• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 19
  • 12
  • 12
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Model on degradation of PEM fuel cells in marine applications / Modell för degradering av PEM-bränsleceller för marina applikationer

Östling, Erik January 2021 (has links)
Sjöfarten står för 3 % av världens totala växthusgaser och är idag högst beroende av fossila bränslen. Ett alternativ för att gå över till en fossilfri flotta är användning av bränsleceller och vätgas som drivmedel. Om vätgasen produceras från elektrolys med förnyelsebara energikällor så är driften utsläppsfri och koldioxidneutral. Bränsleceller kan användas i många olika sammanhang, men har ännu inte slagit igenom med full kraft. En anledning till detta är livslängden som är för kort. För att sjöfarten ska kunna implementera bränslecellsdrift behöver nedbrytningen av bränslecellen bli vidare utforskad och motverkad. Syftet med detta examensarbete var att hitta de mest signifikanta nedbrytningsmekanismerna för sjöfarten samt att bygga en modell för att förutspå livslängden utifrån lastprofiler från fartyg.  Rapportens avgränsningar var att enbart studera PEM-bränsleceller tack vare dess höga energitäthet och att teknologin är närmast marknaden för mobila applikationer. En litteraturstudie genomfördes för att fastställa de viktigaste nedbrytningsmekanismerna samt de faktorer som begränsar livslängden. Dessa bestämdes till start/stop cykler samt lastcykler vilka försämrar konduktiviteten i membranet samt minskar den elektrokemiska ytarean. En empirisk modell från experiment från litteraturen etablerades för att hitta relationen mellan parametrarna konduktivitet och elektrokemisk ytarea som funktion av start/stop cykler respektive lastcykler. En Comsol-modell användes för att utvärdera bränslecellens prestanda med dessa försämrade parametrar. Två lastprofiler analyserades och tolkades som antal start/stop cykler samt lastcykler för att utvärdera prestandan som funktion av antal år i drift. Båda fallen var i drift till dess att prestandan minskat med 20 % utvärderat vid strömtätheten 0.6 A/cm2. Båda lastprofilerna var utvärdera med olika körstrategier för att jämföra den modellerade livslängden beroende på ingångsvärden. Den första lastprofilen delades in i Case 1a och Case 1b där antalet start/stop cykler och lastcykler varierade. Resultatet visade att antalet timmar i drift mer än tredubblades i Case 1b där båda ingående indata hade minskats.   Case 2 delades upp i tre olika körstrategier där Case 2a var en referens som jämfördes mot Case 2b respektive Case 2c. Skillnaden mot Case 2b var att antalet start/stop cykler per dag multiplicerades med faktor 4. Resultatet från modellen var att livstiden minskade från 6 till 4 år. Vidare utvärderades Case 2c där istället antalet lastcykler dividerades med faktor 4, allt annat identiskt med Case 2a. Utfallet var en ökad livslängd från 6 år till 11 år, med totalt 32 032 timmar i drift. Denna livslängd kan jämföras med kommersialiserade marina produkter från Ballard och Powercell, där livslängden är 30 000 respektive 20 000 timmar i drift.  Sammanfattningsvis kan det konstateras att både start/stop cykler och lastcykler bryter ner bränslecellen och därmed minskar dess prestanda. Lastcykler var den faktor som var mest förödande gällande livslängden. Den modellerade livslängden på 32 032 timmar indikerar att den empirisk modellen tillsammans med Comsol-modellen genererade realistiska resultat. Slutligen kan sägas att ett område för framtida forskning inom ämnet innefattar lastcykler eftersom denna hade störst påverkan på modellen. Att särskilja olika typer av lastcykler och koppla till olika degradering skulle skapa än mer förståelse för livslängden. Då denna studie genomfördes på bränslecellsnivå skulle framtida studier kunna inkludera att analysera degradering på systemnivå för att få mer insikt i dessa processer. / The shipping industry emits 3 % of the global GHG-emissions and is highly dependent on fossil fuels. One alternative to decarbonise the sector is by utilising hydrogen in fuel cells. The propulsion is free from emissions if hydrogen is produced from renewables. The fuel cell technology can be applied in various applications but have not been fully commercialised. One of the biggest bottlenecks for fuel cell technology is the durability that needs to be improved. In order for marine vessels to implement hydrogen propulsion, the degradation need to be further understood and mitigated. The purpose of this thesis was to assess the most significant degradation mechanisms for marine applications and to build a model to evaluate the lifetime depending on load profiles. The scope of the thesis was to include PEMFCs since they have the highest power density and are closest to commercialisation for transport applications. A literature review was conducted to assess the most important degradation mechanisms and operating conditions that limits the lifetime, which concluded in start/stop cycling and load cycling. These conditions deteriorate the membrane conductivity and the electrochemical surface area. An empirical model based on experimental data from the literature was conducted to find relationships for conductivity and ECSA as function of start/stop cycling and load cycling, respectively. A Comsol model was established to evaluate performance reduction with degraded parameters. Two different load cycles were interpreted as number of start/stop cycles and load cycles in order to simulate the degradation. The output was polarization curves as function of operating years. Each case was operated until a performance reduction of 20 % was obtained at the current density of 0.6 A/cm2.  Both load profiles were analysed with different operation strategies to compare the resulting lifetime. The first load curve was divided into Case 1a and Case 1b where start/stop cycles and load cycles were altered. The results showed that the lifetime in operation hours was more than three-folded in Case 1b when the number of start/stop cycles and load cycles was reduced.  Case 2 was divided into three operating strategies. For comparison with Case 2a, the number of start/stop cycles per day in Case 2b was increased by a factor of 4. The result was that the lifetime declined from 6 to 4 years. Furthermore, Case 2c evaluated the lifetime if the number of load cycles per day decreased by a factor of 4, all else being equal to Case 2a. The outcome was an increment in lifetime from 6 to 11 years, with a total of 32 032 hours of operation. This lifetime can be compared to commercialised products from Ballard and Powercell with lifetimes of 30 000 and 20 000 operating hours, respectively. Conclusively, the simulations showed that both start/stop cycling and load cycling deteriorates the fuel cell performance. Load cycling is the operating condition that cause the most severe degradation. Moreover, the modelled lifetime of 32 032 hours indicates that the empirical model in combination with the Comsol model generate realistic lifetimes. Finally, since load cycling had the most vital impact on the lifetime, one of the topics for future research would be to distinguish different types of load cycles and connect to separate degradation outcomes. Since the model was on fuel cell level, future work could also include systems effects such as ripple current or distributions within fuel cell stacks.
12

