• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • Tagged with
  • 10
  • 10
  • 8
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Généralisation de données textuelles adaptée à la classification automatique / Toward new features for text mining

Tisserant, Guillaume 14 April 2015 (has links)
La classification de documents textuels est une tâche relativement ancienne. Très tôt, de nombreux documents de différentes natures ont été regroupés dans le but de centraliser la connaissance. Des systèmes de classement et d'indexation ont alors été créés. Ils permettent de trouver facilement des documents en fonction des besoins des lecteurs. Avec la multiplication du nombre de documents et l'apparition de l'informatique puis d'internet, la mise en œuvre de systèmes de classement des textes devient un enjeu crucial. Or, les données textuelles, de nature complexe et riche, sont difficiles à traiter de manière automatique. Dans un tel contexte, cette thèse propose une méthodologie originale pour organiser l'information textuelle de façon à faciliter son accès. Nos approches de classification automatique de textes mais aussi d'extraction d'informations sémantiques permettent de retrouver rapidement et avec pertinence une information recherchée.De manière plus précise, ce manuscrit présente de nouvelles formes de représentation des textes facilitant leur traitement pour des tâches de classification automatique. Une méthode de généralisation partielle des données textuelles (approche GenDesc) s'appuyant sur des critères statistiques et morpho-syntaxiques est proposée. Par ailleurs, cette thèse s'intéresse à la construction de syntagmes et à l'utilisation d'informations sémantiques pour améliorer la représentation des documents. Nous démontrerons à travers de nombreuses expérimentations la pertinence et la généricité de nos propositions qui permettent une amélioration des résultats de classification. Enfin, dans le contexte des réseaux sociaux en fort développement, une méthode de génération automatique de HashTags porteurs de sémantique est proposée. Notre approche s'appuie sur des mesures statistiques, des ressources sémantiques et l'utilisation d'informations syntaxiques. Les HashTags proposés peuvent alors être exploités pour des tâches de recherche d'information à partir de gros volumes de données. / We have work for a long time on the classification of text. Early on, many documents of different types were grouped in order to centralize knowledge. Classification and indexing systems were then created. They make it easy to find documents based on readers' needs. With the increasing number of documents and the appearance of computers and the internet, the implementation of text classification systems becomes a critical issue. However, textual data, complex and rich nature, are difficult to treat automatically. In this context, this thesis proposes an original methodology to organize and facilitate the access to textual information. Our automatic classification approache and our semantic information extraction enable us to find quickly a relevant information.Specifically, this manuscript presents new forms of text representation facilitating their processing for automatic classification. A partial generalization of textual data (GenDesc approach) based on statistical and morphosyntactic criteria is proposed. Moreover, this thesis focuses on the phrases construction and on the use of semantic information to improve the representation of documents. We will demonstrate through numerous experiments the relevance and genericity of our proposals improved they improve classification results.Finally, as social networks are in strong development, a method of automatic generation of semantic Hashtags is proposed. Our approach is based on statistical measures, semantic resources and the use of syntactic information. The generated Hashtags can then be exploited for information retrieval tasks from large volumes of data.
2

Modeling and mining of Web discussions

Stavrianou, Anna 01 February 2010 (has links) (PDF)
Le développement du Web 2.0 a donné lieu à la production d'une grande quantité de discussions en ligne. La fouille et l'extraction de données de qualité de ces discussions en ligne sont importantes dans de nombreux domaines (industrie, marketing) et particulièrement pour toutes les applications de commerce électronique. Les discussions de ce type contiennent des opinions et des croyances de personnes et cela explique l'intérêt de développer des outils d'analyse efficaces pour ces discussions. L'objectif de cette thèse est de définir un modèle qui représente les discussions en ligne et facilite leur analyse. Nous proposons un modèle basé sur des graphes. Les sommets du graphe représentent les objets de type message. Chaque objet de type message contient des informations comme son contenu, son auteur, l'orientation de l'opinion qui y été exprimée et la date où il a été posté. Les liens parmi les objets message montrent une relation de type "répondre à". En d'autres termes, ils montrent quels objets répondent à quoi, conséquence directe de la structure de la discussion en ligne. Avec ce nouveau modèle, nous proposons un certain nombre de mesures qui guident la fouille au sein de la discussion et permettent d'extraire des informations pertinentes. Il existe des mesures centrées sur l'analyse de l'opinion qui traitent de l'évolution de l'opinion au sein de la discussion. Nous définissons également des mesures centrées sur le temps, qui exploitent la dimension temporelle du modèle, alors que les mesures centrées sur le sujet peuvent être utilisées pour mesurer la présence de sujets dans une discussion. La présence de l'utilisateur dans des discussions en ligne peut être exploitée soit par les techniques des réseaux sociaux, soit à travers notre nouveau modèle qui inclut la connaissance des auteurs de chaque objet message. De plus, une liste de messages clés est recommandée à l'utilisateur pour permettre une participation plus efficace au sein de la discussion.
3

