• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • Tagged with
  • 15
  • 15
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Croissance et ensemble nodal de fonctions propres du laplacien sur des surfaces

Roy-Fortin, Guillaume 07 1900 (has links)
Dans cette thèse, nous étudions les fonctions propres de l'opérateur de Laplace-Beltrami - ou simplement laplacien - sur une surface fermée, c'est-à-dire une variété riemannienne lisse, compacte et sans bord de dimension 2. Ces fonctions propres satisfont l'équation $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ et les valeurs propres forment une suite infinie. L'ensemble nodal d'une fonction propre du laplacien est celui de ses zéros et est d'intérêt depuis les expériences de plaques vibrantes de Chladni qui remontent au début du 19ème siècle et, plus récemment, dans le contexte de la mécanique quantique. La taille de cet ensemble nodal a été largement étudiée ces dernières années, notamment par Donnelly et Fefferman, Colding et Minicozzi, Hezari et Sogge, Mangoubi ainsi que Sogge et Zelditch. L'étude de la croissance de fonctions propres n'est pas en reste, avec entre autres les récents travaux de Donnelly et Fefferman, Sogge, Toth et Zelditch, pour ne nommer que ceux-là. Notre thèse s'inscrit dans la foulée du travail de Nazarov, Polterovich et Sodin et relie les propriétés de croissance des fonctions propres avec la taille de leur ensemble nodal dans l'asymptotique $\lambda \nearrow \infty$. Pour ce faire, nous considérons d'abord les exposants de croissance, qui mesurent la croissance locale de fonctions propres et qui sont obtenus à partir de la norme uniforme de celles-ci. Nous construisons ensuite la croissance locale moyenne d'une fonction propre en calculant la moyenne sur toute la surface de ces exposants de croissance, définis sur de petits disques de rayon comparable à la longueur d'onde. Nous montrons alors que la taille de l'ensemble nodal est contrôlée par le produit de cette croissance locale moyenne et de la fréquence $\sqrt{\lambda}$. Ce résultat permet une reformulation centrée sur les fonctions propres de la célèbre conjecture de Yau, qui prévoit que la mesure de l'ensemble nodal croît au rythme de la fréquence. Notre travail renforce également l'intuition répandue selon laquelle une fonction propre se comporte comme un polynôme de degré $\sqrt{\lambda}$. Nous généralisons ensuite nos résultats pour des exposants de croissance construits à partir de normes $L^q$. Nous sommes également amenés à étudier les fonctions appartenant au noyau d'opérateurs de Schrödinger avec petit potentiel dans le plan. Pour de telles fonctions, nous obtenons deux résultats qui relient croissance et taille de l'ensemble nodal. / In this thesis, we study eigenfunctions of the Laplace-Beltrami operator - or simply the Laplacian - on a closed surface, i.e. a two dimensional smooth, compact Riemannian manifold without boundary. These functions satisfy $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ and the eigenvalues form an infinite sequence. The nodal set of a Laplace eigenfunction is its zero set and is of interest since the vibrating plates experiments of Chladni at the beginning of the 19th century as well as, more recently, in the context of quantum mechanics. The size of the nodal sets has been largely studied recently, notably by Donnelly and Fefferman, Colding and Minicozzi, Hezari and Sogge, Mangoubi as well as Sogge and Zelditch.The study of eigenfunction growth is also an active topic, with the recent works of Donnelly and Fefferman, Sogge, Toth and Zelditch to name only a few. Our thesis follows the work of Nazarov, Polterovich and Sodin and links growth and nodal sets of eigenfunctions in the asymptotic $\lambda \nearrow \infty$. To do so, we first consider growth exponents, which measure the local growth of eigenfunctions via their uniform norm. The average local growth of an eigenfunction is built by averaging growth exponents defined on small disks of wavelength like radius over the whole surface. We show that the size of the nodal set is controlled by the product of this average local growth with the frequency $\sqrt{\lambda}$. This result allows a function theoretical reformulation of the famous conjecture of Yau, which predicts that the size of the nodal set grows like the frequency. Our work also strengthens the common intuition that an eigenfunction behaves in many ways like a polynomial of degree $\sqrt{\lambda}$. We then generalize our results to growth exponents built upon $L^q$ norms. We are also led to study functions belonging to the kernel of Schrödinger operators with small potential in the plane. For such functions, we obtain two results linking growth and size of nodal sets.
12