Lifetime Prediction and Durability of Elastomeric Seals for Fuel Cell Applications

Singh, Hitendra Kumar 09 June 2009 (has links)
Polymer electrolyte membrane (PEM) fuel cell (FC) stacks require elastomeric gaskets for each cell to keep the reactant gases within their respective regions[1]. If any gasket degrades or fails, the reactant gases can leak or mix with each other directly during operation or standby, affecting the overall operation and performance of the FC. The elastomeric gaskets used as FC seals are exposed to a range of environmental conditions, and concurrently, subjected to mechanical compression between the bipolar plates forming the cell. The combination of mechanical stress and environmental exposure may result in degradation of the seal material[2] over a period of time. In order to address the durability and make reliability predictions, the long-term stability of the gaskets in FC assemblies is critical. The aim of this study is to investigate the performance of elastomeric seals in a simulated FC environment in the presence of mechanical stresses. The overall scope of the study includes mechanical and viscoelastic properties characterization, and lifetime durability predictions based on an accelerated characterization approach. With the help of finite element analysis software, ABAQUS, a fixture was designed to perform strain-based accelerated characterization of seal material in air, deionized (DI) water, 50v/50v ethylene glycol/water solution, and 0.1M sulfuric acid solution. Dogbone samples were strained to different levels in the custom fixture and submerged in liquid solutions at 90°C and in air at 90°C and 120°C. It was observed that mechanical properties such as tensile strength, strain to break, 100% modulus, crosslink density, and tensile set degrade due to aging and the extent of change (increase or decrease) depends significantly on the strain level on the specimen. Trouser tear tests were conducted on reinforced specimens in air and deionized water (DI) to evaluate the tear resistance of an elastomeric seal material intended for proton exchange membrane fuel cells. Plots relating the crack growth rate with tearing energy were obtained at various temperatures and provided significant insight into the rate and temperature dependence of the tearing strength of the seal material. Stick-slip crack propagation was observed at all temperatures and loading rates, although the behavior was suppressed significantly at low loading rates and high temperatures. Crack growth rate versus tearing energy data at different temperatures was shifted to construct a master curve and an estimate on the threshold value of tear energy was obtained which may be helpful in designing components where material tear is of concern. Strain energy release rate (SERR) value, calculated using the J-integral approach for a pre-existing crack in ABAQUS, was used to estimate the crack growth rate in a given seal cross-section to predict lifetime. In order to assess the viscoelastic behavior and to investigate the long term stress relaxation behavior of the seal material, compression stress relaxation (CSR) tests were performed on molded seals, called as SMORS, over a range of environmental conditions using a custom-designed fixture. The effect of temperature and environment was evident on material property changes and presented in terms of momentary properties and stress relaxation behavior. Various mechanisms involved in material degradation, chain scission and crosslinking, were suggested and insights were gained into how cure state and level of antidegradants in a material dictate the material behavior during the first phase of environmental exposure leading to change in material properties. Ring samples made of silicone were also tested using the fixture to obtain insight additional into material degradation due to aging. Results presented from testing on SMORS showed a lot more variation in data as compared to neat silicone rings due to the complexity involved in making SMORS. For understanding the deformation behavior of an elastomeric seal and its sealing performance, finite element characterization of seal cross-section was carried out on O-ring and SMORS cross-section. The effect of a seal's layout on distribution and magnitude of contact stresses and contact width was investigated for the O-ring and the information obtained thereby helped to analyze a complex assembly such as SMORS, where several interfaces and boundary conditions are involved. Stress/strain profiles were generated to visualize their concentration and distribution in the seal cross-section. Frictionless and rough interfacial conditions between seal material and platens were assumed and it was found that its effect on contact width and peak contact pressure was insignificant. Results obtained from FEA on SMORS were validated through comparison with contact mechanics approach and experimental data and it was found that Lindley's equation correlates well with experimental data whereas ABAQUS overestimates the load values at a given compression. Lindley's approach may be used to develop contact pressure profiles that may help estimate peak contact pressure at a given time so leaking can be avoided. / Ph. D.
13

