• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 13
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 56
  • 56
  • 56
  • 33
  • 31
  • 31
  • 14
  • 13
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais lineares / Linear generalized ordinary differential equations and application to linear functional differential equations

Collegari, Rodolfo 25 February 2014 (has links)
Neste trabalho, apresentamos uma fórmula da variação das constantes para EDOs generalizadas lineares em espaços de Banach. Mais especificamente, estamos interessados em estabelecer uma relação entre as soluções do problema de Cauchy para uma EDO generalizada linear \'dx SUP. d \'tau\' =D[A(t )x], x(\'t IND. 0\') = \'x SOB. ~\' e as soluções do problema de Cauchy perturbado \'dx SUP. d \'tau\' =D[A(t )x +F(x, t )], x(\'t IND. 0\') = x(\'t IND. 0\') = \'x SOB. ~\' , em que as funções envolvidas são Perron integráveis e, portanto, admitem muitas descontinuidades e oscilações. Também provamos a existência de uma correspondência biunívoca entre o problema de Cauchy para uma EDF linear da forma { \' y PONTO\' =L(t )\'y IND. t\' , \'y IND. t IND. 0 = \\varphi\', , em que L é um operador linear e limitado e \'varphi\' é uma função regrada, e uma certa classe de EDOs generalizadas lineares. Como consequência, obtemos uma fórmula da variação das constantes relacionando as soluções da EDF linear e as soluções do problema perturbado { \'y PONTO\' = L(t )\'y IND.t\' + f (\'yIND. t\' , \'y IND. t IND. 0\' = \'\\varphi \', em que a aplicação \'t SETA \' f (\'y IND. t\' , t) é Perron integrável, com t em um intervalo de R, para cada função regrada y / In this work, we present a variation-of-constants formula for linear generalized ordinary differential equations in Banach spaces. More specifically, we are interested in establishing a relation between the solutions of the Cauchy problem for a linear generalized ordinary differential equation \'dx SUP. d \\tau\' =D[A(t )x], x(\'t IND. 0\') = x (\'t IND. 0\') = \'x SOB. ~\' and the solutions of the perturbed Cauchy problem \'dx SUP. \'d \\tau\' =D[A(t )x +F(x, t )], x(\'t IND. \'0) = \'x SOB.~\', where the functions involved are generalized Perron integrable and, hence, admit many discontinuities and oscillations. We also prove that there exists a one-to-one correspondence between the Cauchy problem for a linear functional differential equations of the form { \'y PONTO\' = L(t) \'y IND. t, \'y IND> 0 = \\varphi, where L is a bounded linear operator and \" is a regulated function, and a certain class of linear generalized ordinary differential equations. As a consequence, we are able to obtain a variation-of-constants formula relating the solutions of the linear functional differential equation and the solutions of the perturbed problem { \'y PONTO\' = L(T)\'y IND.t´+ f (\'y IND. t\', t), \'y IND.t IND. 0\' = \\varphi, where the application t \'ARROW\' f(\'y IND. t\', t) is Perron integrable, with t in an interval of R, for each regulated function y
42

Existência de soluções periódicas e permanência de soluções de equações diferenciais funcionais com retardo / Existence of periodic solutions and permanence of solutions of delayed functional differential equations

