haar). En dimension infinie la propriété précédente reste vraie et on obtient un important (aussi d'un point de vue numérique) résultat de convergence du cas des particules vers le cas de dimension infinie. Le cadre ainsi développé est suffisamment général pour être adaptable dans de nombreuses situations de modélisation.
|
Page generated in 0.1184 seconds