Estudo e desenvolvimento de conjuntos membrana-eletrodos (MEA) para célula a combustível de eletrólito polimérico condutor de prótons (PEMFC) com eletrocatalisadores à base de paládio / Study and development of membrane electrode assemblies for proton exchange membrane fuel cell (PEMFC) with palladium based catalysts

Bonifacio, Rafael Nogueira 19 November 2013 (has links)
Sistemas de PEMFC são capazes de gerar energia elétrica com alta eficiência e baixa ou nenhuma emissão de poluentes, porém questões de custo e durabilidade impedem sua ampla comercialização. Nesse trabalho foi desenvolvido um MEA com eletrocatalisadores à base de paládio. Foram sintetizados e caracterizados eletrocatalisadores Pd/C, Pt/C e Ligas PdPt/C com diferentes razões entre metais e carbono. Foi realizado um estudo da razão entre ionômero de Nafion e eletrocatalisador para formação de triplas fases reacionais de máximos desempenhos, criado um modelo matemático para transpor esse ajuste para eletrocatalisadores com diferentes razões entre metal e suporte, considerando os aspectos volumétricos da camada catalisadora, e então realizado um estudo da espessura da camada catalisadora. Para as caracterizações foram utilizadas as técnicas de Difração de Raios-X, Microscopias Eletrônicas de Transmissão e de Varredura, Energia Dispersiva de Raios-X, Picnometria a Gás, Porosimetria por Intrusão de Mercúrio, Adsorção de Gás, segundo as equações de BET e BJH, Análise Termo Gravimétrica e feitas as determinações de diâmetros de partículas, de áreas de superfície específica e de parâmetros de rede. Todos os eletrocatalisadores foram usados no preparo de MEAs que foram avaliados em célula unitária de 5 cm2 entre 25 e 100 °C a 1 atm; e a melhor composição foi avaliada também a 3 atm. No estudo dos metais para as reações, visando reduzir a platina aplicada aos eletrodos, sem perdas de desempenho, foram selecionados Pd/C para ânodos e PdPt/C 1:1 para cátodos. A estrutura de MEA desenvolvida utilizou 0,25 mgPt.cm-2 e resultou em densidades de potência de até 550 mW.cm-2 e potências de até 2,2 kWe por grama de platina. A estimativa realizada mostrou que houve uma redução de até 64,5 % nos custos em relação à estrutura de MEA previamente conhecida. Em função da temperatura e pressão de operação foram obtidos valores a partir de R$ 3.540,73 para o preparo de MEAs para cada quilowatt instalado. Com base em estudos recentes, concluiu-se que o custo do MEA desenvolvido é compatível às aplicações estacionárias de PEMFC. / PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm2 single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm-2, showing power densities up to 550 mW.cm-2 and power of 2.2 kWnet per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary application.
14

