• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 44
  • 19
  • 17
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 217
  • 51
  • 40
  • 37
  • 36
  • 33
  • 31
  • 29
  • 27
  • 26
  • 25
  • 25
  • 24
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Fractured Rock Masses as Equivalent Continua - A Numerical Study

Min, Ki-Bok January 2004 (has links)
In this thesis, fractured rock masses are treated asequivalent continua for large-scale analyses of rockengineering projects. Systematic developments are made for thedetermination of equivalent mechanical and hydraulic propertiesof fractured rock masses using a hybrid discrete fracturenetwork - distinct element method (DFN-DEM) approach. Thedetermined equivalent properties are then used for a far-fieldfinite element analysis of the thermo-mechanical impacts on thestress, deformation and permeability of fractured rockssurrounding a hypothetical geological repository of nuclearwaste. The geological data were extracted from the results ofan extensive site investigation programme at Sellafield, UK,conducted by Nirex UK Ltd. The scale dependencies of the hydraulic and mechanicalproperties were investigated by using multiple realizations ofthe fracture system geometry with increasing model sizes untilproperly defined hydraulic and mechanical representativeelementary volumes (REVs) were reached. The validity of thesecond order permeability tensor and the fourth-ordermechanical compliance tensor were tested for continuum analysesat larger scales. The REV was determined to be around 5 m formechanical and hydraulic data in this study. Analysis of the stress-dependent mechanical and hydraulicproperties shows that the effect of rock stresses is crucial.The elastic moduli increase significantly with the increase ofstress and an empirical equation of stress-dependent elasticmodulus is suggested based on results of numerical experiments.Calculations of the Poisson's ratios suggest greater valuesthan are normally assumed in practice. Depending on the stateof stress, permeability decreases or increases with increasingcompressive stress. Stress-induced flow channeling effect iscaptured by numerical modeling for the first time and detailedmechanisms of shear dilation of fractures are provided. Basedon the numerical experiments, a set of empirical equations wassuggested for the stress-dependent permeability, consideringboth normal deformation and shear dilation of fractures. Thermo-mechanical impact on the performance of ahypothetical repository at a far-field scale (5 km by 1 km) wasinvestigated with the stress-dependent equivalent propertiesdetermined at the REV scale. This analysis shows thatmechanical responses vary significantly depending on how themechanical properties were determined. The change ofpermeability due to the thermal loading is, however, notsignificant in this particular case. The thesis provides a framework for systematic analysis oflarge-scale engineering applications in fractured rock masses,such as geological repositories of nuclear wastes. Keyword:Fractured rock masses, Equivalent Continuum,Discrete Fracture Network (DFN), Distinct Element Method (DEM),Finite Element Method (FEM), Nuclear Waste Disposal, CoupledThermo-Hydro-Mechanical Processes
162

Upscaling of Flow, Transport, and Stress-effects in Fractured Rock / Uppskalning av flöde och ämnestransport i sprickigt berg samt bergspänningens inverkan

Öhman, Johan January 2005 (has links)
One of many applications of geohydraulic modelling is assessing the suitability of a site to host a nuclear waste repository. This modelling task is complicated by scale-dependent heterogeneity and coupled thermo-hydro-mechanical (THM) processes. The objective here was to develop methods for (i) upscaling flow and transport in fractured media from detailed-scale data and (ii) accounting for THM-induced effects on regional-scale transport. An example field data set was used for demonstration. A systematic framework was developed where equivalent properties of flow, transport, and stress-effects were estimated with discrete fracture network (DFN) modelling, at some block scale, and then transferred to a regional-scale stochastic continuum (SC) model. The selected block scale allowed a continuum approximation of flow, but not of transport. Instead, block-scale transport was quantified by transit time distributions and modelled with a particle random walk method at the regional scale. An enhanced SC-upscaling approach was developed to reproduce the DFN flow results more simply. This required: (i) weighting of the input well-test data by their conductivity-dependent test volumes and (ii) conductivity-dependent correlation structure. Interestingly, the best-fitting correlation structure resembled the density function of DFN transmissivities. Channelized transport, over distances exceeding the block scale, was modelled with a transport persistence length. A linear relationship was found between this persistence length and the macroscale dispersion coefficient, with a slope equal to a representative mean block-scale dispersion coefficient. A method was also developed to combine well-test data and rock-mechanical data in estimating fracture transmissivities, and its application was demonstrated. Finally, an overall sequential THM analysis was introduced allowing the estimation of the significance of waste-related thermo-mechanical (TM) effects on regional transport; here TM effects are calculated separately and their impact on fracture transmissivities were incorporated into the hybrid framework. For the particular case, their effects on regional-scale transport were small.
163

Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity Method

Lee, Byungtark 2011 August 1900 (has links)
In geothermal reservoirs and unconventional gas reservoirs with very low matrix permeability, fractures are the main routes of fluid flow and heat transport, so the fracture permeability change is important. In fact, reservoir development under this circumstance relies on generation and stimulation of a fracture network. This thesis presents numerical simulation of the response of a fractured rock to injection and extraction considering the role of poro-thermoelasticity and joint deformation. Fluid flow and heat transport in the fracture are treated using a finite difference method while the fracture and rock matrix deformation are determined using the displacement discontinuity method (DDM). The fractures response to fluid injection and extraction is affected both by the induced stresses as well as by the initial far-field stress. The latter is accounted for using the non-equilibrium condition, i.e., relaxing the assumption that the rock joints are in equilibrium with the in-situ stress state. The fully coupled DDM simulation has been used to carry out several case studies to model the fracture response under different injection/extractions, in-situ stresses, joint geometries and properties, for both equilibrium and non-equilibrium conditions. The following observations are made: i) Fluid injection increases the pressure causing the joint to open. For non-isothermal injection, cooling increases the fracture aperture drastically by inducing tensile stresses. Higher fracture aperture means higher conductivity. ii) In a single fracture under constant anisotropic in-situ stress (non-equilibrium condition), permanent shear slip is encountered on all fracture segments when the shear strength is overcome by shear stress in response to fluid injection. With cooling operation, the fracture segments in the vicinity of the injection point are opened due to cooling-induced tensile stress and injection pressure, and all the fracture segments experience slip. iii) Fluid pressure in fractures increases in response to compression. The fluid compressibility and joint stiffness play a role. iv) When there are injection and extraction in fractured reservoirs, the cooler fluid flows through the fracture channels from the injection point to extraction well extracting heat from the warmer reservoir matrix. As the matrix cools, the resulting thermal stress increases the fracture apertures and thus increases the fracture conductivity. v) Injection decreases the amount of effective stress due to pressure increase in fracture and matrix near a well. In contrast, extraction increases the amount of effective stress due to pressure drop in fracture and matrix.
164

Fractured Rock Masses as Equivalent Continua - A Numerical Study

Min, Ki-Bok January 2004 (has links)
<p>In this thesis, fractured rock masses are treated asequivalent continua for large-scale analyses of rockengineering projects. Systematic developments are made for thedetermination of equivalent mechanical and hydraulic propertiesof fractured rock masses using a hybrid discrete fracturenetwork - distinct element method (DFN-DEM) approach. Thedetermined equivalent properties are then used for a far-fieldfinite element analysis of the thermo-mechanical impacts on thestress, deformation and permeability of fractured rockssurrounding a hypothetical geological repository of nuclearwaste. The geological data were extracted from the results ofan extensive site investigation programme at Sellafield, UK,conducted by Nirex UK Ltd.</p><p>The scale dependencies of the hydraulic and mechanicalproperties were investigated by using multiple realizations ofthe fracture system geometry with increasing model sizes untilproperly defined hydraulic and mechanical representativeelementary volumes (REVs) were reached. The validity of thesecond order permeability tensor and the fourth-ordermechanical compliance tensor were tested for continuum analysesat larger scales. The REV was determined to be around 5 m formechanical and hydraulic data in this study.</p><p>Analysis of the stress-dependent mechanical and hydraulicproperties shows that the effect of rock stresses is crucial.The elastic moduli increase significantly with the increase ofstress and an empirical equation of stress-dependent elasticmodulus is suggested based on results of numerical experiments.Calculations of the Poisson's ratios suggest greater valuesthan are normally assumed in practice. Depending on the stateof stress, permeability decreases or increases with increasingcompressive stress. Stress-induced flow channeling effect iscaptured by numerical modeling for the first time and detailedmechanisms of shear dilation of fractures are provided. Basedon the numerical experiments, a set of empirical equations wassuggested for the stress-dependent permeability, consideringboth normal deformation and shear dilation of fractures.</p><p>Thermo-mechanical impact on the performance of ahypothetical repository at a far-field scale (5 km by 1 km) wasinvestigated with the stress-dependent equivalent propertiesdetermined at the REV scale. This analysis shows thatmechanical responses vary significantly depending on how themechanical properties were determined. The change ofpermeability due to the thermal loading is, however, notsignificant in this particular case.</p><p>The thesis provides a framework for systematic analysis oflarge-scale engineering applications in fractured rock masses,such as geological repositories of nuclear wastes.</p><p><b>Keyword:</b>Fractured rock masses, Equivalent Continuum,Discrete Fracture Network (DFN), Distinct Element Method (DEM),Finite Element Method (FEM), Nuclear Waste Disposal, CoupledThermo-Hydro-Mechanical Processes</p>
165

