Spelling suggestions: "subject:"fractured"" "subject:"stractured""
191 |
Reconciliation Through Truth? - A Comparison of the Judicial Approach of the International Criminal Tribunal for the Former Yugoslavia and the Amnesty Principle of the Truth and Reconciliation Commission of South AfricaMosler, David January 2011 (has links)
Throughout the past three decades the world has witnessed an increased transition of states from autocratic systems to liberal democracies. During such transitions the reconciliation of societies fractured by previous human atrocities is an integral part for success. This article explores the impacts of principles of truth and justice on reconciliation of fractured societies during the process of transitional justice. Throughout the process it will provide an insight on different aspects and levels of the terminology of reconciliation. To illustrate the difference between a judicial approach and the process of amnesty giving, it will contrast the International Criminal Tribunal for the Former Yugoslavia and the Truth and Reconciliation Commission of South Africa. Furthermore, it will provide an analytical account on the impact of internal actors versus external actors on reconciliation of fractured societies. This analysis will provide an understanding of the factors at work during reconciliation as a process and an outcome.
|
192 |
Exploring the effects of aperture size, aperture variability and matrix properties on biocolloid transport and retention in a single saturated fractureBurke, Margaret G. 04 1900 (has links)
<p>To increase the understanding of contaminant transport, specifically biocolloid transport in fractured media, a series of experiments were conducted on single saturated fractures. Hydraulic and solute tracer tests were used to characterize three separate fractures: one natural fracture and two synthetic fractures. Zeta potentials are reported showing the high negative electric charge of the synthetic fractures relative to the natural fractures in the phosphate buffer solution (PBS) used during the biocolloid tracer tests.</p> <p><em>E. coli</em> RS2-GFP tracer tests were conducted on all three fractures at specific discharges of 5 m/d, 10 m/d and 30 m/d. Lower <em>E. coli</em> recovery was consistently observed in the natural fracture, due to 1) attachment because of the lower negative charge of the natural fracture relative to the synthetic fracture; and 2) the presence of dead end fractures within the fracture matrix. In the synthetic fractures, where surface charges were equal, in the larger, more variable fracture aperture, lower recoveries were found when compared to the smaller, less variable fracture aperture, which was not expected. This indicates that aperture variability plays a larger role than fracture aperture size in the retention of biocolloids in fractures.</p> <p>Differential transport was consistently observed in all three fractures, but was more prominent in the synthetic fractures. This indicates that charge exclusion plays a more dominant role in the differential transport of colloids than size exclusion, though size exclusion cannot be eliminated as a retention mechanism based on these experiments. Differential transport was also heavily influenced by specific discharge as the difference in arrival times between the bromide and <em>E. coli</em> increased in all three fractures as the specific discharge decreased.</p> <p>Visualization tests were completed on the synthetic fractures showing the location of multiple preferential flow paths, as well as areas with low flow.</p>
|
193 |
[pt] MODELAGEM NUMÉRICA DE FLUXO EM MEIOS FRATURADOS E MEIOS POROSOS FRATURADOS / [en] NUMERICAL MODELLING OF FLOW IN FRACTURED AND FRACTURED POROUS MEDIACESAR AUGUSTO TORRES PAITAN 29 September 2014 (has links)
[pt] Este trabalho apresenta o desenvolvimento/montagem de um sistema computacional para análise de fluxo em meios porosos, meios fraturados, porosos fraturados e em combinações destes meios, considerando regime permanente ou transiente, sob condições saturadas e não saturadas. O sistema consiste de quatro programas, três programas de funções específicas interligadas por rotinas de programação feitas na linguagem Cmaismais e o quarto é um visualizador de resultados. O FracGen 3D (Telles, 2006) gera fraturas ou famílias de fraturas de forma determinística ou probabilística. O programa ICEM CFD v.14 divide o domínio de interesse em sub-dominios, através da geração de malha de elementos finitos. O programa FTPF-3D (Telles, 2006) utiliza o método de elementos finitos para discretizar as equações governantes no espaço e em diferenças finitas no tempo, e para resolver a não linearidade, utiliza o método iterativo de Picard ou o método iterativo BFGS e finalmente O Pos3D é o responsável pela visualização dos resultados. Neste trabalho foram desenvolvidos cinco exemplos, dois deles para a validação deste procedimento, e três aplicados a um talude típico do Rio de Janeiro, os quais incluem fraturas verticais e juntas de alívio. Estes casos estudados verificam a influência das fraturas nos meios porosos em termos de carga de pressão, totais e campo de velocidades, para a verificação do comportamento hidráulico dos maciços e de eventuais instabilidades. / [en] This work presents the development/assembly of a computational system for flow analysis in porous media, fractured and fractured porous media and in combination of both media, considering steady or transient states under saturated and unsaturated conditions. The system comprehends four computational programs, three of them of specific functions interconnected by Cplusplus programing routines and the last program is an output viewer. FracGen 3D program (Telles, 2006) generates fractures or fracture families in a determinist or probabilistic way. ICEM CFD v.14 program divides the interest domain in sub-domains by means of the element finite mesh generation. FTPF-3D program (Telles, 2006) uses the element finite method to discretize the governing equations in the space domain and the difference finite method for the time domain and for solving the nonlinearity is used the iterative Picard or BFGS method, so that, finally, Pos3D viewer program is answerable by visualization of the results. In the present dissertation five examples were developed, two of them for the validation of this procedure and the three others applied to a typical slope in Rio de Janeiro, which include vertical fractures and relief joints on their slopes. All those studied cases evaluate the influence of the fractures on porous media in terms of pressure and total heads and velocity fields for verifying of the hydraulic behavior of solid masses and eventual instabilities.
