• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 19
  • 12
  • 12
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and Modelling Studies of Cold Start Processes in Proton Exchange Membrane Fuel Cells

Jiao, Kui January 2011 (has links)
Proton exchange membrane fuel cell (PEMFC) has been considered as one of the most promising energy conversion devices for the future in automotive applications. One of the major technical challenges for the commercialization of PEMFC is the effective start-up from subzero temperatures, often referred to as “cold start”. The major problem of PEMFC cold start is that the product water freezes when the temperature inside the PEMFC is lower than the freezing point. If the catalyst layer (CL) is fully occupied by ice before the cell temperature rises above the freezing point, the electrochemical reaction may stop due to the blockage of the reaction sites. However, only a few of the previous PEMFC studies paid attention to cold start. Hence, understanding the ice formation mechanisms and optimizing the design and operational strategies for PEMFC cold start are critically important. In this research, an experimental setup for the cold start testing with simultaneous measurement of current and temperature distributions is designed and built; a one-dimensional (1D) analytical model for quick estimate of purging durations before the cold start processes is formulated; and a comprehensive three-dimensional (3D) PEMFC cold start model is developed. The unique feature of the cold start experiment is the inclusion of the simultaneous measurement of current and temperature distributions. Since most of the previous numerical models are limited to either 1D or two-dimensional (2D) or 3D but only considering a section of the entire cell due to computational requirement, the measured distribution data are critically important to better understand the PEMFC cold start characteristics. With a full set of conservation equations, the 3D model comprehensively accounts for the various transport phenomena during the cold start processes. The unique feature of this model is the inclusion of: (i) the water freezing in the membrane electrolyte and its effects on the membrane conductivity; (ii) the non-equilibrium mass transfer between the water in the ionomer and the water (vapour, liquid and ice) in the pore region of the CL; and (iii) both the water freezing and melting in the CL and gas diffusion layer (GDL). This model therefore provides the fundamental framework for the future top-down multi-dimensional multiphase modelling of PEMFC. The experimental and numerical results elaborate the ice formation mechanisms and other important transport phenomena during the PEMFC cold start processes. The effects of the various cell designs, operating conditions and external heating methods on the cold start performance are studied. Independent tests are carried out to identify and optimize the important design and operational parameters.
2

Experimental and Modelling Studies of Cold Start Processes in Proton Exchange Membrane Fuel Cells

Jiao, Kui January 2011 (has links)
Proton exchange membrane fuel cell (PEMFC) has been considered as one of the most promising energy conversion devices for the future in automotive applications. One of the major technical challenges for the commercialization of PEMFC is the effective start-up from subzero temperatures, often referred to as “cold start”. The major problem of PEMFC cold start is that the product water freezes when the temperature inside the PEMFC is lower than the freezing point. If the catalyst layer (CL) is fully occupied by ice before the cell temperature rises above the freezing point, the electrochemical reaction may stop due to the blockage of the reaction sites. However, only a few of the previous PEMFC studies paid attention to cold start. Hence, understanding the ice formation mechanisms and optimizing the design and operational strategies for PEMFC cold start are critically important. In this research, an experimental setup for the cold start testing with simultaneous measurement of current and temperature distributions is designed and built; a one-dimensional (1D) analytical model for quick estimate of purging durations before the cold start processes is formulated; and a comprehensive three-dimensional (3D) PEMFC cold start model is developed. The unique feature of the cold start experiment is the inclusion of the simultaneous measurement of current and temperature distributions. Since most of the previous numerical models are limited to either 1D or two-dimensional (2D) or 3D but only considering a section of the entire cell due to computational requirement, the measured distribution data are critically important to better understand the PEMFC cold start characteristics. With a full set of conservation equations, the 3D model comprehensively accounts for the various transport phenomena during the cold start processes. The unique feature of this model is the inclusion of: (i) the water freezing in the membrane electrolyte and its effects on the membrane conductivity; (ii) the non-equilibrium mass transfer between the water in the ionomer and the water (vapour, liquid and ice) in the pore region of the CL; and (iii) both the water freezing and melting in the CL and gas diffusion layer (GDL). This model therefore provides the fundamental framework for the future top-down multi-dimensional multiphase modelling of PEMFC. The experimental and numerical results elaborate the ice formation mechanisms and other important transport phenomena during the PEMFC cold start processes. The effects of the various cell designs, operating conditions and external heating methods on the cold start performance are studied. Independent tests are carried out to identify and optimize the important design and operational parameters.
3