Simulation study of surfactant transport mechanisms in naturally fractured reservoirs

Abbasi Asl, Yousef 03 January 2011 (has links)
Surfactants both change the wettability and lower the interfacial tension by various degrees depending on the type of surfactant and how it interacts with the specific oil. Ultra low IFT means almost zero capillary pressure, which in turn indicates little oil should be produced from capillary imbibition when the surfactant reduces the IFT in naturally fractured oil reservoirs that are mixed-wet or oil-wet. What is the transport mechanism for the surfactant to get far into the matrix and how does it scale? Molecular diffusion and capillary pressure are much too slow to explain the experimental data. Recent dynamic laboratory data suggest that the process is faster when a pressure gradient is applied compared to static tests. A mechanistic chemical compositional simulator was used to study the effect of pressure gradient on chemical oil recovery from naturally fractured oil reservoirs for several different chemical processes (polymer, surfactant, surfactant-polymer, alkali-surfactant-polymer flooding). The fractures were simulated explicitly by using small gridblocks with fracture properties. Both homogeneous and heterogeneous matrix blocks were simulated. Microemulsion phase behavior and related chemistry and physics were modeled in a manner similar to single porosity reservoirs. The simulations indicate that even very small pressure gradients (transverse to the flow in the fractures) are highly significant in terms of the chemical transport into the matrix and that increasing the injected fluid viscosity greatly improves the oil recovery. Field scale simulations show that the transverse pressure gradients promote transport of the surfactant into the matrix at a feasible rate even when there is a high contrast between the permeability of the fractures and the matrix. These simulations indicate that injecting a chemical solution that is viscous (because of polymer or foam or microemulsion) and lowers the IFT as well as alters the wettability from mixed-wet to water-wet, produces more oil and produces it faster than static chemical processes. These findings have significant implications for enhanced oil recovery from naturally fractured oil reservoirs and how these processes should be optimized and scaled up from the laboratory to the field. / text
166

Hygorthermal performance assessment of damaged building materials

Rouchier, Simon 19 October 2012 (has links) (PDF)
An importantmatter in the field of building physics is the questioning of how wellbuildings sustain ageing, and how their overall efficiency evolves over their lifetime.Many causes for degradation are carried by moisture transfer through these porousmaterials. Indeed, infiltratedwatermay transport chemicals, altermechanical properties,and cause freeze thaw damage or mould development. It may also affect thermalproperties and energetic efficiency, as well as the health and comfort of the occupants.The understanding of how moisture transfer properties evolve during the lifespan ofbuildingmaterials is however far fromcomplete. The pore structure of amaterial itselfmay change over time, or be altered by cracks and defects caused bymechanical loadingand aggravated bymoisture-induced degradation. All sizes of fracturesmay have astrong impact on heat and moisture flow in the building envelope, and their influenceis to be accounted for in any long-termperformance assessment, not only of buildingand building components,but of any built structure in general. A considerable amountof work has already been performed in order to allow predicting the hygrothermal behaviourof buildings over longer periods of time. However, an accurate prediction of allranges of damage in a building component, from microscopic to macroscopic cracks,supposes an extensive knowledge of all damage-inducing, time-varying boundary conditionsof the problem during the simulation time. This also implies high computationalcosts, as well as important needs formaterial characterisation.As a complement to these predictive methods, a new approach was undertaken,combining experimental characterisation of crack patterns and numerical simulationsof coupled heat and moisture transfer. First, a preliminary study was conducted, consistingof measurements of the water vapour permeability of diffusely damaged constructionmaterials.This allowed identifying the experimental and numerical requirementsof the remainder of the work, which aimed at providing measurements of fracturenetwork geometries for their explicitmodelling in heat andmoisture transfer simulations.Digital image correlation and acoustic emission monitoring were then performedduring the degradation of cementitiousmaterials, in order to obtain quantitativedata on crack pattern geometries, and to assess the possibilities for damagemonitoringat the building scale. The optical technique, along with an appropriate imageprocessing procedure, was found suitable for providing precisemeasurements of fracturenetworks. Amethodwas also proposed for the interpretation of acoustic emissionrecordings in terms of damage quantification, localisation and identification.Then, a newmodel for coupled heat andmoisturemodelling in cracked porousmediawas developed, that allows including such measurements of fracture patterns intoa finite element mesh, and simulating flow accordingly. This model was validated onthe basis of experimentalmeasurements: digital image correlationwas performed duringthe fracturing of concrete samples, in which moisture uptake was then monitoredusing X-ray radiography. A good accordance was found between experimental and numericalresults in terms of 2-dimensional moisture concentration distributions. The validated code was then used for the simulation of test cases, in order to assess the hygrothermalperformance of damagedmulti-layered building components subjected toreal climatic conditions. The consequences of fractures on themoisture accumulationin walls, on the amplitude of sorption/desorption cycles and on the thermal performance,were observed.
167