Souza, Carolinne Stefane de 16 February 2018 (has links)
Submitted by Carolinne Stefane Souza (ssouza.carolinne@gmail.com) on 2018-02-23T20:46:35Z No. of bitstreams: 1 Dissertacao_Repositorio.pdf: 1968665 bytes, checksum: 81a4dfcb3e59ddb820eadef680510a59 (MD5) / Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-02-26T17:20:13Z (GMT) No. of bitstreams: 1 souza_cs_me_sjrp.pdf: 1968665 bytes, checksum: 81a4dfcb3e59ddb820eadef680510a59 (MD5) / Made available in DSpace on 2018-02-26T17:20:13Z (GMT). No. of bitstreams: 1 souza_cs_me_sjrp.pdf: 1968665 bytes, checksum: 81a4dfcb3e59ddb820eadef680510a59 (MD5) Previous issue date: 2018-02-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho tem como objetivo principal investigar condições que garantam a existência de soluções periódicas para certos tipos de equações diferenciais funcionais com retardamento e condições que garantam a permanência das soluções dessas equações. A teoria do grau coincidente será a principal ferramenta utilizada para obter os resultados referentes à existência de solução periódica. Por essa razão, uma atenção especial a essa teoria será dada nos primeiros capítulos. Resultados inéditos sobre permanência de soluções serão exibidos no último capítulo e ilustrados com exemplos numéricos. / The main objective of this work is to investigate conditions that guarantee the existence of periodic solutions to certain types of functional differential equations with delay and conditions that guarantee the permanence of the solutions of those equations.The coincidence degree theory will be the main tool used to obtain the results concerning the existence of periodic solution. For that reason, a special attention to that theory will be given in the first chapters. New results on the permanence of solutions will be shown in the last chapter and illustrated with numerical examples.
43

Estudo da dinâmica de um oscilador amortecido com retroalimentação retardada / Study of teh dynamics of the damped oscillator with delayed feedback

Daniel Câmara de Souza 18 February 2011 (has links)
A dinâmica da equação diferencial com retardo x 2 pontos + 2ax ponto + bx = f(x ), para a função não linear f(x) = tanh(x), foi analisada como função dos parâmetros a, b, e do retardo , onde x = x(t ). Esse modelo descreve um oscilador harmônico amortecido sujeito a retroalimentação com retardo . Nesse estudo, examinamos os casos de retroalimentação negativa ( < 0) e positiva ( > 0). Usamos o método de passos para mostrar a propriedade de suavização da solução, da equação diferencial não linear com retardo, com o crescimento de t. Fizemos a análise da estabilidade local, construímos as cartas de estabilidade no espaço de parâmetros, e mostramos que o espectro de autovalores é discreto e, no máximo, enumerável. Foram construídos diagramas de bifurcação que exibiram a ocorrência da bifurcação de Hopf supercrítica, da bifurcação de forquilha supercrítica, e da bifurcação de Hopf dupla. Para alguns pontos de bifurcação de Hopf dupla, ressonantes e não ressonantes, foi calculada numericamente a série temporal, construído o espaço de fase e gerado o mapa de primeiro retorno para uma dada seção de Poincaré. Por fim, realizamos a discretização da equação do oscilador e fizemos uma breve análise da dinâmica da equação não linear de diferenças resultante. / The dynamics of the delay differential equation x 2 pontos + 2ax ponto + bx = f(x ), for the nonlinear function f(x) = tanh(x), has been analyzed as a function of the parameters a, b, and the delay , where x = x(t ). This model describes a damped harmonic oscillator subject to feedback with delay . Here, we have examined the cases of negative feedback (< 0) and positive feedback ( > 0). The method of steps have been used to show the property of solutions smoothing, for the nonlinear delay differential equation, for the increasing t. We have analyzed the local stability, made the stability charts, and showed that the spectrum of eigenvalues is discrete and at most enumerable. We have constructed the bifurcation diagrams that showed the occurrence of supercritical Hopf bifurcation, the supercritical pitchfork bifurcation and double Hopf bifurcation. For some points of resonant and non-resonant double Hopf bifurcation we have numerically calculated the time series, produced the phase space, and generated the first return map for a given Poincaré section. Finally, we have performed a discretization of the equation and made a brief analysis of the dynamics of the resulting nonlinear difference equation.
44

Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas / Averaging method for retarded functional differential equations with impulses by generalized ordinary differential equations

