• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1739
  • 414
  • 161
  • 72
  • 54
  • 54
  • 50
  • 50
  • 50
  • 50
  • 50
  • 48
  • 40
  • 37
  • 34
  • Tagged with
  • 3206
  • 436
  • 430
  • 380
  • 364
  • 304
  • 291
  • 264
  • 262
  • 243
  • 231
  • 229
  • 225
  • 216
  • 211
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

An empirical analysis of stock market price determinants /

Zimmer, Robert Keith January 1965 (has links)
No description available.
442

A dynamic quasi-stochastic model for forecasting population distribution of residential black pupils in suburbia /

Ibom, Godfrey Gamili January 1973 (has links)
No description available.
443

Objective analysis of atmospheric fields using Tchebychef minimization criteria.

Boville, Susan Patricia January 1969 (has links)
No description available.
444

Adjustment of regional wind forecasts to the topography

Allard, Hubert January 1974 (has links)
No description available.
445

Stagewise and stepwise regression techniques in meteorological forecasting

Hess, H. Allen January 1978 (has links)
No description available.
446

Forecasting the onset of snow with weather radar

Mattheou, Nikolaos Haralabos. January 1978 (has links)
No description available.
447

A study of planetary wave errors in a spectral numerical weather prediction model /

Lambert, Steven J. (Steven John) January 1977 (has links)
No description available.
448

Status and trends of dietetic staffing in Kansas hospitals and nursing homes

Stadel, Diana Lynn January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
449