Strength and deformability of fractured rocks

Noorian-Bidgoli, Majid January 2014 (has links)
This thesis presents a systematic numerical modeling framework to simulate the stress-deformation and coupled stress-deformation-flow processes by performing uniaxial and biaxial compressive tests on fractured rock models with considering the effects of different loading conditions, different loading directions (anisotropy), and coupled hydro-mechanical processes for evaluating strength and deformability behavior of fractured rocks. By using code UDEC of discrete element method (DEM), a series of numerical experiments were conducted on discrete fracture network models (DFN) at an established representative elementary volume (REV), based on realistic geometrical and mechanical data of fracture systems from field mapping at Sellafield, UK. The results were used to estimate the equivalent Young’s modulus and Poisson’s ratio and to fit the Mohr-Coulomb and Hoek-Brown failure criteria, represented by equivalent material properties defining these two criteria. The results demonstrate that strength and deformation parameters of fractured rocks are dependent on confining pressures, loading directions, water pressure, and mechanical and hydraulic boundary conditions. Fractured rocks behave nonlinearly, represented by their elasto-plastic behavior with a strain hardening trend. Fluid flow analysis in fractured rocks under hydro-mechanical loading conditions show an important impact of water pressure on the strength and deformability parameters of fractured rocks, due to the effective stress phenomenon, but the values of stress and strength reduction may or may not equal to the magnitude of water pressure, due to the influence of fracture system complexity. Stochastic analysis indicates that the strength and deformation properties of fractured rocks have ranges of values instead of fixed values, hence such analyses should be considered especially in cases where there is significant scatter in the rock and fracture parameters. These scientific achievements can improve our understanding of fractured rocks’ hydro-mechanical behavior and are useful for the design of large-scale in-situ experiments with large volumes of fractured rocks, considering coupled stress-deformation-flow processes in engineering practice. / <p>QC 20141111</p>
168

Application of multivariate statistics and Geographic Information Systems (GIS) to map groundwater quality in the Beaufort West area, Western Cape, South Africa