Jaqueline Bezerra Godoy 24 August 2009 (has links)
Neste trabalho, nós consideramos o seguinte problema de valor inicial para uma equação diferencial funcional retardada com impulsos { \'x PONTO\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFERENTE\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', onde f está definida em um aberto \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\') e assume valores em \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, onde \' G POT -\' ([ - r, 0], \' R POT. n\') denota o espaço das funções de [ - r, 0] em \' R POT. n\' que estão regradas e contínuas à esquerda. Além disso, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... são momentos pré determinados de impulsos tais que \'lim SOBRE k SETA + \' INFINITO\' \'t IND. k = + \' INFINITO\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND > k) - x (\'t IND. k). Os operadores de impulso \' I IND. k\', k = 0, 1, ... são funções contínuas de \'R POT. n\' em \' R POT. n\'. Consideramos, também, que para cada x \'varepsilon\' \' G POT. -\' ([- r, \' INFINITO\'), \'R POT. n\'), t \'SETA\' f (t, \'x IND. t\') é uma função localmente Lebesgue integrável e sua integral indefinida satisfaz uma condição do tipo Carathéodory. Além disso, f é Lipschitziana na segunda variável. Definimos \' f IND. 0\' ( \'phi\') = \' lim SOBRE T \' SETA\' \' INFINITO\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt e \' I IND. 0(x) = \' lim SOBRE T \'SETA\' \' INFINITO\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < ou = \' t IND. i\' < T onde \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', e consideremos a seguinte equação diferencial funcioonal autônoma \" média\" y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Então provamos que, sob certas condições, a solução x(t) de (1) se aproxima da solução y(t) de (2) em tempo assintoticamente grande / In this present work, we condider the following initial value problem for a retarded functional differential equation with impulses { \'x POINT\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFFERENT\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', where f está defined in a open set \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\'), r >0, and takes values in \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, where \' G POT -\' ([ - r, 0], \' R POT. n\') denotes the space of regulated functions from [ - r, 0] to \' R POT. n\' which are left continuous. Furthermore, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... are pre-assigned moments of impulse effects such that \'lim ON k ARROW + \' THE INFINITE\' \'t IND. k = + \' THE INFINITE\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND>k) - x (\'t IND. k). The impulse operators \' I IND. k\', k = 0, 1, ... are continuous mappings from \'R POT. n\' to \' R POT. n\'. For each x \'varepsilon\' \' G POT. -\' ([- r, \' THE INFINITE\'), \'R POT. n\'), t \'ARROW\' f (t, \'x IND. t\') is locally Lebesgue integrable and its indefinite integral satisfies a Carathéodory. Moreover, f é Lipschitzian with respect to the second variable. We define \' f IND. 0\' ( \'phi\') = \' lim ON T \' ARROW\' \' THE INFINITE\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt and \' I IND. 0(x) = \' lim ON T \'ARROW\' \' THE INFINITE\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < or = \' t IND. i\' < T where \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', and consider the \"averaged\" autonomous functional differential equation \'y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Then we prove that, under certain conditions, the solution x(t) of (1) in aproximates the solution y(t) de (2) in an asymptotically large time interval
45

Comportamento assintótico para soluções de certas equações diferenciais funcionais periódicas / Asymptotic behavior of solutions to certain periodic functional differential equations

