Spelling suggestions: "subject:"fouling"" "subject:"couling""
241 |
MSF process modelling, simulation and optimisation : impact of non-condensable gases and fouling factor on design and operation : optimal design and operation of MSF desalination process with non-condensable gases and calcium carbonate fouling, flexible design operation and scheduling under variable demand and seawater temperature using gPROMSSaid, Said Alforjani R. January 2012 (has links)
Desalination is a technique of producing fresh water from the saline water. Industrial desalination of sea water is becoming an essential part in providing sustainable source of fresh water for a large number of countries around the world. Thermal process being the oldest and most dominating for large scale production of freshwater in today's world. Multi-Stage Flash (MSF) distillation process has been used for many years and is now the largest sector in the desalination industry. In this work, a steady state mathematical model of Multistage Flash (MSF) desalination process is developed and validated against the results reported in the literature using gPROMS software. The model is then used for further investigation. First, a steady state calcium carbonate fouling resistance model has been developed and implemented in the full MSF mathematical model developed above using gPROMS modeling tool. This model takes into consideration the effect of stage temperature on the calcium carbonate fouling resistance in the flashing chambers in the heat recovery section, heat rejection section, and brine heaters of MSF desalination plants. The effect of seasonal variation of seawater temperature and top brine temperature on the calcium carbonate fouling resistance has been studied throughout the flashing stage. In addition, the total annual operating cost of the MSF process is selected to minimise, while optimising the operating parameters such as seawater rejected flow rate, brine recycle flow rate and steam temperature at different seawater temperature and fouling resistance. Secondly, an intermediate storage between the plant and the client is considered to provide additional flexibility in design and operation of the MSF process throughout the day. A simple polynomial based dynamic seawater temperature and different freshwater demand correlations are developed based on actual data. For different number of flash stages, operating parameters such as seawater rejected flow rate and brine recycle flow rate are optimised, while the total annual operating cost of the MSF process is selected to minimise.The results clearly show that the advantage of using the intermediate storage tank adds flexible scheduling in the MSF plant design and operation parameters to meet the variation in freshwater demand with varying seawater temperatures without interrupting or fully shutting down the plant at any time during the day by adjusting the number of stages. Furthermore, the effect of non-condensable gases (NCG) on the steady state mathematical model of MSF process is developed and implemented in the MSF model developed earlier. Then the model is used to study effect of NCG on the overall heat transfer coefficient. The simulation results showed a decrease in the overall heat transfer coefficient values as NCG concentrations increased. The model is then used to study the effect of NCG on the design and operation parameters of MSF process for fixed water demand. For a given plant configuration (fixed design) and at different seawater and steam temperatures, a 0.015 wt. % of NCG results in significantly different plant operations when compared with those obtained without the presence of NCG. Finally, for fixed water demand and in the presence of 0.015 wt. % NCGs, the performance is evaluated for different plant configurations and seawater temperature and compared with those obtained without the presence of NCG.
|
242 |
Optimisation of membrane technology for water reuseRaffin, Marie January 2011 (has links)
Increasing freshwater scarcity is making reclamation of wastewater effluent more economically attractive as a means of preserving freshwater resources. The use of an integrated membrane system (IMS), the combination of micro/ultra-filtration (MF/UF) followed by reverse osmosis (RO) membranes, represents a key process for municipal wastewater reuse. A major drawback of such systems is the fouling of both the MF/UF and RO membranes. The water to be treated by the IMS system varies from one wastewater treatment plant (WWTP) to another, and its fouling propensity changes correspondingly. It is thus preferable to conduct pilot trials before implementing a full-scale plant. This thesis aims to look at the sustainability of IMS technology dedicated to indirect potable reuse (IPR) in terms of fouling minimisation and cost via a 600 m3 .d- 1 pilot plant. Wastewater reuse plants, using IMS, as well as statistical methods for membrane optimisation were reviewed. Box-Behnken design was used to define optimum operating envelopes of the pilot plant for both the microfiltration and the reverse osmosis in terms of fouling minimisation. Same statistical method was used to enhance the efficiency of the MF cleaning-in place through bench-scale test. Data from the pilot plant MF process allow to determine relationship between reversible and irreversible fouling, and operating parameters and feed water quality. Life cycle cost analysis (LCCA) of the both trains (MF/RO/AOP and MF/AOP) of the pilot plant was performed and compared with the LCCA of two full-scale plant.