Géométrie nodale et valeurs propres de l’opérateur de Laplace et du p-laplacien

Poliquin, Guillaume 09 1900 (has links)
La présente thèse porte sur différentes questions émanant de la géométrie spectrale. Ce domaine des mathématiques fondamentales a pour objet d'établir des liens entre la géométrie et le spectre d'une variété riemannienne. Le spectre d'une variété compacte fermée M munie d'une métrique riemannienne $g$ associée à l'opérateur de Laplace-Beltrami est une suite de nombres non négatifs croissante qui tend vers l’infini. La racine carrée de ces derniers représente une fréquence de vibration de la variété. Cette thèse présente quatre articles touchant divers aspects de la géométrie spectrale. Le premier article, présenté au Chapitre 1 et intitulé « Superlevel sets and nodal extrema of Laplace eigenfunctions », porte sur la géométrie nodale d'opérateurs elliptiques. L’objectif de mes travaux a été de généraliser un résultat de L. Polterovich et de M. Sodin qui établit une borne sur la distribution des extrema nodaux sur une surface riemannienne pour une assez vaste classe de fonctions, incluant, entre autres, les fonctions propres associées à l'opérateur de Laplace-Beltrami. La preuve fournie par ces auteurs n'étant valable que pour les surfaces riemanniennes, je prouve dans ce chapitre une approche indépendante pour les fonctions propres de l’opérateur de Laplace-Beltrami dans le cas des variétés riemanniennes de dimension arbitraire. Les deuxième et troisième articles traitent d'un autre opérateur elliptique, le p-laplacien. Sa particularité réside dans le fait qu'il est non linéaire. Au Chapitre 2, l'article « Principal frequency of the p-laplacian and the inradius of Euclidean domains » se penche sur l'étude de bornes inférieures sur la première valeur propre du problème de Dirichlet du p-laplacien en termes du rayon inscrit d’un domaine euclidien. Plus particulièrement, je prouve que, si p est supérieur à la dimension du domaine, il est possible d'établir une borne inférieure sans aucune hypothèse sur la topologie de ce dernier. L'étude de telles bornes a fait l'objet de nombreux articles par des chercheurs connus, tels que W. K. Haymann, E. Lieb, R. Banuelos et T. Carroll, principalement pour le cas de l'opérateur de Laplace. L'adaptation de ce type de bornes au cas du p-laplacien est abordée dans mon troisième article, « Bounds on the Principal Frequency of the p-Laplacian », présenté au Chapitre 3 de cet ouvrage. Mon quatrième article, « Wolf-Keller theorem for Neumann Eigenvalues », est le fruit d'une collaboration avec Guillaume Roy-Fortin. Le thème central de ce travail gravite autour de l'optimisation de formes dans le contexte du problème aux valeurs limites de Neumann. Le résultat principal de cet article est que les valeurs propres de Neumann ne sont pas toujours maximisées par l'union disjointe de disques arbitraires pour les domaines planaires d'aire fixée. Le tout est présenté au Chapitre 4 de cette thèse. / The main topic of the present thesis is spectral geometry. This area of mathematics is concerned with establishing links between the geometry of a Riemannian manifold and its spectrum. The spectrum of a closed Riemannian manifold M equipped with a Riemannian metric g associated with the Laplace-Beltrami operator is a sequence of non-negative numbers tending to infinity. The square root of any number of this sequence represents a frequency of vibration of the manifold. This thesis consists of four articles all related to various aspects of spectral geometry. The first paper, “Superlevel sets and nodal extrema of Laplace eigenfunction”, is presented in Chapter 1. Nodal geometry of various elliptic operators, such as the Laplace-Beltrami operator, is studied. The goal of this paper is to generalize a result due to L. Polterovich and M. Sodin that gives a bound on the distribution of nodal extrema on a Riemann surface for a large class of functions, including eigenfunctions of the Laplace-Beltrami operator. The proof given by L. Polterovich and M. Sodin is only valid for Riemann surfaces. Therefore, I present a different approach to the problem that works for eigenfunctions of the Laplace-Beltrami operator on Riemannian manifolds of arbitrary dimension. The second and the third papers of this thesis are focused on a different elliptic operator, namely the p-Laplacian. This operator has the particularity of being non-linear. The article “Principal frequency of the p-Laplacian and the inradius of Euclidean domains” is presented in Chapter 2. It discusses lower bounds on the first eigenvalue of the Dirichlet eigenvalue problem for the p-Laplace operator in terms of the inner radius of the domain. In particular, I show that if p is greater than the dimension, then it is possible to prove such lower bound without any hypothesis on the topology of the domain. Such bounds have previously been studied by well-known mathematicians, such as W. K. Haymann, E. Lieb, R. Banuelos, and T. Carroll. Their papers are mostly oriented toward the case of the usual Laplace operator. The generalization of such lower bounds for the p-Laplacian is done in my third paper, “Bounds on the Principal Frequency of the p-Laplacian”. It is presented in Chapter 3. My fourth paper, “Wolf-Keller theorem of Neumann Eigenvalues”, is a joint work with Guillaume Roy-Fortin. This paper is concerned with the shape optimization problem in the case of the Laplace operator with Neumann boundary conditions. The main result of our paper is that eigenvalues of the Neumann boundary problem are not always maximized by disks among planar domains of given area. This joint work is presented in Chapter 4.
13