Juliano Ribeiro de Oliveira 28 March 2008 (has links)
Estamos interessados em estudar o comportamento assintótico das soluções de uma classe de Equações Diferenciais Funcionais (EDF) lineares e autônomas do tipo neutro, onde os coeficientes, na parte não neutra, são funções periódicas de período comum w! e os retardamentos são múltiplos de w. Para isto, utilizamo-nos da teoria espectral de operadores aplicada ao chamado operador monodrômico \'PI\' : C \'SETA\' C, cuja ação é evoluir um dado estado um passo de tamanho w. Calculamos o resolvente deste operador, donde inferimos todas as propriedades espectrais que nos permitem determinar o comportamento assintótico das soluções. Mostramos a importância de se determinar autovalores dominantes para a obtenção das estimativas, e mostramos resultados neste sentido. Estudamos em detalhe três exemplos que ilustram a teoria e demonstram sua aplicabilidade / We are interested in the study of the asymptotic behavior of the solutions of a class of linear autonomous Functional Differential Equations (FDE) of neutral type, where the coeficients of the non neutral part are periodic functions with common period w and the time delays are multiples of w. We employ the spectral theory for linear operators applied to the so called monodromic operator \'PI\' : C \'ARROW\'! C, whose action is to evolve a given state one step of size w. We compute the resolvent of this operator, from where we infer the spectral properties that allows us to determine the asymptotic behavior of the solutions. We show the importance to determine whether an eigenvalue is dominant, in order to obtain the estimates for the correspondet solution, and we show results in this direction. Finally we study in detail three examples that illustrate the theory and demonstrate its applicability
46

Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais lineares / Linear generalized ordinary differential equations and application to linear functional differential equations

Rodolfo Collegari 25 February 2014 (has links)
Neste trabalho, apresentamos uma fórmula da variação das constantes para EDOs generalizadas lineares em espaços de Banach. Mais especificamente, estamos interessados em estabelecer uma relação entre as soluções do problema de Cauchy para uma EDO generalizada linear \'dx SUP. d \'tau\' =D[A(t )x], x(\'t IND. 0\') = \'x SOB. ~\' e as soluções do problema de Cauchy perturbado \'dx SUP. d \'tau\' =D[A(t )x +F(x, t )], x(\'t IND. 0\') = x(\'t IND. 0\') = \'x SOB. ~\' , em que as funções envolvidas são Perron integráveis e, portanto, admitem muitas descontinuidades e oscilações. Também provamos a existência de uma correspondência biunívoca entre o problema de Cauchy para uma EDF linear da forma { \' y PONTO\' =L(t )\'y IND. t\' , \'y IND. t IND. 0 = \\varphi\', , em que L é um operador linear e limitado e \'varphi\' é uma função regrada, e uma certa classe de EDOs generalizadas lineares. Como consequência, obtemos uma fórmula da variação das constantes relacionando as soluções da EDF linear e as soluções do problema perturbado { \'y PONTO\' = L(t )\'y IND.t\' + f (\'yIND. t\' , \'y IND. t IND. 0\' = \'\\varphi \', em que a aplicação \'t SETA \' f (\'y IND. t\' , t) é Perron integrável, com t em um intervalo de R, para cada função regrada y / In this work, we present a variation-of-constants formula for linear generalized ordinary differential equations in Banach spaces. More specifically, we are interested in establishing a relation between the solutions of the Cauchy problem for a linear generalized ordinary differential equation \'dx SUP. d \\tau\' =D[A(t )x], x(\'t IND. 0\') = x (\'t IND. 0\') = \'x SOB. ~\' and the solutions of the perturbed Cauchy problem \'dx SUP. \'d \\tau\' =D[A(t )x +F(x, t )], x(\'t IND. \'0) = \'x SOB.~\', where the functions involved are generalized Perron integrable and, hence, admit many discontinuities and oscillations. We also prove that there exists a one-to-one correspondence between the Cauchy problem for a linear functional differential equations of the form { \'y PONTO\' = L(t) \'y IND. t, \'y IND> 0 = \\varphi, where L is a bounded linear operator and \" is a regulated function, and a certain class of linear generalized ordinary differential equations. As a consequence, we are able to obtain a variation-of-constants formula relating the solutions of the linear functional differential equation and the solutions of the perturbed problem { \'y PONTO\' = L(T)\'y IND.t´+ f (\'y IND. t\', t), \'y IND.t IND. 0\' = \\varphi, where the application t \'ARROW\' f(\'y IND. t\', t) is Perron integrable, with t in an interval of R, for each regulated function y
47