|
194 |
[pt] MODELAGEM NUMÉRICA PARA AVALIAÇÃO DO CONTROLE DAS ÁGUAS NA MINERAÇÃO / [en] NUMERICAL MODELING TO ASSESS THE CONTROL OF WATER IN MINEHUGO DAVID NINANYA DE LA CRUZ 25 June 2015 (has links)
[pt] O rebaixamento e controle das águas subterrâneas são atividades
implementadas e monitoradas de forma contínua ao longo da vida dos projetos de
mineração subterrânea ou a céu aberto. A implementação apropriada e eficiente
destas atividades depende de estudos hidrogeológicos de grande porte, que
permitem avaliar os sistemas de controle mais adequados. A procura da eficiência
técnico-econômica destes processos demanda análises numéricas de fluxo
tridimensionais de toda a região em estudo, caracterizada por profundas e
complexas estratificações de materiais permeáveis abaixo do lençol freático, como
normalmente abrangem projetos de mineração, onde as soluções analíticas não
podem mais ser aplicadas. O presente trabalho de pesquisa contribui na melhor
compreensão das formulações numéricas que representam o comportamento do
fluxo subterrâneo, através de dois estudos de caso, o primeiro em uma mina
subterrânea e segundo em uma mina superficial. No caso da mina subterrânea
foram incorporadas feições cársticas através de elementos discretos 1D dentro de
um modelo tridimensional de elementos finitos com o intuito de representar
caminhos preferenciais de fluxo. Foram discutidas as vantagens de incorporar tais
feições de forma explicita, quantificando o fluxo que passam por estas, que
alimentam à mina através de conexões diretas com um rio adjacente. Estes
elementos discretos permitem uma representação mais realista do meio
hidrogeológico e ao mesmo tempo, uma avaliação mais aprimorada dos efeitos no
comportamento do fluxo subterrâneo devido à impermeabilização superficial do
rio, como a solução mais coerente para este problema de infiltração. Também foi
elaborado um modelo hidrogeológico conceitual para representar o
comportamento hidrogeológico de uma mina a céu aberto, desenvolvendo uma
sistemática de uso adequado das condições de contorno e de restrição, a calibração
deste modelo e a verificação de diferentes cenários de fluxo, como resultado da
incorporação das diferentes técnicas de controle das águas avaliadas em regime
transiente, que abrange poços de bombeamento, paredes cut-off assim como
ponteiras filtrantes e drenos horizontais. As diferentes técnicas modeladas
mostraram resultados satisfatórios, sendo que arranjos de várias técnicas,
configuradas de forma localizada, resultam ser mais recomendáveis e eficientes
para tratar problemas particulares. / [en] Dewatering and groundwater control are activities continuously
implemented and monitored throughout the duration of underground mining or
open pit projects. The proper and efficient implementation of these activities
depends on large hydrogeological studies, for assessing the most appropriate
control systems. The demand for technical and economic efficiency of these
processes requires three-dimensional flow numerical analysis of the entire study
area, characterized by deep and complex stratifications of permeable materials
below the water table, as usually cover mining projects, where analytical solutions
cannot be applied. The present research contributes to a better understanding of
the numerical formulations that represent the behavior of groundwater flow via
two case studies—the first in an underground mine and the second in a surface
mine. In the case of the underground mine, 1D discrete elements were
incorporated within a finite-three dimensional model in order to represent
preferential flow paths. The advantages of incorporating such features explicitly to
quantify the flow passing through them, that feed the mine through direct
connections with an adjacent river, were discussed. The use of discrete elements
allows for a more realistic representation of the hydrogeological environment and,
at the same time, a more refined assessment of the effects on the behavior of
groundwater flow due to surface sealing of the river, as the most coherent solution
to this infiltration problem. Furthermore, a conceptual hidrogeologic model
representing the hydrogeological behavior of an open pit mine was created,
developing a system of the appropriate use of boundary and constraint conditions,
calibrating the model and verifying different flow scenarios, as a result of the
incorporation of different water control techniques assessed in transient regime,
such as covering pumping wells, cut-off walls as well as wellpoints and horizontal
drains. The different techniques modeled showed satisfactory results, with various
arrangements of techniques configured in a localized form resulting in the most
desirable and efficient treatments for particular problems.