Managing the forecasting function within the fast moving consumer goods industry

Burger, S. (Stephan) 12 1900 (has links)
Thesis (MBA)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: Forecasting the future has always been one of the man's strongest desires. The aim to determine the future has resulted in scientifically based forecasting models of human health, behaviour, economics, weather, etc. The main purpose of forecasting is to reduce the range of uncertainty within which management decisions must be made. Forecasts are only effective if they are utilized by those who have decisionmaking authority. Forecasts need to be understood and appreciated by decision makers so that they find their way into management of the firm. Companies still predominantly rely on judgemental forecasting methods, most often on an informal basis. There is a large literature base that point to the numerous biases inherent in judgemental forecasting. Most companies know that their forecasts are incorrect but don't know what to do about it and choose to ignore the issue, hoping that the problem will solve itself. The collaborative forecasting process attempts to use history as a baseline, but supplement current knowledge about specific trends, events and other items. This approach integrates the knowledge and information that exists internally and externally into a single, more accurate forecast that supports the entire supply chain. Demand forecasting is not just a matter of duplicating or predicting history into the future. It is important that one person should lead and manage the process. Accountability needs to be established. An audit on the writer's own organization indicated that no formal forecasting process was present. The company's forecasting process was very political, since values were entered just to add up to the required targets. The real gap was never fully understood. Little knowledge existed regarding statistical analysis and forecasting within the marketing department who is accountable for the forecast. The forecasting method was therefore a top-down approach and never really checked with a bottom up approach. It was decided to learn more about the new demand planning process prescribed by the head office, and to start implementing the approach. The approach is a form of a collaborative approach which aims to involve all stakeholders when generating the forecast, therefore applying a bottom up approach. Statistical forecasting was applied to see how accurate the output was versus that of the old way of forecasting. The statistical forecast approach performed better with product groups where little changed from previous years existed, while the old way performed better where new activities were planned or known by the marketing team. This indicates that statistical forecasting is very important for creating the starting point or baseline forecast, but requires qualitative input from all stakeholders. Statistical forecasting is therefore not the solution to improved forecasting, but rather part of the solution to create robust forecasts. / AFRIKAANSE OPSOMMING: Vooruitskatting van die toekoms was nog altyd een van die mens se grootste begeertes. Die doel om die toekoms te bepaal het gelei tot wiskundige gebaseerde modelle van die mens se gesondheid, gedrag, ekonomie, weer, ens. The hoofdoel van vooruitskatting is om die reeks van risikos te verminder waarbinne bestuur besluite moet neem. Vooruitskattings is slegs effektief as dit gebruik word deur hulle wat besluitnemingsmag het. Vooruitskattings moet verstaan en gewaardeer word deur die besluitnemers sodat dit die weg kan vind na die bestuur van die firma. Maatskappye vertrou nog steeds hoofsaaklik op eie oordeel vooruitskatting metodes, en meestal op 'n informele basis. Daar is 'n uitgebreide literatuurbasis wat daarop dui dat heelwat sydigheid betrokke is by vooruitskattings wat gebaseer is op eie oordeel. Baie organisasies weet dat hulle vooruitskattings verkeerd is, maar weet nie wat daaromtrent te doen nie en kies om die probleem te ignoreer, met die hoop dat die probleem vanself sal oplos. Die geïntegreerde vooruitskattingsproses probeer om die verlede te gebruik as 'n basis, maar voeg huidige kennis rakende spesifieke neigings, gebeurtenisse, en ander items saam. Hierdie benadering integreer die kennis en informasie wat intern en ekstern bestaan in 'n enkele, meer akkurate vooruitskatting wat die hele verskaffingsketting ondersteun. Vraagvooruitskatting is nie alleen 'n duplisering of vooruitskatting van die verlede in die toekoms in nie. Dit is belangrik dat een persoon die proses moet lei en bestuur. Verantwoordelikhede moet vasgestel word. 'n Oudit op die skrywer se organisasie het getoon dat geen formele vooruitskattingsprosesse bestaan het nie. Die maatskappy se vooruitskattingsproses was hoogs gepolitiseerd, want getalle was vasgestel wat in lyn was met die nodige teikens. Die ware gaping was nooit werklik begryp nie. Min kennis was aanwesig rakende statistiese analises en vooruitskatting binne die bemarkingsdepartement wat verantwoordelik is vir die vooruitskatting. Die vooruitskatting is dus eerder gedoen op 'n globale vlak en nie noodwendig getoets deur die vooruitskatting op te bou uit detail nie. Daar is besluit om meer te leer rakende die nuwe vraagbeplanningsproses, wat voorgeskryf is deur hoofkantoor, en om die metode te begin implementeer. Die metode is 'n vorm van 'n geïntegreerde model wat beoog om alle aandeelhouers te betrek wanneer die vooruitskatting gedoen word, dus die vooruitskatting opbou met detail. Statistiese vooruitskatting was toegepas om te sien hoe akkuraat die uitset was teenoor die ou manier van vooruitskatting. Die statistiese proses het beter gevaar waar die produkgroepe min verandering van vorige jare ervaar het, terwyl die ou manier beter gevaar het waar bemarking self die nuwe aktiwiteite beplan het of bewus was daarvan. Dit bewys dat statistiese vooruitskatting baie belangrik is om die basis vooruitskatting te skep, maar dit benodig kwalitatiewe insette van all aandeelhouers. Statistiese vooruitskattings is dus nie die oplossing vir beter vooruitskattings nie, maar deel van die oplossing om kragtige vooruitskattings te skep.
450

Forecasting Quarterly Sales Tax Revenues: A Comparative Study

Renner, Nancy A. (Nancy Ann) 08 1900 (has links)
The purpose of this study is to determine which of three forecasting methods provides the most accurate short-term forecasts, in terms of absolute and mean absolute percentage error, for a unique set of data. The study applies three forecasting techniques--the Box-Jenkins or ARIMA method, cycle regression analysis, and multiple regression analysis--to quarterly sales tax revenue data. The final results show that, with varying success, each model identifies the direction of change in the future, but does not closely identify the period to period fluctuations. Indeed, each model overestimated revenues for every period forecasted. Cycle regression analysis, with a mean absolute percentage error of 7.21, is the most accurate model. Multiple regression analysis has the smallest absolute percentage error of 3.13.

Page generated in 0.0758 seconds