Ergodicité et fonctions propres du laplacien sur les grands graphes réguliers / Ergodicity and eigenfunctions of the Laplacian on large regular graphs

Le Masson, Etienne 24 September 2013 (has links)
Dans cette thèse, nous étudions les propriétés de concentration des fonctions propres du laplacien discret sur des graphes réguliers de degré fixé dont le nombre de sommets tend vers l'infini. Cette étude s'inspire de la théorie de l'ergodicité quantique sur les variétés. Par analogie avec cette dernière, nous développons un calcul pseudo-différentiel sur les arbres réguliers : nous définissons des classes de symboles et des opérateurs associés, et nous prouvons un certain nombre de propriétés de ces classes de symboles et opérateurs. Nous montrons notamment que les opérateurs sont bornés dans L², et nous donnons des formules de l'adjoint et du produit. Nous nous servons ensuite de cette théorie pour montrer un théorème d'ergodicité quantique pour des suites de graphes réguliers dont le nombre de sommets tend vers l'infini. Il s'agit d'un résultat de délocalisation de la plupart des fonctions propres dans la limite des grands graphes réguliers. Les graphes vérifient une hypothèse d'expansion et ne comportent pas trop de cycles courts, deux hypothèses vérifiées presque sûrement par des suites de graphes réguliers aléatoires. / N this thesis, we study concentration properties of eigenfunctions of the discrete Laplacian on regular graphs of fixed degree, when the number of vertices tend to infinity. This study is made in analogy with the Quantum Ergodicity theory on manifolds. We construct a pseudo-differential calculus on regular trees by defining symbol classes and associated operators and proving some properties of these classes of symbols and operators. In particular we prove that the operators are bounded on L² and give adjoint and product formulas. We then use this theory to prove a Quantum Ergodicity theorem on large regular graphs. This is a property of delocalization of most eigenfunctions in the large scale limit. We consider expander graphs with few short cycles (for instance random large regular graphs). These hypothesis are almost surely satisfied by sequences of random regular graphs.
14