|
195 |
Modélisation du comportement hydromécanique des réservoirs fracturés à double porosité et double perméabilité. / A hydro-mechanical modeling of double porosity and double permeability fractured reservoirsDang, Hong Lam 21 February 2018 (has links)
La modélisation des massifs rocheux fracturés est un problèmes important dans de nombreux secteurs industriels, y compris, mais sans s'y limiter à l'exploitation pétrolière et gazière. Dans la littérature, les roches fracturées sont reconnues comme des milieux à double porosité et double perméabilité dans lesquels le réseau de fractures fournit la perméabilité primaire et la matrice rocheuse la perméabilité secondaire. L'idée de la dissociation de l'écoulement à l'intérieur du réseau de fractures et de la matrice,la double perméabilité, est toujours contestée pour les réservoirs fracturés. De nombreuses contributions sur cette question ont été présentées dans la littérature et les méthodes utilisées pourraient être classées dans deux approches principales : approches continues et discontinues. Chaque approche a ses avantages et ses limites. Pour surmonter les limites en gardant les avantages de ces deux approches, une approche nommée Embedded Fracture Continumm Approach (EFCA) qui emprunte le concept du modèle continu et intègre également l'effet des fractures explicites est considérée dans cette thèse. L'idée principale de cette approche repose sur le concept de la « cellule fracturée » représentant un milieu poreux qui a ses propres propriétés calculées à partir des propriétés de la matrice poreuse et des fractures qui la traversent. Le code de calcul développé dans le cadre de ce travail est basé sur la bibliothèque source DEAL.II. L'exactitude de l'EFCA a été étudiée à travers de différents tests. Plusieurs applications traitées dans ce travail comme la détermination des propriétés hydro-mécaniques effectives d'un site réel, estimation de la production de puits dans laquelle les fractures sont modélisées explicitement, démontrent la performance de l'EFCA dans la modélisation des roches fracturées ainsi que l'effet de la double porosité et de la double perméabilité aux comportements des réservoirs fracturés. / Fractured rock masses modeling is a challenge issue in many field of industry including but not limited to oiland gas exploitation. In the literature, fractured rock masse are in many cases recognized as double permeability medium in which fracture network provides the primary permeability and rock matrix plays asthe second one. The idea of dissociation of flow inside the fracture network and the matrix, the double permeability, is still challenged for fractured reservoirs. Numerous contributions on this issue have been presented in the past could be cast in two main approaches: continuum media approach and discontinuous approach. Each approach has its advantages and limitations. To overcome the limitation and to take advantage of these two approaches, the Embedded Fractured Continuum Approach (EFCA) which borrows the concept of continuum models and also incorporates the effect of explicit fractures is considered in this thesis. The principal idea of this approach lies on the concept of fracture cell representing a porous medium that has their own properties calculated from the properties of porous matrix and fractures intersecting it.The development in this work was conducted by using the library source code DEAL.II. The accuracy of EFCA was investigated through different verifications. Through some applications: determination of effective hydro-mechanical properties of an actual site, estimation of well production in which necessary fractures are modeled explicitly, we demonstrate the performance of the EFCA in the modeling fracture drock masses as well as the effect of double porosity and double permeability on behaviours of fractured reservoirs.
|
196 |
Mathematical and Statistical Investigation of Steamflooding in Naturally Fractured Carbonate Heavy Oil ReservoirsShafiei, Ali 25 March 2013 (has links)
A significant amount of Viscous Oil (e.g., heavy oil, extra heavy oil, and bitumen) is trapped in Naturally Fractured Carbonate Reservoirs also known as NFCRs. The word VO endowment in NFCRs is estimated at ~ 2 Trillion barrels mostly reported in Canada, the USA, Russia, and the Middle East. To date, contributions to the world daily oil production from this immense energy resource remains negligible mainly due to the lack of appropriate production technologies. Implementation of a VO production technology such as steam injection is expensive (high capital investment), time-consuming, and people-intensive. Hence, before selecting a production technology for detailed economic analysis, use of cursory or broad screening tools or guides is a convenient means of gaining a quick overview of the technical feasibility of the various possible production technologies applied to a particular reservoir. Technical screening tools are only available for the purpose of evaluation of the reservoir performance parameters in oil sands for various thermal VO exploitation technologies such as Steam Assisted Gravity Drainage (SAGD), Cyclic Steam Stimulation (CSS), Horizontal well Cyclic steam Stimulation (HCS), and so on. Nevertheless, such tools are not applicable for VO NFCRs assessment without considerable modifications due to the different nature of these two reservoir types (e.g., presence and effects of fracture network on reservoir behavior, wettability, lithology, fabric, pore structure, and so on) and also different mechanisms of energy and mass transport. Considering the lack of robust and rapid technical reservoir screening tools for the purpose of quick assessment and performance prediction for VO NFCRs under thermal stimulation (e.g., steamflooding), developing such fast and precise tools seems inevitable and desirable.