|
243 |
Couplage des procédés membranaires pour la clarification et la concentration du jus de pommes de cajou : performances et impacts sur la qualité des produits / Coupling of membrane processes for the clarification and concentration of cashew apple juice : performances and impacts on the quality of productsSoro, Doudjo 17 December 2012 (has links)
La pomme de cajou est une matière première qui n'est pas exploitée en Côte d'Ivoire alors qu'elle présente un potentiel nutritionnel important. Dans ce contexte, l'étude réalisée s'intéresse à la valorisation des pommes de cajou en jus de fruit. En partant du jus brut de pommes de cajou, il s'agit d'étudier un procédé qui couple plusieurs techniques membranaires pour la production de jus clarifiés et concentrés. Les températures modérées de traitement doivent permettre une meilleure préservation du potentiel vitaminique et sensoriel de la matière première. Les deux variétés de pommes de cajou étudiées sont riches en acide ascorbique (1,2 g.kg-1) et en composés phénoliques (2,9 g.kg-1). Avec un rendement optimal de 82%, l'extraction du jus par pression ne génère pas de dégradation significative des composés d'intérêt. Toutefois, certains d'entre eux se répartissent différemment dans le jus et les tourteaux de presse. Parmi les 50 composés d'arôme identifiés dans le jus de fruit, les esters sont quantitativement les plus abondants. Le traitement du jus de pomme de cajou par microfiltration tangentielle sur membranes tubulaires minérales (0,2 µm, 35 °C) permet de clarifier le produit sans altérer sa teneur en acide ascorbique. La forte rétention des composés phénoliques en diminue l'astringence. Le prétraitement par liquéfaction enzymatique modifie les caractéristiques du jus et permet d'améliorer les performances de la filtration. Certaines des préparations enzymatiques testées présentent un effet synergique sur les densités de flux de perméat (Jp). Lors de la validation du procédé à l'échelle semi-industrielle, des Jp voisines de 70 L.h-1.m-2 ont été obtenues à FRV 8. Les performances sont toutefois très variables d'un jus à l'autre et ne sont pas liées aux caractéristiques des jus mesurées. Les tests classiques de filtrabilité (résistance spécifique en filtration frontale et temps de succion capillaire) ne permettent pas non plus de prévoir le pouvoir colmatant des jus en microfiltration tangentielle. Une meilleure compréhension des phénomènes qui régissent le colmatage membranaire est indispensable pour développer un outil prévisionnel à ce niveau. La nanofiltration tangentielle et l'osmose inverse ont été ensuite utilisées pour pré-concentrer 2,5 à 3 fois le jus clarifié. L'osmose inverse présente l'avantage de retenir totalement les principaux solutés pour une consommation énergétique comparable à celle de la nanofiltration. Enfin, l'évaporation osmotique a permis de concentrer le jus clarifié environ 6 fois sans en altérer la couleur et en préservant plus de 90 % de l'acide ascorbique. Comparé à des concentrés de référence traités par évaporation sous-vide, le concentré obtenu présente un profil aromatique moins altéré. Au final, l'intérêt du procédé proposé est donc vérifié en terme de qualité nutritionnelle et organoleptique. En vue d'une application industrielle, son évaluation économique reste toutefois indispensable / The cashew apple is a raw material which is not exploited in Côte d'Ivoire though it has an important nutritional potential. In this context, the study dealt with the processing of the cashew apple in fruit juice. Starting from the raw juice of cashew apples, a new process that coupled several membrane technologies was proposed for the production of clarified and concentrated juice. Moderate temperatures of treatment should allow a better preservation of the vitamins and sensory potential of the raw material. Both varieties of cashew apples studied were rich in ascorbic acid (1.2 g.kg-1) and phenolic compounds (2.9 g.kg-1). With an 82 percent optimum yield, juice extraction by pressure did not generate significant degradation of the compounds of interest. However, some of them are distributed differently in the juice and the press cake. Among the 50 aroma compounds identified in the fruit juice, the esters were the most abundant. Treatment of cashew apple juice by cross-flow microfiltration on inorganic tubular membranes (0.2 µm, 35 °C), clarified the product without altering its ascorbic acid content. The high retention of phenolic compounds decreased astringency. Pretreatment with enzymatic liquefaction of juice improved the performance of the filtration. Some of the enzyme preparations tested exhibited a synergistic effect on the permeate flux (Jp). During the validation of the process at semi-industrial scale, Jp of 70 Lh-1.m-2 was obtained using a volumetric reduction ratio of 8. However, performances were highly variable from one juice to another and were not related to the measured characteristics of juice. Classical tests of filterability (specific resistance in dead-end filtration and capillary suction time) did not predict the fouling properties of juices in cross-flow microfiltration. A better understanding of the fouling phenomena is absolutely necessary to develop new predictive tests filtrability. Nanofiltration and reverse osmosis were then used to pre-concentrate 2.5 to 3 times the clarified juice. Reverse osmosis allowed to retain entirely the major solutes with an energy consumption very close to nanofiltration. Finally, the clarified juice was concentrated 6 times using osmotic evaporation without altering the color and preserving more than 90% of ascorbic acid. Compared to standard concentrates treated by vacuum evaporation, the concentrate obtained has a less altered flavor profile. The interest of the suggested process was verified in terms of nutritional and sensorial quality. Its economic assessment remains essential for industrial application.