Estudo e desenvolvimento de conjuntos membrana-eletrodos (MEA) para célula a combustível de eletrólito polimérico condutor de prótons (PEMFC) com eletrocatalisadores à base de paládio / Study and development of membrane electrode assemblies for proton exchange membrane fuel cell (PEMFC) with palladium based catalysts

Rafael Nogueira Bonifacio 19 November 2013 (has links)
Sistemas de PEMFC são capazes de gerar energia elétrica com alta eficiência e baixa ou nenhuma emissão de poluentes, porém questões de custo e durabilidade impedem sua ampla comercialização. Nesse trabalho foi desenvolvido um MEA com eletrocatalisadores à base de paládio. Foram sintetizados e caracterizados eletrocatalisadores Pd/C, Pt/C e Ligas PdPt/C com diferentes razões entre metais e carbono. Foi realizado um estudo da razão entre ionômero de Nafion e eletrocatalisador para formação de triplas fases reacionais de máximos desempenhos, criado um modelo matemático para transpor esse ajuste para eletrocatalisadores com diferentes razões entre metal e suporte, considerando os aspectos volumétricos da camada catalisadora, e então realizado um estudo da espessura da camada catalisadora. Para as caracterizações foram utilizadas as técnicas de Difração de Raios-X, Microscopias Eletrônicas de Transmissão e de Varredura, Energia Dispersiva de Raios-X, Picnometria a Gás, Porosimetria por Intrusão de Mercúrio, Adsorção de Gás, segundo as equações de BET e BJH, Análise Termo Gravimétrica e feitas as determinações de diâmetros de partículas, de áreas de superfície específica e de parâmetros de rede. Todos os eletrocatalisadores foram usados no preparo de MEAs que foram avaliados em célula unitária de 5 cm2 entre 25 e 100 °C a 1 atm; e a melhor composição foi avaliada também a 3 atm. No estudo dos metais para as reações, visando reduzir a platina aplicada aos eletrodos, sem perdas de desempenho, foram selecionados Pd/C para ânodos e PdPt/C 1:1 para cátodos. A estrutura de MEA desenvolvida utilizou 0,25 mgPt.cm-2 e resultou em densidades de potência de até 550 mW.cm-2 e potências de até 2,2 kWe por grama de platina. A estimativa realizada mostrou que houve uma redução de até 64,5 % nos custos em relação à estrutura de MEA previamente conhecida. Em função da temperatura e pressão de operação foram obtidos valores a partir de R$ 3.540,73 para o preparo de MEAs para cada quilowatt instalado. Com base em estudos recentes, concluiu-se que o custo do MEA desenvolvido é compatível às aplicações estacionárias de PEMFC. / PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm2 single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm-2, showing power densities up to 550 mW.cm-2 and power of 2.2 kWnet per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary application.
15

Enhancing fuel cell lifetime performance through effective health management

Davies, Benjamin January 2018 (has links)
Hydrogen fuel cells, and notably the polymer electrolyte fuel cell (PEFC), present an important opportunity to reduce greenhouse gas emissions within a range of sectors of society, particularly for transportation and portable products. Despite several decades of research and development, there exist three main hurdles to full commercialisation; namely infrastructure, costs, and durability. This thesis considers the latter of these. The lifetime target for an automotive fuel cell power plant is to survive 5000 hours of usage before significant performance loss; current demonstration projects have only accomplished half of this target, often due to PEFC stack component degradation. Health management techniques have been identified as an opportunity to overcome the durability limitations. By monitoring the PEFC for faulty operation, it is hoped that control actions can be made to restore or maintain performance, and achieve the desired lifetime durability. This thesis presents fault detection and diagnosis approaches with the goal of isolating a range of component degradation modes from within the PEFC construction. Fault detection is achieved through residual analysis against an electrochemical model of healthy stack condition. An expert knowledge-based diagnostic approach is developed for fault isolation. This analysis is enabled through fuzzy logic calculations, which allows for computational reasoning against linguistic terminology and expert understanding of degradation phenomena. An experimental test bench has been utilised to test the health management processes, and demonstrate functionality. Through different steady-state and dynamic loading conditions, including a simulation of automotive application, diagnosis results can be observed for PEFC degradation cases. This research contributes to the areas of reliability analysis and health management of PEFC fuel cells. Established PEFC models have been updated to represent more accurately an application PEFC. The fuzzy logic knowledge-based diagnostic is the greatest novel contribution, with no examples of this application in the literature.
16