Modélisation automatique des conversations en tant que processus d'intentions de discours interdépendantes / Automatically modeling conversations as processes of interrelated speech Intentions

Epure, Elena Viorica 14 December 2018 (has links)
La prolifération des données numériques a permis aux communautés de scientifiques et de praticiens de créer de nouvelles technologies basées sur les données pour mieux connaître les utilisateurs finaux et en particulier leur comportement. L’objectif est alors de fournir de meilleurs services et un meilleur support aux personnes dans leur expérience numérique. La majorité de ces technologies créées pour analyser le comportement humain utilisent très souvent des données de logs générées passivement au cours de l’interaction homme-machine. Une particularité de ces traces comportementales est qu’elles sont enregistrées et stockées selon une structure clairement définie. En revanche, les traces générées de manière proactive sont très peu structurées et représentent la grande majorité des données numériques existantes. De plus, les données non structurées se trouvent principalement sous forme de texte. À ce jour, malgré la prédominance des données textuelles et la pertinence des connaissances comportementales dans de nombreux domaines, les textes numériques sont encore insuffisamment étudiés en tant que traces du comportement humain pour révéler automatiquement des connaissances détaillées sur le comportement.L’objectif de recherche de cette thèse est de proposer une méthode indépendante du corpus pour exploiter automatiquement les communications asynchrones en tant que traces de comportement générées de manière proactive afin de découvrir des modèles de processus de conversations,axés sur des intentions de discours et des relations, toutes deux exhaustives et détaillées.Plusieurs contributions originales sont faites. Il y est menée la seule revue systématique existante à ce jour sur la modélisation automatique des conversations asynchrones avec des actes de langage. Une taxonomie des intentions de discours est dérivée de la linguistique pour modéliser la communication asynchrone. Comparée à toutes les taxonomies des travaux connexes,celle proposée est indépendante du corpus, à la fois plus détaillée et exhaustive dans le contexte donné, et son application par des non-experts est prouvée au travers d’expériences approfondies.Une méthode automatique, indépendante du corpus, pour annoter les énoncées de communication asynchrone avec la taxonomie des intentions de discours proposée, est conçue sur la base d’un apprentissage automatique supervisé. Pour cela, deux corpus "ground-truth" validés sont créés et trois groupes de caractéristiques (discours, contenu et conversation) sont conçus pour être utilisés par les classificateurs. En particulier, certaines des caractéristiques du discours sont nouvelles et définies en considérant des moyens linguistiques pour exprimer des intentions de discours,sans s’appuyer sur le contenu explicite du corpus, le domaine ou les spécificités des types de communication asynchrones. Une méthode automatique basée sur la fouille de processus est conçue pour générer des modèles de processus d’intentions de discours interdépendantes à partir de tours de parole, annotés avec plusieurs labels par phrase. Comme la fouille de processus repose sur des logs d’événements structurés et bien définis, un algorithme est proposé pour produire de tels logs d’événements à partir de conversations. Par ailleurs, d’autres solutions pour transformer les conversations annotées avec plusieurs labels par phrase en logs d’événements, ainsi que l’impact des différentes décisions sur les modèles comportementaux en sortie sont analysées afin d’alimenter de futures recherches.Des expériences et des validations qualitatives à la fois en médecine et en analyse conversationnelle montrent que la solution proposée donne des résultats fiables et pertinents. Cependant,des limitations sont également identifiées, elles devront être abordées dans de futurs travaux. / The proliferation of digital data has enabled scientific and practitioner communities to createnew data-driven technologies to learn about user behaviors in order to deliver better services and support to people in their digital experience. The majority of these technologies extensively derive value from data logs passively generated during the human-computer interaction. A particularity of these behavioral traces is that they are structured. However, the pro-actively generated text across Internet is highly unstructured and represents the overwhelming majority of behavioral traces. To date, despite its prevalence and the relevance of behavioral knowledge to many domains, such as recommender systems, cyber-security and social network analysis,the digital text is still insufficiently tackled as traces of human behavior to automatically reveal extensive insights into behavior.The main objective of this thesis is to propose a corpus-independent method to automatically exploit the asynchronous communication as pro-actively generated behavior traces in order to discover process models of conversations, centered on comprehensive speech intentions and relations. The solution is built in three iterations, following a design science approach.Multiple original contributions are made. The only systematic study to date on the automatic modeling of asynchronous communication with speech intentions is conducted. A speech intention taxonomy is derived from linguistics to model the asynchronous communication and, comparedto all taxonomies from the related works, it is corpus-independent, comprehensive—as in both finer-grained and exhaustive in the given context, and its application by non-experts is proven feasible through extensive experiments. A corpus-independent, automatic method to annotate utterances of asynchronous communication with the proposed speech intention taxonomy is designed based on supervised machine learning. For this, validated ground-truth corpora arecreated and groups of features—discourse, content and conversation-related, are engineered to be used by the classifiers. In particular, some of the discourse features are novel and defined by considering linguistic means to express speech intentions, without relying on the corpus explicit content, domain or on specificities of the asynchronous communication types. Then, an automatic method based on process mining is designed to generate process models of interrelated speech intentions from conversation turns, annotated with multiple speech intentions per sentence. As process mining relies on well-defined structured event logs, an algorithm to produce such logs from conversations is proposed. Additionally, an extensive design rationale on how conversations annotated with multiple labels per sentence could be transformed in event logs and what is the impact of different decisions on the output behavioral models is released to support future research. Experiments and qualitative validations in medicine and conversation analysis show that the proposed solution reveals reliable and relevant results, but also limitations are identified,to be addressed in future works.
4