Iontoměničové membrány na bázi polyvinylalkoholu pro palivové články s polymerním elektrolytem / Polyvinyl alcohol based membranes for polymer electrolyte membrane fuel cells

Benčik, Ondřej January 2013 (has links)
Fuelcells are perspective alternative source of power. Currently used polymer electrolyte membrane. They have good qualities, but they are expensive. This is the reason, why we looking for alternative.This work deal with research qualities polymer electrolyte membrane based on Polyvinylalcohol. This polymer elecrolyte membrane asassembly to MEA structure and research qualities. This qualities based on electrical and non electrical value.
4

Conductive Thermoplastic Composite Blends for Flow Field Plates for Use in Polymer Electrolyte Membrane Fuel Cells (PEMFC)<br><br>

Wang, Yuhua January 2006 (has links)
This project is aimed at developing and demonstrating highly conductive, lightweight, and low-cost thermoplastic blends to be used as flow field bipolar plates for polymer electrolyte membrane (PEM) fuel cells. <br><br> The research is focused on designing, prototyping, and testing carbon-filled thermoplastic composites with high electrical conductivity, as well as suitable mechanical and process properties. <br><br> The impact of different types of fillers on the composite blend properties was evaluated, as well as the synergetic effect of mixtures of fill types within a thermoplastic polymer matrix. A number of blends were produced by varying the filler percentages. Composites with loadings up to 65% by weight of graphite, conductive carbon black, and carbon fibers were investigated. Research results show that three-filler composites exhibit better performance than single or two-filler composites. <br><br> Injection and compression molding of the conductive carbon filled polypropylene blend was used to fabricate the bipolar plates. A Thermal Gravimetric Analysis (TGA) was used to determine the actual filler loading of composites. A Scanning Electron Microscope (SEM) technique was use as an effective way to view the microstructure of composite for properties such as edge effects, porosity, and fiber alignment. Density and mechanical properties of conductive thermoplastic composites were also investigated. During this study, it was found that 1:1:1 SG-4012/VCB/CF composites showed better performance than other blends. The highest conductivity, 1900 S/m in in-plane and 156 S/m in through plane conductivity, is obtained with the 65% composite. Mechanical properties such as tensile modulus, tensile strength, flexural modulus and flexural strength for 65% 1:1:1 SG-4012/VCB/CF composite were found to be 584. 3 MPa, 9. 50 MPa, 6. 82 GPa and 47. 7 MPa, respectively, and these mechanical properties were found to meet minimum mechanical property requirements for bipolar plates. The highest density for bipolar plate developed in this project is 1. 33 g/cm³ and is far less than that of graphite bipolar plate. <br><br> A novel technique for metal insert bipolar plate construction was also developed for this project. With a copper sheet insert, the in-plane conductivity of bipolar plate was found to be significantly improved. The performance of composite and copper sheet insert bipolar plates was investigated in a single cell fuel cell. All the composites bipolar plates showed lower performance than the graphite bipolar plate on current-voltage (I-V) polarization curve testing. Although the copper sheet insert bipolar plates were very conductive in in-plane conductivity, there was little improvement in single cell performance compared with the composite bipolar plates. <br><br> This work also investigated the factors affecting bipolar plate resistance measurement, which is important for fuel cell bipolar plate design and material selection. Bipolar plate surface area (S) and surface area over thickness (S/T) ratio was showed to have significant effects on the significance of interfacial contact resistances. At high S/T ratio, the contact resistance was found to be most significant for thermoplastic blends. Other factors such as thickness, material properties, surface geometry and clamping pressure were also found to affect the bipolar plate resistance measurements significantly.
5

Conductive Thermoplastic Composite Blends for Flow Field Plates for Use in Polymer Electrolyte Membrane Fuel Cells (PEMFC)<br><br>