Développement d'un modèle prédictif de durée de vie d'une pile PEMFC pour une application aéronautique : étude des interactions entre le cœur de pile et les conditions d'opération du système / Development of a PEMFC lifetime predictive model for an aeronautical application : study of the interactions between the fuel cell core and the system operating conditions

Robin, Christophe 12 November 2015 (has links)
Dans un contexte global de réduction des émissions de gaz à effet de serre, des solutions doivent être trouvées pour limiter les pollutions liées aux transports. Dans le domaine aéronautique, l’efficacité énergétique des avions peut être améliorée entre autres par l’utilisation de sources alternatives, comme les piles à combustible. Cette technologie est un dispositif électrochimique permettant de convertir le dihydrogène et le dioxygène en électricité, eau et chaleur. Néanmoins, le coût et la durée de vie de la pile sont des points faibles de cette technologie et doivent être améliorés.Dans le cadre d’une utilisation à bord d’un avion de ligne, l'analyse de la durabilité d'un système pile à combustible PEMFC est menée, en lien avec l'industriel Zodiac Aerospace. La prise en compte du vieillissement de la pile à combustible dans la gestion du système pile est essentielle pour limiter l’impact de conditions locales inappropriées du cœur de pile qui diminuent sa durée de vie. Dans ce travail, une étude complète est proposée pour corréler les mécanismes de vieillissement du cœur de pile (dégradation de la membrane, dissolution du catalyseur) aux conditions locales de la pile définies en partie par les performances des auxiliaires du système pile, le profil de puissance et les conditions environnementales du système. L'objectif est de prédire les performances de la pile et sa durée de vie afin de suggérer des stratégies d’optimisation pour l'application visée. L’approche proposée est basée sur la simulation numérique et validée par des essais de durabilité.Un modèle multi-physique existant au CEA est développé dans cette thèse pour corréler les usages aux mécanismes de dégradation. Une description physique de la pile à combustible est réalisée dans ce modèle, avec la prise en compte des réactions électrochimiques, des mécanismes de diffusion de l’eau et des gaz à l’échelle microscopique dans la pile, ainsi que de la thermique. Des améliorations y sont apportées, afin de mieux représenter la géométrie des plaques distributrices de gaz utilisées pour les essais. Un travail sur le circuit de refroidissement permet en outre d’affiner la distribution de température à la surface de la cellule. Enfin, l’ajout de mécanismes de dégradation est effectué pour modéliser le vieillissement de la pile. Pour cela, deux approches différentes sont couplées, l’une basée sur des équations physiques de l’électrochimie («Bottom-Up») et l’autre sur des lois semi-empiriques («Top-Down»).Les résultats de la modélisation sont confrontés à des essais expérimentaux dédiés. En particulier, deux tests de 2000 heures en conditions aéronautiques ont été effectués, avec deux régimes de fonctionnement différents (stabilisé et dynamique). Les méthodes usuelles de caractérisations électrochimiques (spectroscopie d’impédance, voltampérométries), des analyses post-mortem ainsi que des mesures locales de densité de courant et de température réalisées durant les essais aident à la validation des modèles.En particulier, les différentes mesures montrent que le modèle développé est capable de simuler la répartition hétérogène des conditions locales dans le cœur de pile en fonction des conditions opératoires (conditions asséchantes, humides, etc.). Il permet alors de calculer le comportement de paramètres internes de la pile non accessibles par l’expérience (humidités relatives, fractions molaires, etc.). De plus, le modèle permet de retrouver l’impact de différents modes opératoires sur le vieillissement, apportant également des informations sur les mécanismes de dégradation qui agissent sur les matériaux. Enfin, des stratégies d’optimisation sont proposées pour améliorer la durée de vie de la pile, basées sur le cycle réel envisagé par Zodiac Aerospace pour l’application de la pile à combustible à bord d’un avion de ligne (hors propulsion). / In a global context of greenhouse gases emissions reduction, solutions need to be found to limit the pollution from transportation. In the aeronautics, the energy efficiency of planes can be improved by using alternative energy sources, such as fuel cells. This technology is an electrochemical device that converts hydrogen into electricity, water and heat. Nevertheless, cost and lifetime of fuel cells are weaknesses of this technology and need to be improved.As part of the use onboard commercial airplanes, analysis of a PEM fuel cell system durability is conducted, in collaboration with Zodiac Aerospace. Taking the fuel cell aging into account in the fuel cell system management is essential to limit the impact of inappropriate fuel cell core local conditions, which decrease the fuel cell lifetime. In this work, a complete study is proposed to correlate the fuel cell internal aging mechanisms (membrane degradation, catalyst dissolution) to the fuel cell local conditions which are defined partly by the system ancillaries’ performances, the power profile and the system environmental conditions. The objective is to be able to predict the fuel cell operation and its durability in order to suggest optimization strategies for the targeted application. The proposed approach is based on modeling and validated by experimental durability tests.A multi-physical model existing at the CEA is developed in this PhD to correlate the uses to the degradation mechanisms. The physical description of the fuel cell is done in this model, where electrochemical reactions, fuel cell water and gas diffusion mechanisms at micro scale and heat transfers are taken into account. Improvements are added, in order to better model the geometry of the gases distributing plates used in the tests. Besides, a work on the cooling circuit enables to refine the temperature distribution at the cell surface. Finally, degradation mechanisms are added to model the fuel cell aging. Two different approaches are used, one based on physical electrochemical equations (“Bottom-Up”) and the other one based on semi-empirical laws (“Top-Down”).Results from the modeling part are compared with dedicated tests. In particular, two tests of 2,000 hours each in aeronautical conditions are performed, with two different operating modes (stabilized and dynamic). Usual methods of electrochemical characterization (impedance spectroscopy, voltammetries), post-mortem analyses along with in-situ measurements of the current density and temperature performed during the tests help validating the model.In particular, the measures show that the developed model is able to simulate the heterogeneous distribution of the local conditions inside the fuel cell in function of the operating conditions (dry, wet, etc.). It gives the possibility to monitor the behavior of fuel cell internal parameters which are not reachable by the tests (relative humidity, molar fractions, etc.). Moreover, the model enables to find back the impact of several operating regimes on the aging, giving as well information about the degradation mechanisms acting on the materials. Last but not least, strategies are proposed to improve the fuel cell durability, based on the real cycle considered by Zodiac Aerospace for the use of the fuel cell system onboard a commercial airplane (apart from the propulsion).
17