|
244 |
Modelling of novel rotating membrane bioreactor processesJones, Franck Anderson January 2017 (has links)
Previous membrane researches undertaken over the years to develop general deadend filtration models made use of an approach that combined all three classical fouling mechanisms, namely, pore blocking, pore constriction and cake filtration. More recently researchers have modified and adapted this modelling approach for a cross flow side-stream membrane bioreactor (MBR) system. Literature also reveals that there have been numerous recent experimental studies conducted on rotating membrane bioreactor (RMBR) systems. Some of these studies have resulted in the creation of RMBR models of the membrane fouling process as well. However, simulation and modelling of the fouling in RMBRs is still a nascent topic to date due to poor understanding and great complexity of the system hydrodynamics involved. Even when models are developed, they are either too complex to be useful at operational level, or not comprehensive enough to express all possible operational scenarios. In many cases they are simply too difficult to calibrate and thus ending up being more suited as research tools rather than for direct process control. As such, further research is required in this area. The research reported in this thesis consists of the development and validation of a RMBR system fouling model that incorporates all three classical fouling mechanisms. This thesis work is divided into two main sections. On top of a literature review that thoroughly describes the background theory and general information on MBRs along with their state of the art, the first section of the thesis also explains the specific methodologies used to accomplish all the main tasks carried out in this research work. The first step of these methodologies involves the setting-up of a rotating MBR system process based upon the FUV-185-A15R Flexidisks membrane module that was developed by Avanti Membrane Technology (USA). This system was used to collect the majority of the data used in this thesis. Since some of these data outputs were compared against non-rotating MBR systems, a similar setting-up process for a bespoke static square MBR system was carried out as well. Using synthetic wastewater in conjunction with activated sludge, mixed liquor suspended solids in both MBR system bioreactors were increased in levels over time to desired levels (i.e. by periodic excess sludge wasting). Trans-membrane pressure (TMP)-stepping fouling data was then acquired from operations of these membrane ultrafiltration processes. This data was obtained by measuring the flux decline or TMP increase. Following data collection, a dynamic fouling model for this RMBR system was then created in Matlab (using the Genetic Algorithm function). To do this, hydrodynamic regimes such as air scouring and rotating shear effects along with all the three classical fouling mechanisms were included in the mathematical fouling model that was created from first principles. For the purpose of comparison, a similar fouling model was created without incorporating the rotational effects for the static square MBR system. This included modelling of the hydrodynamics as well. Finally, both these models were validated and calibrated using the data that were collected from both laboratory-based MBR systems. The second phase of the thesis explores the numerous outputted results produced via model simulations which were then discussed and analysed in great detail. Results from this research indicate that the mathematical models give a decent portrayal and description of the fouling mechanisms occurring within a rotating MBR system. It was found that the rotational mechanisms in terms of fouling prevention accounted for only twelve percent of cake removal with the rest being accomplished through the air scouring mechanism. However, it was found that although the slowly rotating spindle induced a weak crossflow shear, it was still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded, which would lead to dramatic loss of flux. Furthermore, when compared against the static MBR system, the study concluded that a rotating MBR system could increase the flux throughput by a significant amount. In conclusion, RMBR systems appear to represent alternative viable solutions when compared against the traditional static MBR systems that currently dominate the industrial and municipal marketplace. In future, RMBR systems may become the systems of first choice once there is a better understanding of the rotational processes, and once research and design into this sector broadens. Future study areas should thus focus on: whether the forces acting on an activated sludge particle during rotation have a significant effect on the fouling or the shear hydrodynamic regimes; whether activated sludge and benchmark models could be created for rotating MBRs whilst including the shear effects and hydrodynamic regimes; whether model predictive control using these developed RMBR models would enhance efficiency gains within an operational plant; and, whether the real measured soluble microbial products (SMP) concentrations could be used to create an even better SMP predictive model that accurately explains fouling behaviour.