Retarded functional differential equations with general delay structure / 一般の遅れ構造をもつ遅れ型関数微分方程式

Nishiguchi, Junya 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20156号 / 理博第4241号 / 新制||理||1610(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 國府 寛司, 教授 上田 哲生, 教授 堤 誉志雄 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
48

Teoria de semigrupos e aplicações a equações impulsivas com retardamento dependendo do estado / Semigroup theory and applications to impulsive differential equation with state-dependent delay

União, Gabriel Gonçalves 17 April 2006 (has links)
Neste trabalho estudaremos a existência de soluções fracas para uma classe de equações diferenciais funcionais impulsivas com retardamento dependendo do estado modeladas na forma \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'PERTENCE A\'I = [0,a], \'x IND. 0\' =\\varphi \'PERTENCE A\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, onde A é o gerador infinitesimal de um \'C IND. 0\'-semigrupo compacto de operadores lineares limitados (\'T\'(t))t \'. OU =\'0 definido em um espaço de Banach X; as fun»ções \'x IND. s\' : (- \'INFIINITO\', 0] \'SETA\' X, \'x IND. s\' ( teta\') = x(s + \'teta\'), estão em um espaço de fase B descrito axiomaticamente; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -). / In this work we stablish the existence of mild solutions for an impulsive abstract functional differential equation with state-dependent delay described in the form \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'BELONGS\'I = [0,a], \'x IND. 0\' =\\varphi \'IS CONTAINED\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, where A is the infinitesimal generator of a compact \'C IND. 0\'-semigroup of bounded linear operators (\'T\'(t))t \'. OU =\'0 defined on a Banach space X; the functions \'x IND. s\': ( - INFINito, 0] \'SETA X, \'x IND. s\'(\'teta\') , belongs to some space B described axiomatically; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -).
49

Stochastische Differentialgleichungen mit unendlichem Gedächtnis

Riedle, Markus 02 July 2003 (has links)
Für einen R^d-wertigen stochastischen Prozess X auf R bezeichne X_t den Segmentprozess X_t:={X(t+u): u = 0. Es wird folgende affine stochastische Differentialgleichung mit unendlichem Gedächtnis betrachtet: dX(t)=L(X_t)dt + dW(t) für t >= 0, X_0=F, (A) wobei L:B -> R^d ein lineares stetiges Funktional, W einen Wiener-Prozess mit Werten in R^d sowie B einen semi-normierten linearen Unterraum von {f:(-00, 0] -> R^d} bezeichnen. Die Anfangsbedingung F ist eine B-wertige Zufallsvariable. Die Lösung X der Gleichung (A) lässt sich mittels einer Formel der Variation der Konstanten darstellen. Für die Existenz einer stationären Lösung werden hinreichende und notwendige Bedingungen vorgestellt. Für eine spezielle Klasse von Funktionalen L kann Gleichung (A) auf ein System gewöhnlicher stochastischer Gleichungen ohne Gedächtnis reduziert werden. Diese Reduktion wird im Detail untersucht, insbesondere gewinnt man hierdurch ein einfaches äquivalentes Kriterium für die Existenz stationärer Lösungen von Gleichungen mit Funktionalen L dieser Klasse. Durch Einbettung der Gleichung (A) in den Bidualraum B** gelingt die Bestimmung der Lyapunov-Exponenten der Lösung. Hierzu wird ein neuer Zusammenhang der Lösung der sogenannten adjungierten Gleichung von (A) und einer Spektralzerlegung des Raumes B benutzt. Die Untersuchung der stetigen Abhängigkeit der Lösung von dem Funktional L und der Anfangsbedingung F ermöglicht die Behandlung anwendungsorientierter Aspekte. In Verbindung mit den Ergebnissen über reduzierbare Gleichungen wird ein Verfahren zur Approximation der Lösung von Gleichung (A) durch Ornstein-Uhlenbeck-Prozesse vorgestellt. Eine allgemeine Klasse von Ito-Differentialgleichungen mit nichtlinearen vergangenheitsabhängigen Drift- und Dispersionskoeffizienten wird eingeführt, in der die Gleichung (A) als eine spezielle affine Gleichung verstanden werden kann. Für diese allgemeinen Gleichungen wird ein Existenz- und Eindeutigkeitssatz nachgewiesen. / For an R^d-valued stochastic process X denote the segment process by X_t:={X(t+u): u = 0. We consider the following affine stochastic differential equation with infinite delay: dX(t)=L(X_t)dt + dW(t) for t >= 0, X_0= F, (A) where L:B -> R^d denotes a linear continuous functional, W denotes a Wiener process with values in R^d and B is a semi-normed linear subspace of {f: (-00, 0] -> R^d}. The initial condition F is a B-valued random variable. The solution X of equation (A) can be represented by a variation of constants formula. We provide sufficient and necessary conditions for the existence of a stationary solution. For a special class of functionals L the equation (A) can be reduced to a system of ordinary stochastic differential equations without memory. This reduction is studied in detail. In particular, we deduce a simple equivalent condition for the existence of stationary solutions of equations with functionals L in this class. The embedding of equation (A) into the bidualspace B** enables us to calculate the Lyapunov exponents of the solution. For this purpose we exploit a new connection between the solution of the so-called adjoint equation of (A) and a spectral decompositon of the space B. By considering the continuous dependence of the solution on the functional L and the initial condition F we obtain results useful in applications. In conjunction with results on reducible equations we establish an approximation scheme for the solution of equation (A) by Ornstein-Uhlenbeck processes. Moreover, we introduce a general class of Ito differential equations with non-linear drift and dispersion hereditary coefficients. We deduce a result on the existence of unique solutions for this general class of equations. Equation (A) can be regarded as a special affine equation in this class.
50