Wang, Yuhua January 2006 (has links)
This project is aimed at developing and demonstrating highly conductive, lightweight, and low-cost thermoplastic blends to be used as flow field bipolar plates for polymer electrolyte membrane (PEM) fuel cells. <br><br> The research is focused on designing, prototyping, and testing carbon-filled thermoplastic composites with high electrical conductivity, as well as suitable mechanical and process properties. <br><br> The impact of different types of fillers on the composite blend properties was evaluated, as well as the synergetic effect of mixtures of fill types within a thermoplastic polymer matrix. A number of blends were produced by varying the filler percentages. Composites with loadings up to 65% by weight of graphite, conductive carbon black, and carbon fibers were investigated. Research results show that three-filler composites exhibit better performance than single or two-filler composites. <br><br> Injection and compression molding of the conductive carbon filled polypropylene blend was used to fabricate the bipolar plates. A Thermal Gravimetric Analysis (TGA) was used to determine the actual filler loading of composites. A Scanning Electron Microscope (SEM) technique was use as an effective way to view the microstructure of composite for properties such as edge effects, porosity, and fiber alignment. Density and mechanical properties of conductive thermoplastic composites were also investigated. During this study, it was found that 1:1:1 SG-4012/VCB/CF composites showed better performance than other blends. The highest conductivity, 1900 S/m in in-plane and 156 S/m in through plane conductivity, is obtained with the 65% composite. Mechanical properties such as tensile modulus, tensile strength, flexural modulus and flexural strength for 65% 1:1:1 SG-4012/VCB/CF composite were found to be 584. 3 MPa, 9. 50 MPa, 6. 82 GPa and 47. 7 MPa, respectively, and these mechanical properties were found to meet minimum mechanical property requirements for bipolar plates. The highest density for bipolar plate developed in this project is 1. 33 g/cm³ and is far less than that of graphite bipolar plate. <br><br> A novel technique for metal insert bipolar plate construction was also developed for this project. With a copper sheet insert, the in-plane conductivity of bipolar plate was found to be significantly improved. The performance of composite and copper sheet insert bipolar plates was investigated in a single cell fuel cell. All the composites bipolar plates showed lower performance than the graphite bipolar plate on current-voltage (I-V) polarization curve testing. Although the copper sheet insert bipolar plates were very conductive in in-plane conductivity, there was little improvement in single cell performance compared with the composite bipolar plates. <br><br> This work also investigated the factors affecting bipolar plate resistance measurement, which is important for fuel cell bipolar plate design and material selection. Bipolar plate surface area (S) and surface area over thickness (S/T) ratio was showed to have significant effects on the significance of interfacial contact resistances. At high S/T ratio, the contact resistance was found to be most significant for thermoplastic blends. Other factors such as thickness, material properties, surface geometry and clamping pressure were also found to affect the bipolar plate resistance measurements significantly.
6

Theory Modeling and Analysis of MEA of A Proton Exchange membrane Fuel Cell

Chou, Hsuan-Jen 16 July 2002 (has links)
A mathematical model for a proton exchange membrane fuel cell is the focus of this thesis. Modeling and simulations are carried out with an aim to understand the influence of operational and geometrical parameters on the inner reaction and performance of a proton exchange membrane fuel cell, and discuss the distributions of physical phenomena in membrane and catalyst layer. Than, the results of modeling are compared and analyzed with the experiments, and discuss the reasons of influences of the performance of PEMFC. The results show that activation overpotential is the major reason of influence of the performance at low current density (less than ), and diffusion and ohmic overpotential are substantially increased at high current density (great than ). The membrane of higher membrane conductivity and more thin, increasing pressure of cathode gas and use oxygen can enhance the performance of a PEMFC. The performance almost no influence for the catalyst layer over 0.3£gm. The catalyst layer thin and uniform can decrease coating of this layer. The results of modeling and experiments show that experiments have contact resistance between materials, and the performance slightly lower than performance of modeling, and the differences that at high current density great than low current density.
7

Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition

Breitwieser, Matthias, Klingele, Matthias, Britton, Benjamin, Holdcroft, Steven, Zengerle, Roland, Thiele, Simon 27 October 2020 (has links)
Direct membrane deposition was used to produce record platinum catalyst utilization efficiency polymer electrolyte membrane fuel cells. The novel membrane fabrication technique was applied to gas diffusion electrodes with low Pt-loadings of 0.102 and 0.029 mg/cm2. Under oxygen atmosphere and 300 kPaabs total pressure, 88 kW/gPt cathodic catalyst utilization efficiency with a symmetrical Pt-loading of 0.029 mg/cm2 on the anode and cathode side was achieved. This is 2.3 times higher than the Pt-utilization efficiency of a reference fuel cell prepared using a commercial Nafion N-211 membrane and identical catalyst layers, emphasizing that the improvement is purely attributable to the novel membrane fabrication technique. This value represents the highest Pt-utilization efficiency reported in literature. The results strongly motivate the application of employing direct membrane deposition techniques to prepare low resistance polymer electrolyte thin films in order to compensate for kinetic losses introduced when using low catalyst loadings.
8