Corrosion of high surface area carbon supports used in proton-exchange membrane fuel cell electrodes / Corrosion des supports carbonés des électrocatalyseurs de pile à combustible basse température

Castanheira, Luis Filipe Rodrigues 14 November 2014 (has links)
Cette thèse est consacrée à l’étude des mécanismes de dégradation de noirs de carbone de forte surface spécifique (HSAC) utilisés comme supports d’électrocatalyseurs dans une pile à combustible à membrane échangeuse de protons (PEMFC). Nous avons montré que le mécanisme et les cinétiques de la corrosion électrochimique du carbone (COR) sont influencés par la présence d’ionomère Nafion®, la limite supérieure de potentiel électrochimique, la nature et le nombre de caractérisations intermédiaires présentes dans des tests de dégradation accélérés. En utilisant la spectroscopie Raman,il apparaît que la COR est sensible à la structure cristallographique des HSAC et procède plus rapidement sur les domaines désordonnés (carbone amorphe, cristallites de graphite présentant des défauts). Le taux de recouvrement en espèces oxygénées évalué par spectroscopie de photoélectrons X a été comparé à celui trouvé en intégrant l’intensité du pic quinone/hydroquinone (Q/HQ) envol tampérométrie cyclique. Finalement, une comparaison avec des matériaux carbonés ayant fonctionné pendant 12860 heures en PEMFC confirme nos principaux résultats et permet d’élaborer des stratégies pour atténuer les conséquences de la COR. / This thesis investigates the degradation mechanism of high surfacearea carbon (HSAC) supports used in proton-exchange membrane fuel cell (PEMFC) electrodes. The structural and the chemical properties of different HSAC supports were established. The effectof the Nafion® ionomer used as a proton conductor, the gas atmosphere, the upper potential limit and the intermediate electrochemical characterizations used to monitor the changes ofthe electrochemical surface area during accelerated stress tests(ASTs) were investigated. The long-term physical and chemical changes of Pt/HSAC electrocatalysts were investigated insimulated PEMFC operating conditions. Using Raman spectroscopy, we showed that the COR is strongly structure sensitive and proceeds more rapidly on disordered domains of the HSAC (amorphous carbon and defective graphite crystallites) thanon graphitic domains. The coverage with carbon surface oxides was investigated with X-ray photoelectron spectroscopy and bridged tothe intensity of the quinone/hydroquinone (Q/HQ) peak monitored by cyclic voltammetry. Finally, the analyses realized on membrane electrode assemblies operated for 12,860h disclosed a perfect agreement between model and real PEMFC operating conditions, and confirmed the structural dependency of the COR kinetics.
18