Standardization of textual data for comprehensive job market analysis / Normalisation textuelle pour une analyse exhaustive du marché de l'emploi

Malherbe, Emmanuel 18 November 2016 (has links)
Sachant qu'une grande partie des offres d'emplois et des profils candidats est en ligne, le e-recrutement constitue un riche objet d'étude. Ces documents sont des textes non structurés, et le grand nombre ainsi que l'hétérogénéité des sites de recrutement implique une profusion de vocabulaires et nomenclatures. Avec l'objectif de manipuler plus aisément ces données, Multiposting, une entreprise française spécialisée dans les outils de e-recrutement, a soutenu cette thèse, notamment en terme de données, en fournissant des millions de CV numériques et offres d'emplois agrégées de sources publiques.Une difficulté lors de la manipulation de telles données est d'en déduire les concepts sous-jacents, les concepts derrière les mots n'étant compréhensibles que des humains. Déduire de tels attributs structurés à partir de donnée textuelle brute est le problème abordé dans cette thèse, sous le nom de normalisation. Avec l'objectif d'un traitement unifié, la normalisation doit fournir des valeurs dans une nomenclature, de sorte que les attributs résultants forment une représentation structurée unique de l'information. Ce traitement traduit donc chaque document en un language commun, ce qui permet d'agréger l'ensemble des données dans un format exploitable et compréhensible. Plusieurs questions sont cependant soulevées: peut-on exploiter les structures locales des sites web dans l'objectif d'une normalisation finale unifiée? Quelle structure de nomenclature est la plus adaptée à la normalisation, et comment l'exploiter? Est-il possible de construire automatiquement une telle nomenclature de zéro, ou de normaliser sans en avoir une?Pour illustrer le problème de la normalisation, nous allons étudier par exemple la déduction des compétences ou de la catégorie professionelle d'une offre d'emploi, ou encore du niveau d'étude d'un profil de candidat. Un défi du e-recrutement est que les concepts évoluent continuellement, de sorte que la normalisation se doit de suivre les tendances du marché. A la lumière de cela, nous allons proposer un ensemble de modèles d'apprentissage statistique nécessitant le minimum de supervision et facilement adaptables à l'évolution des nomenclatures. Les questions posées ont trouvé des solutions dans le raisonnement à partir de cas, le learning-to-rank semi-supervisé, les modèles à variable latente, ainsi qu'en bénéficiant de l'Open Data et des médias sociaux. Les différents modèles proposés ont été expérimentés sur des données réelles, avant d'être implémentés industriellement. La normalisation résultante est au coeur de SmartSearch, un projet qui fournit une analyse exhaustive du marché de l'emploi. / With so many job adverts and candidate profiles available online, the e-recruitment constitutes a rich object of study. All this information is however textual data, which from a computational point of view is unstructured. The large number and heterogeneity of recruitment websites also means that there is a lot of vocabularies and nomenclatures. One of the difficulties when dealing with this type of raw textual data is being able to grasp the concepts contained in it, which is the problem of standardization that is tackled in this thesis. The aim of standardization is to create a unified process providing values in a nomenclature. A nomenclature is by definition a finite set of meaningful concepts, which means that the attributes resulting from standardization are a structured representation of the information. Several questions are however raised: Are the websites' structured data usable for a unified standardization? What structure of nomenclature is the best suited for standardization, and how to leverage it? Is it possible to automatically build such a nomenclature from scratch, or to manage the standardization process without one? To illustrate the various obstacles of standardization, the examples we are going to study include the inference of the skills or the category of a job advert, or the level of training of a candidate profile. One of the challenges of e-recruitment is that the concepts are continuously evolving, which means that the standardization must be up-to-date with job market trends. In light of this, we will propose a set of machine learning models that require minimal supervision and can easily adapt to the evolution of the nomenclatures. The questions raised found partial answers using Case Based Reasoning, semi-supervised Learning-to-Rank, latent variable models, and leveraging the evolving sources of the semantic web and social media. The different models proposed have been tested on real-world data, before being implemented in a industrial environment. The resulting standardization is at the core of SmartSearch, a project which provides a comprehensive analysis of the job market.
5