Towards an Understanding of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells

Morgan, Jason 12 December 2016 (has links)
The gas diffusion layer (GDL) is one of the key components in a polymer electrolyte membrane (PEM) fuel cell. It performs several functions including the transport of reactant gases and product water to and from the catalyst layer, conduction of both electrons and heat produced in the catalyst layer, as well as mechanical support for the membrane. The overarching goal of this work is to thoroughly examine the GDL structure and properties for use in PEM fuel cells, and more specifically, to determine how to characterize the GDL experimentally ex-situ, to understand its performance in-situ, and to relate theory to performance through controlled experimentation. Thus, the impact of readily measured effective water vapor diffusivity on the performance of the GDL is investigated and shown to correlate to the wet limiting current density, as a surrogate of the oxygen diffusivity to which it is more directly related. The influence of microporous layer (MPL) design and construction on the fuel cell performance is studied and recommendations are made for optimal MPL designs for different operating conditions. A method for modifying the PTFE (Teflon) distribution within the GDL is proposed and the impact of distribution of PTFE in the GDL on fuel cell performance is studied. A method for characterizing the surface roughness of the GDL is developed and the impact of surface roughness on various ex-situ GDL properties is investigated. Finally, a detailed analysis of the physical structure and permeability of the GDL is provided and a theoretical model is proposed to predict both dry and wet gas flow within a GDL based on mercury intrusion porosimetry and porometry data. It is hoped that this work will contribute to an improved understanding of the functioning and structure of the GDL and hence advance PEM fuel cell technology.
9

Alimentation d’une bobine supraconductrice par une pile à combustible à hydrogène et conception d'un aimant vectoriel de 3 T / Powering a superconducting coil with hydrogen fuel cell

Linares Lamus, Rafael Antonio 27 November 2017 (has links)
La pile à combustible convertit l’énergie chimique des réactants en énergie électrique continue, en chaleur et en eau. Elle est généralement utilisée autour d’un point de fonctionnement (ou zone) correspondant à un maximum de puissance électrique. Le courant continu produit par la réaction d’oxydo-réduction est proportionnel à la surface active de la pile et la tension, qui est d’environ 0,6 V au point de nominal de fonctionnement, peut être augmentée par la mise en série de plusieurs cellules (constituant un stack). En raison de son faible niveau de tension continue, son utilisation dans des systèmes électriques nécessitent de l’associer à des convertisseurs de puissance. Les travaux effectués dans le cadre de cette thèse s’intéressent au potentiel d’une source électrique continue basse tension et plus exactement à l’utilisation de la pile à combustible en fonctionnement source de courant commandée (par le débit d’un des réactants). L’expertise du laboratoire GREEN dans le domaine des supraconducteurs, nous a conduits naturellement vers une application innovante à savoir substituer les alimentations de puissance dédiées aux dispositifs supraconducteurs par une pile à combustible. Un premier essai prometteur mené sur une bobine supraconductrice de 4 mH a mis en évidence tout le potentiel d’une telle application et nous a encouragés à étendre l’étude à des bobines supraconductrices fortement inductives, des plusieurs henrys. En effet, les énergies mises en jeu sont alors plus importantes et exigent de dimensionner avec soin le banc d’essai, aussi bien du point de vue de la protection de la pile que des conditions opératoires. Pour ce faire, une modélisation et une expérimentation d’un ensemble pile à combustible/bobine supraconductrice ont également été réalisées. En parallèle du travail mené sur la partie alimentation de la bobine supraconductrice, nous avons travaillé sur le dimensionnement d’un dispositif supraconducteur innovant, communément appelé aimant vectoriel, à trois axes. Ce système peut servir comme charge pour une pile à combustible mais aussi, et surtout, comme outils de caractérisation d’échantillons supraconducteurs. Cet aimant vectoriel permet d’orienter dans les 3 directions de l’espace un champ magnétique de plusieurs teslas, uniforme à plus de 95 % dans une sphère de 100 mm de diamètre. Ce dimensionnement, nous a permis de concevoir et réaliser la structure supportant le bobinage du fil et de choisir un certain fil supraconducteur. Le système complet devant coûter moins de 50 k€, cryostat inclus, nous nous sommes orientés vers du fil supraconducteur à basse température critique, refroidi à l’hélium liquide / The fuel cell (FC) converts the chemical energy of the reactants into direct electrical energy, heat and water. The FC is generally used around an operating point (or area) corresponding to a maximum of electric power. The direct current produced by the redox reaction is proportional to the active surface of the single cell and its voltage, which is approximately 0.6 V at the nominal operating point, can be increase by connecting several cells in series (constituting a stack). Due to its low DC voltage amplitude, its use in electrical systems requires the use of power converters. In this work, we have been interested taking benefit of such DC low voltage power source and more precisely the use of the FC as a current source controllable by the one of the reactant flow rates. The expertise of GREEN laboratory in the field of superconductors has naturally led us to an innovative application, namely to substitute the power supplies dedicated to the superconducting devices by a FC. A first promising test conducted on a 4 mH superconducting coil highlighted the full potential of such an application and encouraged us to extend the study to highly inductive superconducting coils where the energies involved are more important. This requires to carefully design the test bench with a protection system for the FC as well as operating conditions. To this end, a FC model supplying a superconducting coil has been developed and tested experimentally. At the same time, we have focused on the supply part of the superconducting coil by designing an innovative superconducting device, commonly called a three-axis vector magnet. This system can be used as a load for a fuel cell, but also, and above all, as a tool for the characterization of superconducting samples. This vector magnet allows to orient a magnetic field of several tesla in the three space directions, with a uniformity of more than 95 % in a 100 mm sphere of diameter. This design allowed us to realize the windings supporting structure and to choose a superconducting wire. The complete system has to cost less than 50 k€, including the cryostat, we have finally choose a superconducting wire with low critical temperature, cooled by liquid helium
10