Polymerelektrolytbrennstoffzelle – von der Fertigung bis zur Wiederverwendung

Schmidt, Patrick Alexander, Bießmann, Marvin 27 May 2022 (has links)
Für Brennstoffzellen wird in den kommenden Jahren ein erhebliches Marktwachstum prognostiziert. Aktuell besteht die Notwendigkeit die technischen und wirtschaftlichen Herausforderungen für einen Markthochlauf zu realisieren. Hierzu müssen neue hochratenfähige Fertigungstechnologien entwickelt werden, um die Produktions- und Stückkosten zu senken. Für das Stapeln von Brennstoffzellen-Stacks sollen zukünftig mehrere entwickelte Konzepte für das „Stacking im Fließverfahren“ betrachtet und hinsichtlich ihrer Machbarkeit und Wirtschaftlichkeit überprüft werden. Zusätzlich müssen hochratenfähige Prüfverfahren entwickelt werden, um eine Null-Fehler-Produktion der kostenintensiven Komponenten und Systeme zu gewährleisten. Hierbei sollen u.a. KI-basierte Technologien genutzt werden. Die Abhandlung zeigt den aktuellen Stand der Technik auf dem Gebiet des Stapelns und stellt innovative und zugleich wirtschaftliche technische Lösungsansätze vor, wie die Fertigungsprozesse zukünftig gestaltet werden können und welche technologischen Neuerungen dafür notwendig sein werden. Weiterhin steht die Demontage der Brennstoffzellen unter dem Aspekt einer optimalen Verwertung (Recycling) sowie insbesondere der Nachnutzung (ReUse) im Fokus der Betrachtungen. / Considerable market growth is forecast for fuel cells in the coming years. Currently, there is a need to realise the technical and economic challenges for a market ramp-up. To this end, new high-rate manufacturing technologies must be developed in order to reduce production and unit costs. For the stacking of fuel cell stacks, several developed concepts for 'stacking in a flow process' are to be considered in the future and examined with regard to their feasibility and economic efficiency. In addition, high-rate testing methods must be developed to ensure zero-defect production of the cost-intensive components and systems. Among other things, AI-based technologies are to be used here. The paper shows the current state of the art in the field of stacking and presents innovative and at the same time economical technical solution approaches, how the manufacturing processes can be designed in the future and which technological innovations will be necessary for this. Furthermore, the disassembly of the fuel cells under the aspect of optimal utilisation (recycling) as well as re-utilisation (ReUse) is the focus of the considerations.
19

Untersuchungen zur Elektrokatalyse von Hochtemperatur-Polymerelektrolytmembran-Brennstoffzellen (HT-PEMFCs) / Electrocatalytic Investigations on High Temperature Polymer Electrolyte Membrane Fuel Cells (HT-PEMFCs)

Hofmann, Constanze 14 January 2010 (has links)
No description available.
20

Electrocatalyseurs à base d’oxydes métalliques poreux pour pile à combustible à membrane échangeuse de protons / Porous metal oxide-based electrocatalysts for proton exchange membrane fuel cells