|
245 |
Caractérisations optiques et microscopiques de la structure de membranes organiques d'ultrafiltration : application à la production d'eau potableTamime, Rahma 19 July 2011 (has links)
Afin d’améliorer la compréhension des effets des coagulants sur les performances des membranes organiques d'ultrafiltration employées dans la production d’eau potable, une caractérisation structurale complète (surface et volume) de l’échelle microscopique à l’échelle macroscopique des membranes (neuves, après filtration de coagulant et après lavage chimique) est utilisée. En premier lieu, les propriétés structurales des membranes planes neuves PES ont été déterminées en fonction du seuil de coupure. Les caractéristiques de surface (taille de pore et taux de remplissage) déterminées par le MEB et les caractéristiques en volume déterminées par l’ellipsométrie de speckle ont montré une évolution croissante avec le seuil de coupure. L’utilisation du LB et de l’AFM avec différentes fenêtres d’observation a montré que la détermination de la rugosité d'une membrane est bien fonction de l'échelle d’observation. L’AFM a permis de différencier les membranes selon leur seuil de coupure mais aussi selon les méthodes de fabrication. En second lieu, l’impact de la nature des coagulants en polychlorosulfate d'aluminium (PAX-XL 7A et Aqualenc F1) sur les propriétés structurales des membranes en PES 100 kDa a été abordé. L'utilisation du modèle d’Hermia et les analyses multi-échelle de la rugosité de surface ont montré que la filtration de suspensions de cogulants de PAX-XL 7A ou Aqualenc F1 produit un dépôt à la surface dû à l’adsorption et/ou la précipitation des produits d’hydrolyse de coagulants, provoquant une modification importante de la morphologie de surface de la membrane. Cette modification structurale est aussi révélée par des mesures du speckle de l’onde diffusée. Des analyses MEB et AFM ont révélé un changement de l’état de surface de la membrane lavées après colmatage. L’extension des techniques de caractérisation structurale, en particulier l'AFM, à l'étude des fibres creuses en AC et PVDF et leur vieillissement a montré une voie d’exploitation très intéressante. / For the better understanding of the effects of the use of coagulants on the performance of ultrafiltration organic membranes applied in the production of drinking water, a complete structural characterization (surface and bulk) from microscopic scale to macroscopic scale of the membranes (new, after filtration of coagulant and after chemical cleaning) is used. First, the structural properties of new flat-sheet PES membranes were determined as a function of MWCO. The characteristics of surface (pore size and recovery rate) determined by SEM and the features of bulk determined by speckle ellipsometry showed an increasing trend with MWCO. The use of WLI and AFM with different observation scales showed that the determination of the roughness of a membrane significantly depends on the observation scale. The AFM was able to differentiate membranes according to their MWCO as well as to the methods of manufacturing. Second, the impact of the nature of aluminum polychlorosulfate coagulants (PAX-XL 7A and Aqualenc F1) on the structural properties of PES 100 kDa membrane is addressed. The use of Hermia model and the analysis of multi-scale surface roughness showed that the filtration of suspensions of coagulants PAX-XL 7A or Aqualenc F1 produces a deposit on the surface through adsorption and/or precipitation of hydrolysis products of coagulant, causing a significant change in the surface morphology of the membrane. This structural modification is also revealed by the measurements of speckle of the light scattering. SEM and AFM analysis revealed a change in the state of surface of the membrane after cleaning of fouled membranes. An extension of the structural characterization techniques, in particular the AFM to the study of hollow fibers and their aging has shown a very interesting way of analysis.