Equações diferenciais funcionais em medida e equações dinâmicas funcionais impulsivas em escalas temporais / Measure functional differential equations and impulse functional dynamic equations on time scales

Mesquita, Jaqueline Godoy 03 September 2012 (has links)
O objetivo deste trabalho é investigar e desenvolver a teoria de equações dinâmicas funcionais impulsivas em escalas temporais. Mostramos que estas equações representam um caso especial de equações diferenciais funcionais em medida impulsivas. Também, apresentamos uma relação entre estas equações e as equações diferenciais funcionais em medida e, ainda, mostramos uma relação entre elas e as equações diferenciais ordinárias generalizadas. Relacionamos, também, as equações diferenciais funcionais em medida e as equações dinâmicas funcionais em escalas temporais. Obtemos resultados sobre existência e unicidade de soluções, dependência contínua, método da média periódico e não-periódico bem como resultados de estabilidade para todos os tipos de equações descritos anteriormente. Também, provamos algumas propriedades relativas às funções regradas e aos conjuntos equiregrados em espaços de Banach, que foram essenciais para os nossos propósitos. Os resultados novos apresentados neste trabalho estão contidos em 7 artigos, dos quais dois já foram publicados e um aceito. Veja [16], [32], [34], [36], [37], [38] e [84] / The aim of this work is to investigate and develop the theory of impulsive functional dynamic equations on time scales. We prove that these equations represent a special case of impulsive measure functional differential equations. Moreover, we present a relation between these equations and measure functional differential equations and, also, a correspondence between them and generalized ordinary differential equations. Also, we clarify the relation between measure functional differential equations and functional dynamic equations on time scales. We obtain results on the existence and uniqueness of solutions, continuous dependence on parameters, non-periodic and periodic averaging principles and stability results for all these types of equations. Moreover, we prove some properties concerning regulated functions and equiregulated sets in a Banach space which were essential to our purposes. The new results presented in this work are contained in 7 papers, two of which have already been published and one accepted. See [16], [32], [34], [36], [37], [38] and [84]

Page generated in 0.5553 seconds