The Rôle of Side-Chains in Polymer Electrolytes for Batteries and Fuel Cells

Karo, Jaanus January 2009 (has links)
The subject of this thesis relates to the design of new polymer electrolytes for battery and fuel cell applications. Classical Molecular Dynamics (MD) modelling studies are reported of the nano-structure and the local structure and dynamics for two types of polymer electrolyte host: poly(ethylene oxide) (PEO) for lithium batteries and perfluorosulfonic acid (PFSA) for polymer-based fuel cells. Both polymers have been modified by side-chain substitution, and the effect of this on charge-carrier transport has been investigated. The PEO system contains a 89-343 EO-unit backbone with 3-15 EO-unit side-chains, separated by 5-50 EO backbone units, for LiPF6 salt concentrations corresponding to Li:EO ratios of 1:10 and 1:30; the PFSA systems correspond to commercial Nafion®, Hyflon® (Dow®) and Aciplex® fuel-cell membranes, where the major differences again lie in the side-chain lengths. The PEO mobility is clearly enhanced by the introduction of side-chains, but is decreased on insertion of Li salts; mobilities differ by a factor of 2-3. At the higher Li concentration, many short side-chains (3-5 EO-units) give the highest ion mobility, while the mobility was greatest for side-chain lengths of 7-9 EO units at the lower concentration. A picture emerges of optimal Li+-ion mobility correlating with an optimal number of Li+ ions in the vicinity of mobile polymer segments, yet not involved in significant cross-linkages within the polymer host. Mobility in the PFSA-systems is promoted by higher water content. The influence of different side-chain lengths on local structure was minor, with Hyflon® displaying a somewhat lower degree of phase separation than Nafion®. Furthermore, the velocities of the water molecules and hydronium ions increase steadily from the polymer backbone/water interface towards the centre of the proton-conducting water channels. Because of its shorter side-chain length, the number of hydronium ions in the water channels is ~50% higher in Hyflon® than in Nafion® beyond the sulphonate end-groups; their hydronium-ion velocities are also ~10% higher. MD simulation has thus been shown to be a valuable tool to achieve better understanding of how to promote charge-carrier transport in polymer electrolyte hosts. Side-chains are shown to play a fundamental rôle in promoting local dynamics and influencing the nano-structure of these materials.

Page generated in 0.0904 seconds