In this dissertation, an attempt was made to develop new screening tools for the purpose of reservoir performance prediction in VO NFCRs using all the field and laboratory available data on a particular thermal technology (vertical well steamflooding). Considering the complex and heterogeneous nature of the NFCRs, there is great uncertainty associated with the geological nature of the NFCRs such as fracture and porosity distribution in the reservoir which will affect any modeling tasks aiming at modeling of processes involved in thermal VO production from these types of technically difficult and economically unattractive reservoirs. Therefore, several modeling and analyses technqiues were used in order to understand the main parameters controlling the steamflooding process in NFCRs and also cope with the uncertainties associated with the nature of geologic, reservoir and fluid properties data. Thermal geomechanics effects are well-known in VO production from oil sands using thermal technologies such as SAGD and cyclic steam processes. Hence, possible impacts of thermal processes on VO NFCRs performance was studied despite the lack of adequate field data.
This dissertation makes the following contributions to the literature and the oil industry: Two new statistical correlations were developed, introduced, and examined which can be utilized for the purpose of estimation of Cumulative Steam to Oil Ratio (CSOR) and Recovery Factor (RF) as measures of process performance and technical viability during vertical well steamflooding in VO Naturally Fractured Carbonate Reservoirs (NFCRs). The proposed correlations include vital parameters such as in situ fluid and reservoir properties. The data used are taken from experimental studies and also field trials of vertical well steamflooding pilots in viscous oil NFCRs reported in the literature. The error percentage for the proposed correlations is < 10% for the worst case and contains fewer empirical constants compared with existing correlations for oil sands. The interactions between the parameters were also considered. The initial oil saturation and oil viscosity are the most important predictive factors. The proposed correlations successfully predicted steam/oil ratios and recovery factors in two heavy oil NFCRs. These correlations are reported for the first time in the literature for this type of VO reservoirs.
A 3-D mathematical model was developed, presented, and examined in this research work, investigating various parameters and mechanisms affecting VO recovery from NFCRs using vertical well steamflooding. The governing equations are written for the matrix and fractured medium, separately. Uncertainties associated with the shape factor for the communication between the matrix and fracture is eliminated through setting a continuity boundary condition at the interface. Using this boundary condition, the solution method employed differs from the most of the modeling simulations reported in the literature. A Newton-Raphson approach was also used for solving mass and energy balance equations. RF and CSOR were obtained as a function of steam injection rate and temperature and characteristics of the fractured media such as matrix size and permeability. The numerical solution clearly shows that fractures play an important role in better conduction of heat into the matrix part. It was also concluded that the matrix block size and total permeability are the most important parameters affecting the dependent variables involved in steamflooding.
A hybrid Artificial Neural Network model optimized by co-implementation of a Particle Swarm Optimization method (ANN-PSO) was developed, presented, and tested in this research work for the purpose of estimation of the CSOR and RF during vertical well steamflooding in VO NFCRs. The developed PSO-ANN model, conventional ANN models, and statistical correlations were examined using field data. Comparison of the predictions and field data implies superiority of the proposed PSO-ANN model with an absolute average error percentage < 6.5% , a determination coefficient (R2) > 0.98, and Mean Squared Error (MSE) < 0.06, a substantial improvement in comparison with conventional ANN model and empirical correlations for prediction of RF and CSOR. This indicates excellent potential for application of hybrid PSO-ANN models to screen VO NFCRs for steamflooding. This is the first time that the ANN technique has been applied for the purpose of performance prediction of steamflooding in VO NFCRs and also reported in the literature. The predictive PSO-ANN model and statistical correlations have strong potentials to be merged with heavy oil recovery modeling softwares available for thermal methods. This combination is expected to speed up their performance, reduce their uncertainty, and enhance their prediction and modeling capabilities.
An integrated geological-geophysical-geomechanical approach was designed, presented, and applied in the case of a NFCR for the purpose of fracture and in situ stresses characterization in NFCRs. The proposed methodology can be applied for fracture and in situ stresses characterization which is beneficial to various aspects of asset development such as well placement, drilling, production, thermal reservoir modeling incorporating geomechanics effects, technology assessment and so on. A conceptual study was also conducted on geomechanics effects in VO NFCRs during steamflooding which is not yet well understood and still requires further field, laboratory, and theoretical studies. This can be considered as a small step forward in this area identifying positive potential of such knowledge to the design of large scale thermal operations in VO NFCRs.