Solomon, Henok Goitom January 2013 (has links)
<p><font face="TimesNewRomanPSMT"> <p align="left">Groundwater in arid and semi-arid areas like the Karoo region of South Africa is an important source of domestic, agricultural and industrial source of fresh water. As a scarce resource, it requires extensive quality control and protection through innovative methods and efficient strategies. The town of Beaufort West and its vicinity use groundwater as a major source of municipal and private water supply. Forty nine groundwater samples were collected from spatially referenced boreholes located in and around the town of Beaufort West and were analyzed for <font face="TimesNewRomanPSMT">EC, pH, <font face="TimesNewRomanPSMT">TDS,<font face="TimesNewRomanPSMT">TH, SAR, TA, Ca</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">2+</font></font><font face="TimesNewRomanPSMT">, Mg</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">2+</font></font><font face="TimesNewRomanPSMT">, Na</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">+</font></font><font face="TimesNewRomanPSMT">, K</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">+</font></font><font face="TimesNewRomanPSMT">, HCO</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">3-</font></font><font size="3" face="TimesNewRomanPSMT">, Cl</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">-</font></font><font size="3" face="TimesNewRomanPSMT">, NO</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">3- </font></font><font size="3" face="TimesNewRomanPSMT">and SO</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">42- </font></font><font face="TimesNewRomanPSMT"><font size="3">according to&nbsp / <font face="TimesNewRomanPSMT">SANS 241 standards and tested for ionic balance. The groundwater of the study area was characterized using WHO and South African drinking water quality standards as well as TDS and Salinity hazard classifications. These comparisons and classifications characterized the groundwater of the study area as hard to very hard, with low to medium salinity hazard. These results are in accordance with the dominance of the ions Ca</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">2+</font></font><font face="TimesNewRomanPSMT">, Na</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">+</font></font><font face="TimesNewRomanPSMT">, HCO</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">3 - </font></font><font face="TimesNewRomanPSMT">and Cl</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">- </font></font><font face="TimesNewRomanPSMT">in the groundwater samples. Linear relationships between the hydrochemical variables were analysed through correlation and multiple regression analysis to relate the groundwater quality to the underlying hydrogeochemical processes. These linear relationships explained the contribution of the measured variables towards the salinity, hardness and anthropogenic contamination of the groundwater. The groundwater of the study area was also assessed using conventional trilinear diagrams and scatter plots to interpret the water quality and determine the major ion chemistry. The conventional methods highlighted the sources of the hydrochemical variables through analysis and interpretation of rock-water interaction and evaporations processes. To supplement <font face="TimesNewRomanPSMT">these conventional methods and reveal hidden hydrogeochemical phenomenon, multivariate statistical analyses were employed. Factor analysis reduced the hydrochemical variables into three factors (Hardness, Alkalinity and Landuse) that characterize the groundwater quality in relation to the source of its hydrochemistry. Furthermore, combination of Cluster (CA) and Discriminant analyses (DA) were used to classify the groundwater in to different hydrochemical facies and determine the dominant hydrochemical variables that characterize these facies. The classification results were also compared with the trilinear diagrammatic interpretations to highlight the advantages of these multivariate statistical methods. The CA and DA classifications resulted in to six different hydrochemical facies that are characterized by NO</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">3 -</font></font><font face="TimesNewRomanPSMT">, Na</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">+ </font></font><font face="TimesNewRomanPSMT">and pH. These three hydrochemical variables explain 93.9% of the differences between the water types and highlight the influence of natural hydrogeochemical and anthropogenic processes on the groundwater quality. All the univariate, bivariate, multivariate statistical and conventional hydrogeochemical analyses results were analyzed spatially using ArcGIS 10.0. The spatial analysis employed the Inverse Distance Weighted (IDW) interpolation method to predict spatial distribution of unmeasured areas and reclassification of the interpolation results for classification purposes. The results of the different analyses methods employed in the thesis illustrate that the groundwater in the study area is generally hard but permissible in the absence of better alternative water source and useful for irrigation.</font></font></font></font></font></font></p> </font></p>
169

Application of multivariate statistics and Geographic Information Systems (GIS) to map groundwater quality in the Beaufort West area, Western Cape, South Africa