Neutron transport with anisotropic scattering: theory and applications

Van Den Eynde, Gert 12 May 2005 (has links)
This thesis is a blend of neutron transport theory and numerical analysis. We start with the study of the problem of the Mika/Case eigenexpansion used in the solution process of the homogeneous one-speed Boltzmann neutron transport equation with anisotropic scattering for plane symmetry. The anisotropic scattering is expressed as a finite Legendre series in which the coefficients are the ``scattering coefficients'. This eigenexpansion consists of a discrete spectrum of eigenvalues with its corresponding eigenfunctions and the continuous spectrum [-1,+1] with its corresponding eigendistributions. In the general case where the anisotropic scattering can be of any (finite) order, multiple discrete eigenvalues exist and these have to be located to have the complete spectrum. We have devised a stable and robust method that locates all these discrete eigenvalues. The method is a two-step process: first the number of discrete eigenvalues is calculated and this is followed by the calculation of the discrete eigenvalues themselves, now being able to count them down and make sure none are forgotten. <p><p>During our numerical experiments, we came across what we called near-singular eigenvalues: discrete eigenvalues that are located extremely close to the continuum and hence lead to near-singular behaviour in the eigenfunction. Our solution method has been adapted and allows for the automatic detection of such a near-singular eigenvalue. <p><p>For the elements of the continuous spectrum [-1,+1], there is no non-zero function satisfying the associated eigenequation but there is a non-zero distribution that does satisfy it. It is not feasible to compute a distribution as such but one can evaluate integrals in which this distribution appears. The continuum part of the eigenexpansion can hence only be characterised by its (angular) moments. Accurate and fast numerical quadrature is needed to evaluate these integrals. Several quadrature methods have been evaluated on a representative test function. <p><p><p>The eigenexpansion was proved to be orthogonal and complete and hence can be used to represent the infinite medium Green's function. The latter is the building block of the Boundary Sources Method, an integral solution method for the neutron transport equation. Using angular and angular/spatial moments of the Green's function, it is possible to solve with high accuracy slab problems. We have written a one-dimensional slab code implementing this Boundary Sources Method allowing for media with arbitrary order anisotropic scattering. Our results are very good and the code can be considered as a benchmark code for others. <p><p><p>As a final application, we have used our code to study the discrete spectrum of a well-known scattering kernel in radiative transfer, the Henyey-Greenstein kernel. This kernel has one free parameter which is used to fit the kernel to experimental data. Since the kernel is a continuous function, a finite Legendre approximation needs to be adopted. Depending on the free parameter, the approximation order and the number of secondaries per collision, the number of discrete eigenvalues ranges from two to thirty and even more. Bounds for the minimum approximation order are derived for different requirements on the approximation: non-negativity, an absolute and relative error tolerance. <p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
15

Excited States in U(1)2+1 Lattice Gauge Theory and Level Spacing Statistics in Classical Chaos

Hosseinizadeh, Ahmad January 2010 (has links)
Cette thèse est organisé en deux parties. Dans la première partie nous nous adressons à un problème vieux dans la théorie de jauge - le calcul du spectre et des fonctions d'onde. La stratégie que nous proposons est de construire une base d'états stochastiques de liens de Bargmann, construite à partir d'une distribution physique de densité de probabilité. Par la suite, nous calculons les amplitudes de transition entre ces états par une approche analytique, en utilisant des intégrales de chemin standards ainsi que la théorie des groupes. Également, nous calculons numériquement matrices symétrique et hermitienne des amplitudes de transition, via une méthode Monte Carlo avec échantillonnage pondéré. De chaque matrice, nous trouvons les valeurs propres et les vecteurs propres. En appliquant cette méthode â la théorie de jauge U(l) en deux dimensions spatiales, nous essayons d'extraire et de présenter le spectre et les fonctions d'onde de cette théorie pour des grilles de petite taille. En outre, nous essayons de faire quelques ajustement dynamique des fenêtres de spectres d'énergie et les fonctions d'onde. Ces fenêtres sont outiles de vérifier visuellement la validité de l'hamiltonien Monte Carlo, et de calculer observables physiques. Dans la deuxième partie nous étudions le comportement chaotique de deux systèmes de billard classiques, par la théorie des matrices aléatoires. Nous considérons un gaz périodique de Lorentz à deux dimensions dans des régimes de horizon fini et horizon infini. Nous construisons quelques matrices de longueurs de trajectoires de un particule mobile dans ce système, et réalisons des études des spectres de ces matrices par l'analyse numérique. Par le calcul numérique des distributions d'espacement de niveaux et rigidité spectral, nous constatons la statistique des espacements de niveaux suggère un comportement universel. Nous étudions également un tel comportement pour un système optique chaotique. En tant que quasi-système de potentiel, ses fluctuations dans l'espacement de ses niveaux suivent aussi un comportement GOE, ce qui est une signature d'universalité. Dans cette partie nous étudions également les propriétés de diffusion du gaz de Lorentz, par la longueur des trajectoires. En calculant la variance de ce quantité, nous montrons que dans le cas d'horizons finis, la variance de longueurs est linéaire par rapport au nombre de collisions de la particule dans le billard. Cette linéarité permet de définir un coefficient de diffusion pour le gaz de Lorentz, et dans un schéma général, elle est compatible avec les résultats obtenus par d'autres méthodes.

Page generated in 0.0911 seconds