|
246 |
O papel de modelos de turbulência na modelagem de um biorreator com membranasÁvila, Vinícius da Costa January 2017 (has links)
O mercado de biorreatores com membranas (BRMs) têm exibido alto crescimento. Contudo, o fouling diminui o desempenho desses sistemas drasticamente. A aeração promove a mitigação do fouling, mas possui alto custo operacional (de até 70% do total da demanda energética) e é utilizada de forma otimizada apenas 10% das vezes, gerando a necessidade de estudos sobre a hidrodinâmica em BRMs. Ferramentas de dinâmica de fluidos computacional (CFD) são úteis para esse tipo de análise. Um dos primeiros passos para encontrar uma solução apropriada em simulações numéricas é propor uma modelagem correta. Dentre os fenômenos a serem modelados, os efeitos da turbulência são provavelmente um dos mais importantes; porém, nenhum artigo que comparasse predições com base na escolha de modelo de turbulência para simulações de sistemas BRM foi encontrado. Dessa forma, o objetivo desse trabalho foi verificar a importância da escolha do modelo de turbulência para simulações de biorreatores com membranas através de CFD. Para isso, as predições obtidas de velocidade local próxima às superfícies das membranas e de tensão cisalhante nessas superfícies para duas taxas de aeração, 5 e 15 m³/h, empregando dois modelos de turbulência, k-ϵ com funções de parede para alto (aR) e para baixo número de Reynolds (bR) e k-ω SST (Shear Stress Transport) com funções de parede automáticas, na análise de um sistema BRM foram comparadas entre si e com dados experimentais e simulados disponíveis na literatura. Os perfis temporais da velocidade e da tensão cisalhante exibiram alta variabilidade no período das oscilações em certos pontos, exigindo um longo tempo de escoamento para a convergência das variáveis locais. Identificou-se a necessidade de outorgar maior importância à definição do intervalo de tempo de coleta de dados experimentais, de modo a adquirir médias representativas do perfil dinâmico das variáveis e destes perfis serem também analisados para comparações mais definitivas entre resultados de simulações e medições experimentais. As diferenças, entre as medições experimentais da literatura e predições, obtidas pelas simulações deste trabalho foram, no geral, de ordem similar ou menores que as obtidas pelas simulações na literatura. Além disso, maior atenção deve ser dada à escolha da estratégia de modelagem de turbulência, visto que houve alta sensibilidade das predições, que variaram em até 21,6% dependendo dessa escolha. / Membrane bioreactors (MBR) market has been showing high growth rates over recent years. However, membrane fouling drastically reduces MBR overall performance. Aeration promotes fouling mitigation, but at a high operational cost (up to 70% of the MBR energy demand) and it is optimally employed only in 10% of the cases. This created the need of studies focused on MBR hydrodynamic. Computational fluid dynamics (CFD) is a useful tool for hydrodynamic analysis. One of the first steps in finding a proper solution for numerical simulation is proposing a correct modelling. Among the phenomena to be modelled for MBR simulations, turbulence effects are probably one of the most important; nevertheless, no paper comparing the predictions based on the turbulence model choice for MBR simulations was found. In sight of that, this work aimed to verify the relevance of the choice of turbulence model for MBR simulations through CFD. Predictions of local velocities near membranes surfaces and of local shear stress on those surfaces, for two aeration rates (5 and 15 m³/h), employing k-ϵ with wall functions for high (aR) and low (bR) Reynolds number and k-ω SST with automatic wall functions, on the analysis of a MRB system, were compared between each other and with experimental and simulated data available in the literature. The velocity and shear stress temporal profiles showed oscillations with highly variable periods in some points, which required a long process real time to verify the local variables convergence. It was identified the need to give more importance to the definition of the time interval for experimental data collection in order to acquire reliable temporal means; also, one must properly analyze the temporal profiles for more definitive comparisons between predictions and experimental measurements. The differences, between experimental data and predictions, obtained through this work simulations were, in general, of similar order or smaller than the ones reported in the literature. Besides, more attention must be given to the turbulence modelling choices, since the predictions obtained here were highly sensitive to those choices, showing differences up to 21,6% among them.