Solomon, Henok Goitom January 2013 (has links)
<p><font face="TimesNewRomanPSMT"> <p align="left">Groundwater in arid and semi-arid areas like the Karoo region of South Africa is an important source of domestic, agricultural and industrial source of fresh water. As a scarce resource, it requires extensive quality control and protection through innovative methods and efficient strategies. The town of Beaufort West and its vicinity use groundwater as a major source of municipal and private water supply. Forty nine groundwater samples were collected from spatially referenced boreholes located in and around the town of Beaufort West and were analyzed for <font face="TimesNewRomanPSMT">EC, pH, <font face="TimesNewRomanPSMT">TDS,<font face="TimesNewRomanPSMT">TH, SAR, TA, Ca</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">2+</font></font><font face="TimesNewRomanPSMT">, Mg</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">2+</font></font><font face="TimesNewRomanPSMT">, Na</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">+</font></font><font face="TimesNewRomanPSMT">, K</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">+</font></font><font face="TimesNewRomanPSMT">, HCO</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">3-</font></font><font size="3" face="TimesNewRomanPSMT">, Cl</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">-</font></font><font size="3" face="TimesNewRomanPSMT">, NO</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">3- </font></font><font size="3" face="TimesNewRomanPSMT">and SO</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">42- </font></font><font face="TimesNewRomanPSMT"><font size="3">according to&nbsp / <font face="TimesNewRomanPSMT">SANS 241 standards and tested for ionic balance. The groundwater of the study area was characterized using WHO and South African drinking water quality standards as well as TDS and Salinity hazard classifications. These comparisons and classifications characterized the groundwater of the study area as hard to very hard, with low to medium salinity hazard. These results are in accordance with the dominance of the ions Ca</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">2+</font></font><font face="TimesNewRomanPSMT">, Na</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">+</font></font><font face="TimesNewRomanPSMT">, HCO</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">3 - </font></font><font face="TimesNewRomanPSMT">and Cl</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">- </font></font><font face="TimesNewRomanPSMT">in the groundwater samples. Linear relationships between the hydrochemical variables were analysed through correlation and multiple regression analysis to relate the groundwater quality to the underlying hydrogeochemical processes. These linear relationships explained the contribution of the measured variables towards the salinity, hardness and anthropogenic contamination of the groundwater. The groundwater of the study area was also assessed using conventional trilinear diagrams and scatter plots to interpret the water quality and determine the major ion chemistry. The conventional methods highlighted the sources of the hydrochemical variables through analysis and interpretation of rock-water interaction and evaporations processes. To supplement <font face="TimesNewRomanPSMT">these conventional methods and reveal hidden hydrogeochemical phenomenon, multivariate statistical analyses were employed. Factor analysis reduced the hydrochemical variables into three factors (Hardness, Alkalinity and Landuse) that characterize the groundwater quality in relation to the source of its hydrochemistry. Furthermore, combination of Cluster (CA) and Discriminant analyses (DA) were used to classify the groundwater in to different hydrochemical facies and determine the dominant hydrochemical variables that characterize these facies. The classification results were also compared with the trilinear diagrammatic interpretations to highlight the advantages of these multivariate statistical methods. The CA and DA classifications resulted in to six different hydrochemical facies that are characterized by NO</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">3 -</font></font><font face="TimesNewRomanPSMT">, Na</font><font size="1" face="TimesNewRomanPSMT"><font size="1" face="TimesNewRomanPSMT">+ </font></font><font face="TimesNewRomanPSMT">and pH. These three hydrochemical variables explain 93.9% of the differences between the water types and highlight the influence of natural hydrogeochemical and anthropogenic processes on the groundwater quality. All the univariate, bivariate, multivariate statistical and conventional hydrogeochemical analyses results were analyzed spatially using ArcGIS 10.0. The spatial analysis employed the Inverse Distance Weighted (IDW) interpolation method to predict spatial distribution of unmeasured areas and reclassification of the interpolation results for classification purposes. The results of the different analyses methods employed in the thesis illustrate that the groundwater in the study area is generally hard but permissible in the absence of better alternative water source and useful for irrigation.</font></font></font></font></font></font></p> </font></p>
170

Stress Effects on Solute Transport in Fractured rocks

Zhao, Zhihong January 2011 (has links)
The effect of in-situ or redistributed stress on solute transport in fractured rocks is one of the major concerns for many subsurface engineering problems. However, it remains poorly understood due to the difficulties in experiments and numerical modeling. The main aim of this thesis is to systematically investigate the influences of stress on solute transport in fractured rocks, at scales of single fractures and fracture networks, respectively. For a single fracture embedded in a porous rock matrix, a closed-form solution was derived for modeling the coupled stress-flow-transport processes without considering damage on the fracture surfaces. Afterwards, a retardation coefficient model was developed to consider the influences of damage of the fracture surfaces during shear processes on the solute sorption. Integrated with particle mechanics models, a numerical procedure was proposed to investigate the effects of gouge generation and microcrack development in the damaged zones of fracture on the solute retardation in single fractures. The results show that fracture aperture changes have a significant influence on the solute concentration distribution and residence time. Under compression, the decreasing matrix porosity can slightly increase the solute concentration. The shear process can increase the solute retardation coefficient by offering more sorption surfaces in the fracture due to gouge generation, microcracking and gouge crushing. To study the stress effects on solute transport in fracture systems, a hybrid approach combing the discrete element method for stress-flow simulations and a particle tracking algorithm for solute transport was developed for two-dimensional irregular discrete fracture network models. Advection, hydrodynamic dispersion and matrix diffusion in single fractures were considered. The particle migration paths were tracked first by following the flowing fluid (advection), and then the hydrodynamic dispersion and matrix diffusion were considered using statistic methods. The numerical results show an important impact of stress on the solute transport, by changing the solute residence time, distribution and travel paths. The equivalent dispersion coefficient is scale dependent in an asymptotic or exponential form without stress applied or under isotropic compression conditions. Matrix diffusion plays a dominant role in solute transport when the hydraulic gradient is small. Outstanding issues and main scientific achievements are also discussed. / QC 20111011

Page generated in 0.2016 seconds