Extraction d'information spatiale à partir de données textuelles non-standards / Spatial information extraction from non-standard textual data

Zenasni, Sarah 05 January 2018 (has links)
L’extraction d’information spatiale à partir de données textuelles est désormais un sujet de recherche important dans le domaine du Traitement Automatique du Langage Naturel (TALN). Elle répond à un besoin devenu incontournable dans la société de l’information, en particulier pour améliorer l’efficacité des systèmes de Recherche d’Information (RI) pour différentes applications (tourisme, aménagement du territoire, analyse d’opinion, etc.). De tels systèmes demandent une analyse fine des informations spatiales contenues dans les données textuelles disponibles (pages web, courriels, tweets, SMS, etc.). Cependant, la multitude et la variété de ces données ainsi que l’émergence régulière de nouvelles formes d’écriture rendent difficile l’extraction automatique d’information à partir de corpus souvent peu standards d’un point de vue lexical voire syntaxique.Afin de relever ces défis, nous proposons, dans cette thèse, des approches originales de fouille de textes permettant l’identification automatique de nouvelles variantes d’entités et relations spatiales à partir de données textuelles issues de la communication médiée. Ces approches sont fondées sur trois principales contributions qui sont cruciales pour fournir des méthodes de navigation intelligente. Notre première contribution se concentre sur la problématique de reconnaissance et d’extraction des entités spatiales à partir de corpus de messages courts (SMS, tweets) marqués par une écriture peu standard. La deuxième contribution est dédiée à l’identification de nouvelles formes/variantes de relations spatiales à partir de ces corpus spécifiques. Enfin, la troisième contribution concerne l’identification des relations sémantiques associées à l’information spatiale contenue dans les textes. Les évaluations menées sur des corpus réels, principalement en français (SMS, tweets, presse), soulignent l’intérêt de ces contributions. Ces dernières permettent d’enrichir la typologie des relations spatiales définies dans la communauté scientifique et, plus largement, de décrire finement l’information spatiale véhiculée dans les données textuelles non standards issues d’une communication médiée aujourd’hui foisonnante. / The extraction of spatial information from textual data has become an important research topic in the field of Natural Language Processing (NLP). It meets a crucial need in the information society, in particular, to improve the efficiency of Information Retrieval (IR) systems for different applications (tourism, spatial planning, opinion analysis, etc.). Such systems require a detailed analysis of the spatial information contained in the available textual data (web pages, e-mails, tweets, SMS, etc.). However, the multitude and the variety of these data, as well as the regular emergence of new forms of writing, make difficult the automatic extraction of information from such corpora.To meet these challenges, we propose, in this thesis, new text mining approaches allowing the automatic identification of variants of spatial entities and relations from textual data of the mediated communication. These approaches are based on three main contributions that provide intelligent navigation methods. Our first contribution focuses on the problem of recognition and identification of spatial entities from short messages corpora (SMS, tweets) characterized by weakly standardized modes of writing. The second contribution is dedicated to the identification of new forms/variants of spatial relations from these specific corpora. Finally, the third contribution concerns the identification of the semantic relations associated withthe textual spatial information.
6

De l'extraction des connaissances à la recommandation.