|
247 |
Microfiltration de jus de fruits et suspensions à base de fruits : faisabilité et performances d'une filtration par membranes immergées / Microfiltration of fruit juices and fruit-based suspensions : Feasibility and performances of immersed membranes filtrationRouquié, Camille 01 October 2018 (has links)
La microfiltration est largement utilisée pour la clarification, la stabilisation et la concentration de nombreuses suspensions à base de fruits (jus de fruits, agro-déchets, vin, etc.). Malgré ses divers avantages, la microfiltration présente néanmoins un inconvénient majeur qui est le phénomène de colmatage qui s’installe pendant l’opération de filtration et entraîne une diminution de la perméabilité membranaire. Si de nombreux mécanismes de colmatage (adsorption, blocage de pores, etc.) sont observés pendant la filtration de suspensions polydisperses comme les jus de fruits ou certains coproduits liquides, le dépôt de particules sur la membrane est souvent supposé être le mécanisme limitant. La formation de ce dépôt est fortement dépendante de l’équilibre entre forces convectives (imposées par le flux de perméat), qui attirent les particules de la suspension à proximité de la membrane, et forces de rétrotransport, qui éloignent les particules de la surface membranaire. La stratégie la plus employée pour maitriser le colmatage membranaire par dépôt est la filtration tangentielle qui permet d’imposer de forts cisaillements à la surface membranaire qui favorisent les mécanismes de rétrotransport des particules. Si cette stratégie de maîtrise du colmatage est amplement utilisée à l’échelle industrielle pour la microfiltration des suspensions à base de fruits, elle nécessite des coûts d’investissement et de fonctionnement non négligeables qui limitent son implantation aux industries présentant de fortes capacités de production et d’investissement. Au regard de cela, l’utilisation d’une configuration de filtration à membranes immergées pour la microfiltration de suspensions à base de fruits pourrait être une alternative intéressante. Cette configuration repose sur l’immersion de la membrane (modules plans ou fibres creuses) dans la suspension à filtrer, et est associée à un mode de filtration externe-interne, frontal ou quasi-frontale. Si l’absence de conditions hydrodynamiques intenses au voisinage de la membrane est associée à des flux relativement bas, les nombreux avantages de ce mode opératoire (coûts de fonctionnement réduits, simplicité opérationnelle, forte compacité, etc.) pourraient favoriser son emploi par les petits producteurs de jus de fruits et/ou les industries de valorisation des coproduits présentant des capacités limitées d’investissement et enclins à minimiser leurs couts opérationnels. Ce travail a ainsi étudié pour la première fois la possibilité d’utiliser un tel système pour la microfiltration de suspensions à base de fruits variées (jus de fruits et coproduits vinicoles). Ce travail de thèse a ciblé ainsi plusieurs objectifs : (i) caractériser le potentiel et le comportement colmatant de suspensions à base de fruits, en lien avec les caractéristiques physicochimiques propres à chaque suspension et au regard de leur filtration par membranes immergées, (ii) étudier des performances d’un système de microfiltration de suspensions à base de fruits par membranes immergées, performances en termes de productivité et de sélectivité et enfin (iii) dégager des pistes de réflexion qui conduiraient à une choix pertinent de conditions de filtration (mode immergé ou tangentiel) pour un type de suspension ciblé. Ce travail fournit ainsi des résultats d’identification de paramètres physico-chimiques clefs qui pourraient constituer un premier guide pour le choix de la configuration membranaire la plus adaptée au produit, permettant d’assurer une productivité acceptable lors de la microfiltration de suspensions à base de fruits. / Microfiltration is widely used to ensure clarification, stabilization, and concentration of various fruit-based suspensions (e.g. fruit juices, food by-products, wine). However, the performances of membrane filtration remain highly challenged by membrane fouling. During microfiltration of polydisperse suspensions, such as fruit-based suspensions, membrane fouling is generally associated to the deposition of particles on the membrane layer. This type of fouling is mainly governed by the equilibrium between convective forces (permeate flow), leading particles to flow towards the membrane, and back-transport forces, removing particles away from the membrane surface. The filtration performances depend strongly on this equilibrium, which is mostly governed by the hydrodynamic conditions of the filtration process and the particles size distribution of the suspension. In food industries, cross-flow microfiltration is generally used to limit membrane fouling. In this configuration, high cross-flow velocities are applied in order to enhance the back-transport forces limiting the deposition of foulant materials on the membrane surface. However, this working mode is well known to be highly energy consuming and might not always be relevant depending on the suspension characteristics. In the light of this, using immersed membranes configuration for the microfiltration of fruit-based suspensions might be an interesting alternative, especially for small producers