|
197 |
Mathematical and Statistical Investigation of Steamflooding in Naturally Fractured Carbonate Heavy Oil ReservoirsShafiei, Ali 25 March 2013 (has links)
A significant amount of Viscous Oil (e.g., heavy oil, extra heavy oil, and bitumen) is trapped in Naturally Fractured Carbonate Reservoirs also known as NFCRs. The word VO endowment in NFCRs is estimated at ~ 2 Trillion barrels mostly reported in Canada, the USA, Russia, and the Middle East. To date, contributions to the world daily oil production from this immense energy resource remains negligible mainly due to the lack of appropriate production technologies. Implementation of a VO production technology such as steam injection is expensive (high capital investment), time-consuming, and people-intensive. Hence, before selecting a production technology for detailed economic analysis, use of cursory or broad screening tools or guides is a convenient means of gaining a quick overview of the technical feasibility of the various possible production technologies applied to a particular reservoir. Technical screening tools are only available for the purpose of evaluation of the reservoir performance parameters in oil sands for various thermal VO exploitation technologies such as Steam Assisted Gravity Drainage (SAGD), Cyclic Steam Stimulation (CSS), Horizontal well Cyclic steam Stimulation (HCS), and so on. Nevertheless, such tools are not applicable for VO NFCRs assessment without considerable modifications due to the different nature of these two reservoir types (e.g., presence and effects of fracture network on reservoir behavior, wettability, lithology, fabric, pore structure, and so on) and also different mechanisms of energy and mass transport. Considering the lack of robust and rapid technical reservoir screening tools for the purpose of quick assessment and performance prediction for VO NFCRs under thermal stimulation (e.g., steamflooding), developing such fast and precise tools seems inevitable and desirable.
In this dissertation, an attempt was made to develop new screening tools for the purpose of reservoir performance prediction in VO NFCRs using all the field and laboratory available data on a particular thermal technology (vertical well steamflooding). Considering the complex and heterogeneous nature of the NFCRs, there is great uncertainty associated with the geological nature of the NFCRs such as fracture and porosity distribution in the reservoir which will affect any modeling tasks aiming at modeling of processes involved in thermal VO production from these types of technically difficult and economically unattractive reservoirs. Therefore, several modeling and analyses technqiues were used in order to understand the main parameters controlling the steamflooding process in NFCRs and also cope with the uncertainties associated with the nature of geologic, reservoir and fluid properties data. Thermal geomechanics effects are well-known in VO production from oil sands using thermal technologies such as SAGD and cyclic steam processes. Hence, possible impacts of thermal processes on VO NFCRs performance was studied despite the lack of adequate field data.
This dissertation makes the following contributions to the literature and the oil industry: Two new statistical correlations were developed, introduced, and examined which can be utilized for the purpose of estimation of Cumulative Steam to Oil Ratio (CSOR) and Recovery Factor (RF) as measures of process performance and technical viability during vertical well steamflooding in VO Naturally Fractured Carbonate Reservoirs (NFCRs). The proposed correlations include vital parameters such as in situ fluid and reservoir properties. The data used are taken from experimental studies and also field trials of vertical well steamflooding pilots in viscous oil NFCRs reported in the literature. The error percentage for the proposed correlations is < 10% for the worst case and contains fewer empirical constants compared with existing correlations for oil sands. The interactions between the parameters were also considered. The initial oil saturation and oil viscosity are the most important predictive factors. The proposed correlations successfully predicted steam/oil ratios and recovery factors in two heavy oil NFCRs. These correlations are reported for the first time in the literature for this type of VO reservoirs.
A 3-D mathematical model was developed, presented, and examined in this research work, investigating various parameters and mechanisms affecting VO recovery from NFCRs using vertical well steamflooding. The governing equations are written for the matrix and fractured medium, separately. Uncertainties associated with the shape factor for the communication between the matrix and fracture is eliminated through setting a continuity boundary condition at the interface. Using this boundary condition, the solution method employed differs from the most of the modeling simulations reported in the literature. A Newton-Raphson approach was also used for solving mass and energy balance equations. RF and CSOR were obtained as a function of steam injection rate and temperature and characteristics of the fractured media such as matrix size and permeability. The numerical solution clearly shows that fractures play an important role in better conduction of heat into the matrix part. It was also concluded that the matrix block size and total permeability are the most important parameters affecting the dependent variables involved in steamflooding.
A hybrid Artificial Neural Network model optimized by co-implementation of a Particle Swarm Optimization method (ANN-PSO) was developed, presented, and tested in this research work for the purpose of estimation of the CSOR and RF during vertical well steamflooding in VO NFCRs. The developed PSO-ANN model, conventional ANN models, and statistical correlations were examined using field data. Comparison of the predictions and field data implies superiority of the proposed PSO-ANN model with an absolute average error percentage < 6.5% , a determination coefficient (R2) > 0.98, and Mean Squared Error (MSE) < 0.06, a substantial improvement in comparison with conventional ANN model and empirical correlations for prediction of RF and CSOR. This indicates excellent potential for application of hybrid PSO-ANN models to screen VO NFCRs for steamflooding. This is the first time that the ANN technique has been applied for the purpose of performance prediction of steamflooding in VO NFCRs and also reported in the literature. The predictive PSO-ANN model and statistical correlations have strong potentials to be merged with heavy oil recovery modeling softwares available for thermal methods. This combination is expected to speed up their performance, reduce their uncertainty, and enhance their prediction and modeling capabilities.