Duthil, Benjamin 03 December 2012 (has links) (PDF)
Les technologies de l'information et le succès des services associés (forums, sites spécialisés, etc) ont ouvert la voie à un mode d'expression massive d'opinions sur les sujets les plus variés (e-commerce, critiques artistiques, etc). Cette profusion d'opinions constitue un véritable eldorado pour l'internaute, mais peut rapidement le conduire à une situation d'indécision car,les avis déposés peuvent être fortement disparates voire contradictoires. Pour une gestion fiable et pertinente de l'information contenue dans ces avis, il est nécessaire de mettre en place des systèmes capables de traiter directement les opinions exprimées en langage naturel afin d'en contrôler la subjectivité et de gommer les effets de lissage des traitements statistiques. La plupart des systèmes dits de recommandation ne prennent pas en compte toute la richesse sémantique des critiques et leur associent souvent des systèmes d'évaluation qui nécessitent une implication conséquente et des compétences particulières chez l'internaute. Notre objectif est de minimiser l'intervention humaine dans le fonctionnement collaboratif des systèmes de recommandation en automatisant l'exploitation des données brutes que constituent les avis en langage naturel. Notre approche non supervisée de segmentation thématique extrait les sujets d'intérêt des critiques, puis notre technique d'analyse de sentiments calcule l'opinion exprimée sur ces critères. Ces méthodes d'extraction de connaissances combinées à des outils d'analyse multicritère adaptés à la fusion d'avis d'experts ouvrent la voie à des systèmes de recommandation pertinents, fiables et personnalisés.
7

De l'extraction des connaissances à la recommandation / From knowledge extraction to recommendation

Duthil, Benjamin 03 December 2012 (has links)
Les technologies de l'information et le succès des services associés (forums, sites spécialisés, etc) ont ouvert la voie à un mode d'expression massive d'opinions sur les sujets les plus variés (e-commerce, critiques artistiques, etc). Cette profusion d'opinions constitue un véritable eldorado pour l'internaute, mais peut rapidement le conduire à une situation d'indécision car les avis déposés peuvent être fortement disparates voire contradictoires. Pour une gestion fiable et pertinente de l'information contenue dans ces avis, il est nécessaire de mettre en place des systèmes capables de traiter directement les opinions exprimées en langage naturel afin d'en contrôler la subjectivité et de gommer les effets de lissage des traitements statistiques. La plupart des systèmes dits de recommandation ne prennent pas en compte toute la richesse sémantique des critiques et leur associent souvent des systèmes d'évaluation qui nécessitent une implication conséquente et des compétences particulières chez l'internaute. Notre objectif est de minimiser l'intervention humaine dans le fonctionnement collaboratif des systèmes de recommandation en automatisant l'exploitation des données brutes que constituent les avis en langage naturel. Notre approche non supervisée de segmentation thématique extrait les sujets d'intérêt des critiques, puis notre technique d'analyse de sentiments calcule l'opinion exprimée sur ces critères. Ces méthodes d'extraction de connaissances combinées à des outils d'analyse multicritère adaptés à la fusion d'avis d'experts ouvrent la voie à des systèmes de recommandation pertinents, fiables et personnalisés. / Information Technology and the success of its related services (blogs, forums, etc.) have paved the way for a massive mode of opinion expression on the most varied subjects (e-commerce websites, art reviews, etc). This abundance of opinions could appear as a real gold mine for internet users, but it can also be a source of indecision because available opinions may be ill-assorted if not contradictory. A reliable and relevant information management of opinions bases requires systems able to directly analyze the content of opinions expressed in natural language. It allows controlling subjectivity in evaluation process and avoiding smoothing effects of statistical treatments. Most of the so-called recommender systems are unable to manage all the semantic richness of a review and prefer to associate to the review an assessment system that supposes a substantial implication and specific competences of the internet user. Our aim is minimizing user intervention in the collaborative functioning of recommender systems thanks to an automated processing of available reviews in natural language by the recommender system itself. Our topic segmentation method extracts the subjects of interest from the reviews, and then our sentiment analysis approach computes the opinion related to these criteria. These knowledge extraction methods are combined with multicriteria analysis techniques adapted to expert assessments fusion. This proposal should finally contribute to the coming of a new generation of more relevant, reliable and personalized recommender systems.
8

Modeling and mining of web discussions / Modélisation et fouille de discussions de Web