with limiting investment capacity. In this configuration, widely used in other fields, the membranes are immersed in the suspension and filtration is performed in operating conditions close to that of dead-end filtration with limited back-transport forces and low operating costs. However, the performances of this filtration configuration remain little studied for the microfiltration of fruit-based suspensions. In this respect, this work investigated for the first time the possibility of using immersed membranes configuration for the microfiltration of various fruit-based suspensions (fruit juices and winery byproducts). Firstly, a characterization of the fouling potential of various suspensions during their microfiltration using immersed membranes filtration was performed in relation with their physicochemical properties (particle size distribution). Then, this work allowed highlighting the promising performances of immersed membranes configuration when used for the microfiltration of fruit-based suspensions, in terms of productivity and in terms of selectivity (clarification, concentration of bioactive compounds). Finally, it allowed drawing preliminary results about the relation between the physicochemical characteristics of a suspension and its fouling behavior while using (i) immersed membranes filtration or (ii) conventional cross-flow filtration. These results might be of great interest for the identification of relevant physicochemical parameters to predict the usefulness of using high cross-flow velocity to prevent membrane fouling during the microfiltration of fruit-based suspensions.
|
248 |
The study of pretreatment options for composite fouling of reverse osmosis membranes used in water treatment and productionMustafa, Ghulam Mohammad, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Most common inorganic foulants in RO processes operating on brackish water are calcium carbonate, calcium sulphate and silica. However, silica fouling is the recovery limiting factor in RO system. Silica chemistry is complex and its degree of fouling strongly depends on the silica solubility and its polymerization under different operating conditions of RO process. In several studies carried out in batch and dynamic tests, the presence of polyvalent cations and supersaturation of silica in solutions were found to be the important factors (apart from pH and temperature) that affected the rate of silica polymerization and its induction period. Agitation did increased silica solubility; however, its effect was negligible in presence of polyvalent cations. Alkalization of water solution by coagulants particularly sodium hydroxide was found suitable for silica removal during pretreatment. The presence of magnesium in solution played a key role in silica removal mostly by the mechanism of adsorption to the metal hydroxide. The options of inline mixing (high agitation) for 5 to 10 minutes and microfiltration before RO were found suitable for silica pretreatment. During dynamic tests, the most dominant mechanism for salt deposition (mostly CaSO4) was particulate type in high concentration water solution; while crystallization fouling was the prevailing mechanism of deposition (mostly CaCO3 and silica) in low concentration solution. Silica showed significant effect on size and shape of inorganic salt crystals during coprecipitation. Moreover, the presence of common antiscalants promoted silica fouling. This important finding recommends an extra caution while using antiscalants in case feed water contains silica to a level that can attain saturation near membrane during RO process. A model was developed to predict the silica fouling index (SFI) based on the experimental data for induction period of silica polymerization. The model takes into account the effect of polyvalent cations and concentration polarization near membrane during RO process. It provides a conservative basis for predicting the maximum silica deposition in RO process at the normal operating conditions. A generalised correlation, which was developed for determination of the mass transfer coefficient in RO process, incorporated the effect of temperature change that is usually not considered in previous correlations. A correlation for reduction of silica content in feed water, down to a safe limit of 15 ppm for RO process, was also formulated and validated by the experimental results.
|
249 |
Engineering Applications of Surface Plasmon Resonance: Protein–Protein and Protein–Molecule InteractionsIgnagni, Nicholas January 2011 (has links)
Protein-protein and protein-molecule interactions are complicated phenomena due to the tendency of proteins to change shape and function in response to their environment. Protein aggregation whether onto surfaces or in solution, can pose numerous problems in industry. Surface plasmon resonance (SPR) devices and quartz crystal microbalances (QCM) are two real-time, label free methods that can be used to detect the interactions between molecules on surfaces. These devices often employ self-assembled monolayers (SAMs) to produce specific surfaces for studying protein-protein interactions. The objective of this work was to develop methodologies utilizing SPR to better understand protein-protein and protein-molecule interactions with possible applications in the food and separation industrial sectors.
