• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topics in the mathematics of disordered media / Quelques résultats en mathématique des milieux désordonnés

Duerinckx, Mitia 19 December 2017 (has links)
Cette thèse est consacrée à l'étude mathématique des effets de désordre dans divers systèmes physiques. On commence par trois problèmes d'homogénéisation stochastique en lien avec des questions statiques de physique classique. Premièrement, en vue de la déduction rigoureuse de l'élasticité non linéaire à partir de la physique statistique de réseaux de chaînes de polymères, on établit l'existence de propriétés effectives pour des matériaux hyperélastiques hétérogènes aléatoires sous des hypothèses générales de croissance. Deuxièmement, dans un cadre linéarisé simplifié, on étudie les formules de Clausius-Mossotti pour les propriétés effectives d'alliages binaires dilués: on donne la première preuve générale et rigoureuse de ces formules, ainsi qu'une extension aux ordres supérieurs. Troisièmement, encore pour des systèmes linéarisés, on propose d'étudier les déviations par rapport aux propriétés effectives et on établit la première théorie générale des fluctuations en homogénéisation stochastique. Dans la seconde partie de cette thèse, on se focalise sur la compétition entre désordre et interactions, et on étudie plus particulièrement la dynamique des vortex de Ginzburg-Landau dans des supraconducteurs 2D de type II en présence d'impuretés. Bien que la compréhension mathématique des propriétés vitreuses complexes de ces systèmes semble hors de portée, on établit rigoureusement la limite de champ moyen pour la dynamique d'un grand nombre de vortex, et on étudie l'homogénéisation de ces équations limites et leurs propriétés. / This thesis is devoted to the mathematical study of effects of disorder in various physical systems. We start with three stochastic homogenization problems in connection with static classical physics questions. First, motivated by the rigorous derivation of nonlinear elasticity from the statistical physics of polymer-chain networks, we establish the existence of effective properties for randomly heterogeneous hyperelastic materials under general growth assumptions. Second, in the simplest linearized setting, we investigate the so-called Clausius-Mossotti formulas for the effective properties of dilute two-phase dispersed media: we provide the first general and rigorous proof of these formulas, as well as an extension to higher orders. Third, again for linearized models, we propose to study deviations with respect to effective properties and we establish the first general theory of fluctuations in stochastic homogenization. In the second part of this thesis, the focus is on the interplay between disorder and interactions, and more precisely we study the dynamics of Ginzburg-Landau vortices in 2D type-II superconductors in the presence of several impurities. Although a complete mathematical understanding of the complex glassy properties of such systems seems out of reach, we rigorously establish the mean-field dynamics of a large number of vortices, and we investigate the homogenization of the fluid-like mean-field equations and their stick-slip properties.
2

Topics in the mathematics of disordered media

Duerinckx, Mitia 21 December 2017 (has links)
Cette thèse est consacrée à l’étude mathématique des effets de désordre dans divers systèmes physiques. On commence par trois problèmes d’homogénéisation stochastique en lien avec des questions statiques de physique classique. Premièrement, en vue de la déduction rigoureuse de l’élasticité non-linéaire à partir de la physique statistique de réseaux de chaînes de polymères, on établit l’existence de propriétés effectives pour des matériaux hyperélastiques hétérogènes aléatoires sous des hypothèses générales de croissance. Deuxièmement, dans un cadre linéarisé simplifié, on étudie les formules de Clausius-Mossotti pour les propriétés effectives d’alliages binaires dilués: on donne la première preuve générale et rigoureuse de ces formules, ainsi qu’une extension aux ordres supérieurs. Troisièmement, encore pour des systèmes linéarisés, on propose d’étudier les déviations par rapport aux propriétés effectives et on établit la première théorie générale des fluctuations en homogénéisation stochastique. Dans la seconde partie de cette thèse, on se focalise sur la compétition entre désordre et interactions, et on étudie plus particulièrement la dynamique des vortex de Ginzburg-Landau dans des supraconducteurs 2D de type II en présence d’impuretés. Bien que la compréhension mathématique des propriétés vitreuses complexes de ces systèmes semble hors de portée, on établit rigoureusement la limite de champ moyen pour la dynamique d’un grand nombre de vortex, et on étudie l’homogénéisation de ces équations limites et leurs propriétés. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0836 seconds