Stavrianou, Anna 01 February 2010 (has links)
The development of Web 2.0 has resulted in the generation of a vast amount of online discussions. Mining and extracting quality knowledge from online discussions is significant for the industrial and marketing sector, as well as for e-commerce applications. Discussions of this kind encapsulate people's interests and beliefs and hence, there is a great interest in acquiring and developing online discussion analysis tools. The objective of this thesis is to define a model which represents online discussions and facilitates their analysis. We propose a graph-oriented model. The vertices of the graph represent postings. Each posting encapsulates information such as the content of the message, the author who has written it, the opinion polarity of the message and the time that the message was posted. The edges among the postings point out a "reply-to" relation. In other words they show which posting replies to what as it is given by the structure of the online discussion.The proposed model is accompanied by a number of measures which facilitate the discussion mining and the extraction of knowledge from it. Defined measures consist in measures that are underlined by the structure of the discussion and the way the postings are linked to each other. There are opinion-oriented measures which deal with the opinion evolution within a discussion. Time-oriented measures exploit the presence of the temporal dimension within a model, while topic-oriented measures can be used in order to measure the presence of topics within a discussion. The user's presence inside the online discussions can be exploited either by social network techniques or through the new model which encapsulates knowledge about the author of each posting.The representation of an online discussion in the proposed way allows a user to "zoom" inside the discussion. A recommendation of messages is proposed to the user to enable a more efficient participation inside the discussion.Additionally, a prototype system has been implemented which allows the user to mine online discussions by selecting a subset of postings and browse through them efficiently. / Le développement du Web 2.0 a donné lieu à la production d'une grande quantité de discussions en ligne. La fouille et l'extraction de données de qualité de ces discussions en ligne sont importantes dans de nombreux domaines (industrie, marketing) et particulièrement pour toutes les applications de commerce électronique. Les discussions de ce type contiennent des opinions et des croyances de personnes et cela explique l'intérêt de développer des outils d'analyse efficaces pour ces discussions.L'objectif de cette thèse est de définir un modèle qui représente les discussions en ligne et facilite leur analyse. Nous proposons un modèle basé sur des graphes. Les sommets du graphe représentent les objets de type message. Chaque objet de type message contient des informations comme son contenu, son auteur, l'orientation de l'opinion qui y été exprimée et la date où il a été posté. Les liens parmi les objets message montrent une relation de type "répondre à". En d'autres termes, ils montrent quels objets répondent à quoi, conséquence directe de la structure de la discussion en ligne.Avec ce nouveau modèle, nous proposons un certain nombre de mesures qui guident la fouille au sein de la discussion et permettent d'extraire des informations pertinentes. Les mesures sont définies par la structure de la discussion et la façon dont les objets messages sont liés entre eux. Il existe des mesures centrées sur l'analyse de l'opinion qui traitent de l'évolution de l'opinion au sein de la discussion. Nous définissons également des mesures centrées sur le temps, qui exploitent la dimension temporelle du modèle, alors que les mesures centrées sur le sujet peuvent être utilisées pour mesurer la présence de sujets dans une discussion. La représentation d'une discussion en ligne de la manière proposée permet à un utilisateur de "zoomer" dans une discussion. Une liste de messages clés est recommandée à l'utilisateur pour permettre une participation plus efficace au sein de la discussion. De plus, un système prototype a été implémenté pour permettre à l'utilisateur de fouiller les discussions en ligne en sélectionnant un sous ensemble d'objets de type message et naviguer à travers ceux-ci de manière efficace.
9

Extraction d’Information pour les réseaux de régulation de la graine chez Arabidopsis Thaliana. / Information Extraction for the Seed Development Regulatory Networks of Arabidopsis Thaliana.