A very well characterized whey protein, β-lactoglobulin (BLG), is used in numerous applications in the food industry. BLG can undergo different types of self-aggregation due changes in external environment factors such as buffer strength, pH or temperature. In this work, a hydrophilic SAM was developed and used to study the interaction and non-specific adsorption of BLG and palmitic acid (PA), a molecule which is known to bind to BLG. It was found that PA tended to reduce BLG conformational changes once on the surface, resulting in a decrease in its surface adhesion. Fluorescent excitation emission matrices (EEM’s) using a novel fluorescence probe technique were utilized to detect protein on the surface as well as conformational changes on the surface of the sensor, although the extent these changes could not be quantified.
Another whey protein, α-lactoglobulin (AL), was utilized as a surrogate protein to study the adsorption of colloidal/particulate and protein matter (CPP) extracted from filtration studies of river water. A large fraction of natural organic matter (NOM), the major foulant in membrane based water filtration, is CPP and protein. Understanding the interactions between these components is essential in abating NOM membrane fouling.
Several SPR methods were investigated in order to verify the interactions. A mixture of AL and CPP particles in solution prevented the non-specific adsorption of AL to the SAM surface. This change in association was then detected through SPR. Fluorescent EEM’s of the sensor surface verified that CPP and AL bound to the surface. This finding has fundamental significance in the interpretation of NOM-based membrane fouling.
To better understand the mechanisms behind non-specific adsorption, a mechanistic mathematical model was developed to describe the adsorption of BLGs onto the hydrophilic SAM. The resulting model performed well in terms of predicting adsorption based on SPR data. The model incorporated the monomer-dimer equilibrium of BLG in solution, highlighting the impact of protein aggregation on non-specific adsorption mechanisms.
For future studies, improvement in fluorescent FOP surface scan methodology would help identify different protein/molecules and conformations on the surface.
|
250 |
Techno-environmental assessment of marine gas turbines for the propulsion of merchant shipsBonet, Mathias Usman 07 1900 (has links)
This research study seeks to evaluate the techno-economic and environmental
implications of a variety of aero-derivative marine gas turbine cycles that have
been modelled for the propulsion of different types of merchant ships. It involves
the installation and operation of gas turbine propulsion systems in different
marine environmental conditions and aims to evaluate the effect of the
aerodynamic and hydrodynamic variations expected to be encountered by
these ships when they navigate across different climates and oceans along
selected fixed trade routes.
A combination of simulation tools developed in Cranfield University at the
Department of Power and Propulsion including the validated gas turbine
modelling and simulation code called “Turbomatch” and the “APPEM”
simulation code for the analysis and Prediction of exhaust pollutants have been
used along with the ongoing development of an integrated marine gas turbine
propulsion system simulation platform known as “Poseidon”. It is the main
objective of this research to upgrade the competence level of “Poseidon” so as
to facilitate the conduct of a variety of longer and more complex oceangoing
voyage scenarios through the introduction of an ambient temperature variation
numerical module. Expanding the existing code has facilitated the prediction of
the effect of varying aerodynamic and hydrodynamic conditions that may be
encountered by gas turbine propulsion systems when such ships navigate
through unstable ocean environments along their fixed trade routes at sea.
The consequences of operating the marine gas turbines under ideal weather
conditions has been investigated and compared with a wide range of severe
operating scenarios under unstable weather and sea conditions in combination
with hull fouling has been assessed. The techno-economic and environmental
benefits of intercooling/exhaust waste heat recuperation of the ICR model have
been predicted through the evaluation of different ship propulsion performance
parameters in a variety of voyage analysis leading to the prediction of fuel
consumption quantities, emission of NOx, CO2, CO and UHCs and the estimation of the HPT blade life as well. The different gas turbine cycle
configurations of the research were found to respond differently when operated
under various environmental profiles of the ship’s trade route and the number of
units for each model required to meet the power plant capacity in each scenario
and for each ship was assessed. The study therefore adds to the understanding
of the operating costs and asset management of marine gas turbine propulsion
systems of any ocean carrier and in addition it reveals the economic potentials
of using BOG as the main fuel for firing gas turbine propulsion plants of LNG
Carriers.
|
Page generated in 0.0797 seconds