An integrated geological-geophysical-geomechanical approach was designed, presented, and applied in the case of a NFCR for the purpose of fracture and in situ stresses characterization in NFCRs. The proposed methodology can be applied for fracture and in situ stresses characterization which is beneficial to various aspects of asset development such as well placement, drilling, production, thermal reservoir modeling incorporating geomechanics effects, technology assessment and so on. A conceptual study was also conducted on geomechanics effects in VO NFCRs during steamflooding which is not yet well understood and still requires further field, laboratory, and theoretical studies. This can be considered as a small step forward in this area identifying positive potential of such knowledge to the design of large scale thermal operations in VO NFCRs.
|
198 |
[en] OIL WELLS STABILITY IN FRACTURED MEDIA USING THE DISCRETE ELEMENT METHOD / [pt] ESTABILIDADE DE POÇOS DE PETRÓLEO EM MEIOS FRATURADOS EMPREGANDO O MÉTODO DOS ELEMENTOS DISCRETOSJUAN DAVID VELILLA URIBE 07 October 2013 (has links)
[pt] A estabilidade de poços de petróleo é convencionalmente analisada empregando soluções analíticas que não são adequadas para modelagem de meios fraturados, devido a suposições de meio continuo. Esta dissertação tem como objetivo principal desenvolver uma metodologia computacional para geração de janela operacional utilizando uma solução numérica, adequada para meios fraturados. No trabalho foi escolhido o software UDEC (Universal Distinct Element Code), que é baseado no método dos elementos discretos (MED). Este método considera o maciço rochoso como a união de blocos de rocha intactos, unidos pelas fraturas e cujo comportamento físico para cada elemento pode ser analisado individualmente. A modelagem computacional no UDEC foi realizada mediante uma analise hidromecânica acoplada. Esta modelagem permitiu avaliar a influencia de alguns mecanismos que governam a estabilidade de poços, como: as tensões in situ, a poropressão e a orientação, espaçamento e persistência das famílias de fraturas. Os resultados numéricos mostram o efeito das fraturas na orientação e magnitude das tensões, além da magnitude da poropressão resultando em cálculos dos limites de colapso inferior e fratura superior da rocha mais realistas. / [en] The stability of oil wells is conventionally analyzed using analytical solutions that are often not suitable for modeling fractured media due to assumptions of continuous medium. This work has as main objective to develop a computational method for generating mud window using a numerical solution, suitable for fractured media. The software chosen for this work was the UDEC (Universal Distinct Element Code), which is based on discrete element method (DEM). This method considers the rock mass as the union of blocks of intact rock jointed by fractures, and whose physical behavior for each element can be analyzed individually. Computational modeling in UDEC was carried out in a coupled hydromechanical analysis. This modeling allowed to evaluate the influences of some of the mechanisms that govern the stability of wells, as in situ stresses, pore pressure and orientation, spacing and persistence of families of fractures. Numerical results show the effect of fracture orientation and magnitude of the stresses, besides the magnitude of the pore pressure resulting in more realistic calculations of lower collapse and upper fracture of the rock mass.