Valsamou, Dialekti 17 January 2017 (has links)
Même si l’information est abondante dans le monde, l’information structurée, prête à être utilisée est rare. Ce travail propose l’Extraction d’Information (EI) comme une approche efficace pour la production de l’information structurée, utilisable sur la biologie, en présentant une tâche complète d’EI sur un organisme modèle, Arabidopsis thaliana. Un système d’EI se charge d’extraire les parties de texte les plus significatives et d’identifier leurs relations sémantiques. En collaboration avec des experts biologistes sur la plante A. Thaliana un modèle de connaissance a été conçu. Son objectif est de formaliser la connaissance nécessaire pour bien décrire le domaine du développement de la graine. Ce modèle contient toutes les entités et relations les connectant qui sont essentielles et peut être directement utilisé par des algorithmes. En parallèle ce modèle a été testé et appliqué sur un ensemble d’articles scientifiques du domaine, le corpus nécessaire pour l’entraînement de l’apprentissage automatique. Les experts ont annoté le texte en utilisant les entités et relations du modèle. Le modèle et le corpus annoté sont les premiers proposés pour le développement de la graine, et parmi les rares pour A. Thaliana, malgré son importance biologique. Ce modèle réconcilie les besoins d’avoir un modèle assez complexe pour bien décrirele domaine, et d’avoir assez de généralité pour pouvoir utiliser des méthodes d’apprentissage automatique. Une approche d’extraction de relations (AlvisRE) a également été élaborée et développée. Une fois les entités reconnues, l’extracteur de relations cherche à détecter les cas où le texte mentionne une relation entre elles, et identifier précisément de quel type de relation du modèle il s’agit. L’approche AlvisRE est basée sur la similarité textuelle et utilise à la fois des informations lexiques,syntactiques et sémantiques. Dans les expériences réalisées, AlvisRE donne des résultats qui sont équivalents et parfois supérieurs à l’état de l’art. En plus, AlvisRE a l’avantage de la modularité et adaptabilité en utilisant des informations sémantiques produites automatiquement. Ce dernier caractéristique permet d’attendre des performances équivalentes dans d’autres domaines. / While information is abundant in the world, structured, ready-to-use information is rare. Thiswork proposes Information Extraction (IE) as an efficient approach for producing structured,usable information on biology, by presenting a complete IE task on a model biological organism,Arabidopsis thaliana. Information Extraction is the process of extracting meaningful parts of text and identifying their semantic relations.In collaboration with experts on the plant A. Thaliana, a knowledge model was conceived. The goal of this model is providing a formal representation of the knowledge that is necessary to sufficiently describe the domain of grain development. This model contains all the entities and the relations between them which are essential and it can directly be used by algorithms. Inparallel, this model was tested and applied on a set of scientific articles of the domain. These documents constitute the corpus which is needed to train machine learning algorithms. Theexperts annotated the text using the entities and relations of the model. This corpus and this model are the first available for grain development and among very few on A. Thaliana, despite the latter’s importance in biology. This model manages to answer both needs of being complexenough to describe the domain well, and of having enough generalization for machine learning.A relation extraction approach (AlvisRE) was also elaborated and developed. After entityre cognition, the relation extractor tries to detect the cases where the text mentions that twoentities are in a relation, and identify precisely to which type of the model these relations belongto. AlvisRE’s approach is based on textual similarity and it uses all types of information available:lexical, syntactic and semantic. In the tests conducted, AlvisRE had results that are equivalentor sometimes better than the state of the art. Additionally, AlvisRE has the advantage of being modular and adaptive by using semantic information that was produced automatically. This last feature allows me to expect similar performance in other domains.
10

A visual analytics approach for multi-resolution and multi-model analysis of text corpora : application to investigative journalism / Une approche de visualisation analytique pour une analyse multi-résolution de corpus textuels : application au journalisme d’investigation