Cognard, Gwenn 28 March 2017 (has links)
Les électrocatalyseurs conventionnels utilisés dans les piles à combustibles à membrane échangeuse de protons (PEMFC) sont composés de nanoparticules de platine supportées sur des noirs de carbone de forte surface spécifique. A la cathode de la PEMFC, siège de la réaction de réduction de l’oxygène (ORR), le potentiel électrochimique peut atteindre des valeurs élevées - notamment lors de phases arrêt-démarrage - engendrant des dégradations irréversibles du support carboné. Une solution « matériaux » consiste à remplacer ce dernier par des supports à base d’oxydes métalliques. Ceux-ci doivent être résistants à la corrosion électrochimique, conducteurs électroniques et posséder une structure poreuse et nano-architecturée (permettant le transport des réactifs et produits et une distribution homogène de l’ionomère et des nanoparticules de platine). Dans ce travail, nous avons donc élaboré et caractérisé des électrocatalyseurs à base de nanoparticules de platine (Pt) déposées sur du dioxyde d’étain (SnO₂) et de titane (TiO₂) texturés (morphologies aérogel, nanofibres ou « loosetubes ») et conducteurs électroniques (dopés au niobium Nb ou à l’antimoine Sb). Le support permettant d’atteindre les meilleures propriétés électrocatalytiques est un aérogel de SnO₂ dopé à l’antimoine, noté ATO. En particulier, l’électrocatalyseur Pt/ATO présente une activité spécifique vis-à-vis de l’ORR supérieure à celle d’un électrocatalyseur Pt/carbone Vulcan® synthétisé dans les mêmes conditions, suggérant des interactions bénéfiques entre les nanoparticules de Pt et le support oxyde métallique (Strong Metal Support Interactions, SMSI).Des tests de durabilité simulant le fonctionnement d’une PEMFC en conditions automobile ont été effectués en électrolyte liquide à 80 °C sur ces deux électrocatalyseurs : cyclage entre 0,60 et 1,00 V vs l’électrode réversible à hydrogène (RHE) ou entre 1,00 et 1,50 V vs RHE. Le catalyseur Pt/ATO présente une durabilité accrue par rapport au catalyseur Pt/carbone Vulcan® de référence. Cependant, de nouveaux mécanismes de dégradation ont été mis en évidence dans cette étude : tout d’abord, l’élément dopant Sb est progressivement dissout au cours du vieillissement électrochimique, ce qui implique une perte de conductivité électronique. Cette perte est en partie liée à des incursions à bas potentiel, notamment durant les caractérisations électrochimiques. De plus, entre 5 000 et 10 000 cycles de vieillissement électrochimique (entre 0,60 et 1,00 V vs RHE ou entre 1,00 et 1,50 V vs RHE à 57 °C), le matériau support perd sa structure poreuse et forme un film amorphe peu conducteur. / Conventional electrocatalysts used in proton exchange membrane fuel cells (PEMFC) are composed of platinum nanoparticles supported on high specific surface area carbon blacks. At the cathode side of the PEMFC, where the oxygen reduction reaction (ORR) occurs, the electrochemical potential can reach high values - especially during startup-shutdown operating conditions - resulting in irreversible degradation of the carbon support. A “material” solution consists of replacing the carbon with supports based on metal oxides. The latter have to be resistant to electrochemical corrosion, be electronic conductor and have a porous and nano-architectural structure (for the transport of reagents and products and the homogeneous distribution of the ionomer and platinum nanoparticles).In this work, we have developed and characterized electrocatalysts composed of platinum (Pt) nanoparticles based on tin dioxide (SnO2) and titanium dioxide (TiO2) with optimized textural (aerogel, nanofibres or loosetubes morphologies) and electron-conduction properties (doped with niobium Nb or antimony Sb). The best electrocatalytic properties are reached for an antimony-doped SnO2 aerogel support, denoted ATO. The Pt/ATO electrocatalyst has especially a higher specific activity for the ORR than a Pt/carbon Vulcan® electrocatalyst, synthesized in the same conditions, suggesting beneficial interactions between the Pt nanoparticles and the metal oxide support (Strong Metal Support Interactions SMSI).Durability tests simulating automotive operating conditions of a PEMFC were carried out in liquid electrolyte at 57 °C on these two electrocatalysts by cycling between 0.60 and 1.00 V vs the reversible hydrogen electrode (RHE) or between 1.00 and 1.50 V vs RHE. The Pt/ATO electrocatalyst has an increased stability compared to the reference Pt/carbon Vulcan® electrocatalyst. However, new degradation mechanisms were highlighted in this study: first, the doping element (Sb) is progressively dissolved during electrochemical ageing, which implies a loss of electronic conductivity. This loss is partly due to incursions at low potential, including during electrochemical characterizations. Moreover, between 5,000 and 10,000 cycles of the accelerated stress tests (between 0.60 and 1.00 V vs RHE or between 1.00 and 1.50 V vs RHE at 57 °C), the support loses its porous structure and forms a poorly conductive amorphous film.

Page generated in 0.0574 seconds