|
199 |
Caractérisation de la dynamique de transports dans les milieux fractures par tomographie de resistivité électrique : développements méthodologiques et expérimentaux. / Quantification of solute transport parameters in porous media by electrical resistivity tomography : methodological and experimental progressLekmine, Gregory 27 June 2011 (has links)
La tomographie de résistivité électrique (ERT) est une méthode courante géophysique de terrain, souvent utilisée pour détecter et l’évolution suivre les panaches de polluants en zone saturée. L’ERT est cependant une méthode intégratrice dont la fiabilité des modèles est confronte aux problèmes de non unicité des solutions du problème inverse. Ces contraintes limitent l’interprétation des modèles a un aspect qualitatif de la distribution des contrastes de résistivité modélises en 2D ou 3D, résultant du choix des paramètres d’inversion et de l’association de paramètres du milieu non identifiables a l’échelle du volume poreux.Cette thèse propose de tester la faisabilité de la méthode pour quantifier les paramètres de transport de polluants et de solutés miscibles au contact des eaux souterraines, ainsi que la sensibilité des paramètres d’inversion les plus influents sur la modélisation.Les tests expérimentaux sont réalisés en laboratoire sur des empilements 2D de billes de verre sphériques (de l’ordre de la 100èn de μm) dans un réservoir en plexiglas transparent. Deux réseaux verticaux de 21 électrodes sont disposes sur les bords latéraux du réservoir pour effectuer le suivi ERT du traceur sale (NaCl dissout) a partir de 210 points de mesures en dipôle-dipôle transverse acquis toutes les 5 minutes afin d’optimiser la résolution temporelle. Le dispositif est également dispose face a un panneau lumineux permettant de réalise un suivi vidéo simultané du colorant.L’analyse vidéo révèle une propagation plus rapide du colorant sur les bords latéraux qui reste somme toute négligeable pour les débits a la pompe les plus faibles. En revanche les mesures ERT sont fortement perturbées par les effets résistant de la cellule plexiglas qui se répercutent sur les modèles. La normalisation des mesures de résistivité apparente à partir d’une série acquise à l’état initial permet de les atténuer fortement.La modélisation est particulièrement sensible au choix du maillage, aux normes appliques (L1 ou L2) sur les données et les paramètres, et au facteur d’amortissement _. Des valeurs trop élevées de _ et du facteur d’acceptance tendent à lisser les contrastes au niveau du front de dispersion et augmentent l’impact des effets des bords horizontaux sur D et _. A l’inverse, une modélisation contrainte par de faibles valeurs de α et du facteur d’acceptante donne des résultats plus proches l’analyse vidéo, mais produit des effets de bosses à l’avant et à l’arrière du front.La vitesse interstitiel u est indépendante du choix des paramètres d’inversion pour l’ERT. Pour les deux méthodes u est toujours inférieure au débit impose par la pompe, dont le décalage est exprimé par le facteur retard Rf . Les effets de retard résultent de l’adsorption du Na+ sur les surfaces des billes de verre chargées négativement qui retarde le front de dispersion du suivi ERT. Pour le suivi vidéo, la taille importante de la molécule du colorant favorise son piégeage dans les zones ou la perméabilité est plus faible, en plus d’une éventuelle affinité avec la surface solide. Les contrastes de conductivité et la stabilité de l’interface créent par la différence de densité entre les fluides testes ici n’ont pas d’influences significatives sur la dispersion qui est dominée par le débit impose a la pompe. Les estimations du coefficient de dispersion D en fonction du nombre de Péclet sont cohérentes avec la courbe théorique de Bachmat (1968). Cependant la dispersivité α augmente pour les vitesses d’écoulement les plus élevées. Les premières expérimentations de terrain réalises en 2D sur des sables de Fontainebleau présentent l’avantage de s’affranchir des effets de bords inhérents au laboratoire. En revanche la recalibration des données normalisées par la loi de Archie est plus complexe puisqu’il est nécessaire de tenir compte de l’état de saturation de la résistivité des fluides initialement présents. De plus l’erreur importante sur les modèles ne permet pas de déduire une estimation fiable des paramètres de transport u, α (ou D), et Rf . / Electrical resistivity tomography is a common geophysical method often used to detect and follow plumepollutants in aquifers. However ERT is an integrative method whose reliability of the models is faced tothe non-unicity of the inverse problem solutions. These constraints limit the interpretation to a qualitativeview of the resistivity contrasts modelled in 2D or 3D, resulting of the chosen inverse parameters and thecombination of several hydrodynamic paramaters related to the poral network.The purpose of this thesis was to test the abilities of the ERT imaging to quantify solute transport parametersin miscible displacement occurred in groundwater and the sensitivity of inverse parameters most affectingthe modelled dispersion front.Laboratory experiments are conducted on glass beads poured into a transparent plexiglas container. Twovertical lines of 21 stainless steel electrodes are fixed on the lateral sides of the container to perform the ERTmonitoring, of the NaCl dissolved in the tracer, from a sequence of 210 quadripole measurements acquiredin transverse dipole-dipole each 5 minutes. A light panel is placed behind the experimental device and avideo follow up of the dyed part of the tracer is acquired from the other side.Video analysis reveal a faster propagation of the dye in contact of the vertical edge, which is negligible forthe lowest flow rates imposed by the pump. In contrast, ERT mesurements are strongly disturbed by theresistant edges of the plexiglas container which affect the resulting models. Normalisation of the apparentresisitivity measurements acquired at the experimental stage and by the Archie’s law strongly tones downthese resistive artefacts.ERT modelling is here particularly sensitive to the grid mesh, the norm (L1 or L2 ) applied on data andparameters, and the damping factor λ. High values of λ and the cutoff factor tend to smooth the resistivityconstrasts in the area of the mixing front and increase the weight of the horizontal edge effects on D andα. While results from inverse modelling constraint by low λ and cutoff factors are much closer to the videoanalysis but with enhanced side slope effects at the rear and the front of the mixing area.The interstitial velocity u is independant of the chosen inverse parameters. For both methods u is alwaysinferior to the flow rate provided by the pump, whose the gap is expressed as a retardation factor Rf . Thisretardation is due to adsorption of Na+ on the beads surfaces, which contributes to delay the dispersionfront followed by ERT. The retardation expressed by the video analysis can be due to the important sizeof the molecule of the dye which is easily slowed down in lower permeability areas, added to an eventualaffinity to the solid surface.The ranges of fluid conductivity contrasts and stability of the interfaces tested here have no influences onthe dispersion which is dominated by the flow velocity u. Estimations of the dispersion coefficient D asfunction of the Péclet is consistent with the theoretical curve of Bachmat (1968) and Bijeljic & al (2004).Field experiments are first conducted in 2D on homogeneous unsaturated sand which is considered as aninfinite half-space. However, data normalisation is much more complicated since the saturation state andthe initial fluid conductivities need to be estimated to calibrate the Archie’s law. Because of the 3D tracerinflitration, the RMS error of 2D-ERT models highlights that the inversion process is not enough constraintby data which does not allow to quantify the transport parameters. 3D experiments were then adaptedto detect and follow plumes of saline tracers injected in the centre of the electrode device. From 3D ERTmeasurements we are able to produce reliable models in order to estimate such transport parameters as themean flow velocity, and transverse and longitudinal dispersivities.