Médoc, Nicolas 16 October 2017 (has links)
À mesure que la production de textes numériques croît exponentiellement, un besoin grandissant d’analyser des corpus de textes se manifeste dans beaucoup de domaines d’application, tant ces corpus constituent des sources inépuisables d’information et de connaissance partagées. Ainsi proposons-nous dans cette thèse une nouvelle approche de visualisation analytique pour l’analyse de corpus textuels, mise en œuvre pour les besoins spécifiques du journalisme d’investigation. Motivées par les problèmes et les tâches identifiés avec une journaliste d’investigation professionnelle, les visualisations et les interactions ont été conçues suivant une méthodologie centrée utilisateur, impliquant l’utilisateur durant tout le processus de développement. En l’occurrence, les journalistes d’investigation formulent des hypothèses, explorent leur sujet d’investigation sous tous ses angles, à la recherche de sources multiples étayant leurs hypothèses de travail. La réalisation de ces tâches, très fastidieuse lorsque les corpus sont volumineux, requiert l’usage de logiciels de visualisation analytique se confrontant aux problématiques de recherche abordées dans cette thèse. D’abord, la difficulté de donner du sens à un corpus textuel vient de sa nature non structurée. Nous avons donc recours au modèle vectoriel et son lien étroit avec l’hypothèse distributionnelle, ainsi qu’aux algorithmes qui l’exploitent pour révéler la structure sémantique latente du corpus. Les modèles de sujets et les algorithmes de biclustering sont efficaces pour l’extraction de sujets de haut niveau. Ces derniers correspondent à des groupes de documents concernant des sujets similaires, chacun représenté par un ensemble de termes extraits des contenus textuels. Une telle structuration par sujet permet notamment de résumer un corpus et de faciliter son exploration. Nous proposons une nouvelle visualisation, une carte pondérée des sujets, qui dresse une vue d’ensemble des sujets de haut niveau. Elle permet d’une part d’interpréter rapidement les contenus grâce à de multiples nuages de mots, et d’autre part, d’apprécier les propriétés des sujets telles que leur taille relative et leur proximité sémantique. Bien que l’exploration des sujets de haut niveau aide à localiser des sujets d’intérêt ainsi que leur voisinage, l’identification de faits précis, de points de vue ou d’angles d’analyse, en lien avec un événement ou une histoire, nécessite un niveau de structuration plus fin pour représenter des variantes de sujet. Cette structure imbriquée révélée par Bimax, une méthode de biclustering basée sur des motifs avec chevauchement, capture au sein des biclusters les co-occurrences de termes partagés par des sous-ensembles de documents pouvant dévoiler des faits, des points de vue ou des angles associés à des événements ou des histoires communes. Cette thèse aborde les problèmes de visualisation de biclusters avec chevauchement en organisant les biclusters terme-document en une hiérarchie qui limite la redondance des termes et met en exergue les parties communes et distinctives des biclusters. Nous avons évalué l’utilité de notre logiciel d’abord par un scénario d’utilisation doublé d’une évaluation qualitative avec une journaliste d’investigation. En outre, les motifs de co-occurrence des variantes de sujet révélées par Bima. sont déterminés par la structure de sujet englobante fournie par une méthode d’extraction de sujet. Cependant, la communauté a peu de recul quant au choix de la méthode et son impact sur l’exploration et l’interprétation des sujets et de ses variantes. Ainsi nous avons conduit une expérience computationnelle et une expérience utilisateur contrôlée afin de comparer deux méthodes d’extraction de sujet. D’un côté Coclu. est une méthode de biclustering disjointe, et de l’autre, hirarchical Latent Dirichlet Allocation (hLDA) est un modèle de sujet probabiliste dont les distributions de probabilité forment une structure de bicluster avec chevauchement. (...) / As the production of digital texts grows exponentially, a greater need to analyze text corpora arises in various domains of application, insofar as they constitute inexhaustible sources of shared information and knowledge. We therefore propose in this thesis a novel visual analytics approach for the analysis of text corpora, implemented for the real and concrete needs of investigative journalism. Motivated by the problems and tasks identified with a professional investigative journalist, visualizations and interactions are designed through a user-centered methodology involving the user during the whole development process. Specifically, investigative journalists formulate hypotheses and explore exhaustively the field under investigation in order to multiply sources showing pieces of evidence related to their working hypothesis. Carrying out such tasks in a large corpus is however a daunting endeavor and requires visual analytics software addressing several challenging research issues covered in this thesis. First, the difficulty to make sense of a large text corpus lies in its unstructured nature. We resort to the Vector Space Model (VSM) and its strong relationship with the distributional hypothesis, leveraged by multiple text mining algorithms, to discover the latent semantic structure of the corpus. Topic models and biclustering methods are recognized to be well suited to the extraction of coarse-grained topics, i.e. groups of documents concerning similar topics, each one represented by a set of terms extracted from textual contents. We provide a new Weighted Topic Map visualization that conveys a broad overview of coarse-grained topics by allowing quick interpretation of contents through multiple tag clouds while depicting the topical structure such as the relative importance of topics and their semantic similarity. Although the exploration of the coarse-grained topics helps locate topic of interest and its neighborhood, the identification of specific facts, viewpoints or angles related to events or stories requires finer level of structuration to represent topic variants. This nested structure, revealed by Bimax, a pattern-based overlapping biclustering algorithm, captures in biclusters the co-occurrences of terms shared by multiple documents and can disclose facts, viewpoints or angles related to events or stories. This thesis tackles issues related to the visualization of a large amount of overlapping biclusters by organizing term-document biclusters in a hierarchy that limits term redundancy and conveys their commonality and specificities. We evaluated the utility of our software through a usage scenario and a qualitative evaluation with an investigative journalist. In addition, the co-occurrence patterns of topic variants revealed by Bima. are determined by the enclosing topical structure supplied by the coarse-grained topic extraction method which is run beforehand. Nonetheless, little guidance is found regarding the choice of the latter method and its impact on the exploration and comprehension of topics and topic variants. Therefore we conducted both a numerical experiment and a controlled user experiment to compare two topic extraction methods, namely Coclus, a disjoint biclustering method, and hierarchical Latent Dirichlet Allocation (hLDA), an overlapping probabilistic topic model. The theoretical foundation of both methods is systematically analyzed by relating them to the distributional hypothesis. The numerical experiment provides statistical evidence of the difference between the resulting topical structure of both methods. The controlled experiment shows their impact on the comprehension of topic and topic variants, from analyst perspective. (...)

Page generated in 0.0514 seconds