|
200 |
Caractérisations structurale et pétrophysique d'un système géothermique en contexte volcanique d'arc de subduction : exemple de l’archipel de Guadeloupe / Structural and petrophysical characterizations of a geothermal system in a subduction volcanic setting : Guadeloupe archipelagoNavelot, Vivien 31 October 2018 (has links)
La zone de Vieux-Habitants rassemble les indices permettant de supposer la présence d’un système hydrothermal de haute température. Les données géophysiques acquises pour la prospection de ce système ne suffisent pas à sa compréhension qui nécessite l’analyse d’analogues. Pour proposer un modèle de système géothermique de cette zone, une analyse multiscalaire de la déformation fragile et une caractérisation des propriétés pétrophysiques des formations volcaniques ont été ménées sur trois paléo systèmes. L’analyse des populations de fractures montre que leur organisation n’est pas régie par une seule loi mathématique. Les faciès volcano-sédimentaires sont peu déformés ou de manière très localisée contrairement aux laves dont les densités de fracturation sont fortes. L’analyse de la distribution des faciès hydrothermalisés par rapport à ces structures indique qu’à l’échelle kilométrique, certaines intersections de failles contrôlent le drainage des fluides et localisent les zones d’altération hydrothermale prononcée. Les faciès sont divisés en grands groupes en fonction de leur nature et de leur degré d’altération. Ils montrent une grande variabilité des propriétés pétrophysiques. A l’état sain, les laves d’une part et les faciès pyroclastiques et de coulées de débris d’autre part, constituent deux groupes bien distincts. L’altération hydrothermale induit une restructuration totale du squelette matriciel et du réseau poreux. Elle permet une forte atténuation du signal magnétique et le développement d’un groupe ayant des propriétés réservoirs intermédiaires en diminuant les propriétés réservoirs des dépôts volcano-sédimentaires et en améliorant celles des laves. Le modèle de réservoir ainsi disponible conjugue des éléments structuraux et des hétérogénéités lithologiques permettant le transfert rapide des fluides, alors que les propriétés matricielles d’origines primaire et secondaire vont plutôt contrôler les propriétés de stockage de fluide et de chaleur. / The Vieux-Habitants area gathers indicators allowing to suppose a high-temperature hydrothermal system. The interpretation of geophysical data acquired for the exploration of this system requires the analysis of analogues. Several hydrothermal paleo-systems were studied in order to propose a conceptual model of a geothermal system for the Vieux-Habitants area. Studies of these analogues are based on a multi-scale study of the brittle deformation and a petrophysical characterization of the different volcanic rocks. The organization of fractures indicates the occurrence of a characteristic scale for each level of observation. Volcano-sedimentary units are far less deformed compared to highly fractured lavas. The brittle deformation in volcano-sedimentary deposits is highly localized in fractured corridors. Some fault intersections control major fluid flow at the kilometer scale. Moreover, the most hydrothermalized rocks are localized in the vicinity of these intersections. Volcanic rocks are divided according to their mechanism of formation (lava, debris flow…) and their degree of alteration. They exhibit strong heterogeneities of petrophysical properties. Fresh rocks are separated in two distinct groups, on one side lavas and on the other side debris flows and pyroclastic deposits. Hydrothermal alteration produces mineralogical replacements involving a complete reorganization of both the matrix skeleton and the pore network. It is marked by a removal of magnetic signal, an increase of porosity and permeability in lavas and a decrease of these properties in debris flows and pyroclastic deposits. Therefore, hydrothermalized rocks form a group with intermediate reservoir properties between the two groups of fresh rocks. The reservoir model combines both structural components and lithological heterogeneities that allow an efficient fluid transfer, whereas the matrix properties of primary and secondary origins will rather control the fluid and heat storage properties.
|
Page generated in 0.0475 seconds