Spelling suggestions: "subject:"functionals"" "subject:"junctionals""
171 |
Informational Frameworks for Collective Decision Making: "A Suggested Compromise" (Structures informationnelles des problèmes de décision collective)Erdamar, Bora 23 September 2013 (has links) (PDF)
Cette thèse porte sur les fondations de la théorie des préférences et de l'utilité utilisée dans les domaines du choix social et de la théorie de la décision. Le premier chapitre est l'introduction. Le second chapitre est composé d'une revue de la littérature et des résultats existants, d'une discussion des motivations pour envisager un nouveau cadre théorique permettant de combiner différentes approches de l'agrégation des préférences individuelles, et d'une proposition d'un modèle hybride appelé modèle de préférence-approbation. Le troisième chapitre pose la question du sens que l'on peut donner au consensus dans un tel cadre théorique. Pour y répondre, ce travail fournit une approche basée sur la notion de distance, c'est-à-dire d'une métrique définie sur le domaine des préférence-approbations, et examine différentes façons de mesurer l'homogénéité au sein d'un ensemble d'opinions individuelles. Dans cette nouvelle modélisation des opinions, les individus s'expriment à la fois à travers un classement défini sur l'ensemble des alternatives et par un niveau de seuil, permettant de distinguer dans ce classement les alternatives "approuvées" de celles qui sont "désapprouvées". Le quatrième chapitre comporte une analyse de la manipulabilité des règles d'agrégation définies sur un profil de votes composés de classements et d'évaluations binaires. En introduisant une nouvelle notion de non-manipulabilité, cette étude offre un résultat de possibilité, ainsi que certaines caractérisations d'impossibilités. La conclusion permet de discuter plusieurs questions de recherche future sur la manière de définir de nouveaux systèmes d'élections et mécanismes de votes, ainsi que leurs impacts potentiels sur la société.
|
172 |
Computational modeling of materials in polymer electrolyte membrane fuel cellsBrunello, Giuseppe 16 September 2013 (has links)
Fuel cells have the potential to change the energy paradigm by allowing more efficient use of energy. In particular, Polymer Electrolyte Membrane Fuel Cells (PEMFC) are interesting because they are low temperature devices. However, there are still numerous challenges limiting their widespread use including operating temperature, types of permissible fuels and optimal use of expensive catalysts. The first two problems are related mainly to the ionomer electrolyte, which largely determines the operating temperature and fuel type. While new ionomer membranes have been proposed to address some of these issues, there is still a lack of fundamental knowledge to guide ionomer design for PEMFC.
This work is a computational study of the effect of temperature and water content on sulfonated poly(ether ether ketone) and the effect of acidity on sulfonated polystyrene to better understand how ionomer material properties differ. In particular we found that increased water content preferentially solvates the sulfonate groups and improves water and hydronium transport. However, we found that increasing an ionomer’s acid strength causes similar effects to increasing the water content.
Finally, we used Density Functional Theory (DFT) to study platinum nano-clusters as used in PEMFCs. We developed a model using the atom’s coordination number to quickly compute the energy of a cluster and therefore predict which platinum atoms are most loosely held. Our model correctly predicted the energy of various clusters compared to DFT. Also, we studied the interaction between the various moieties of the electrolyte including the catalyst particle and developed a force field.
The coordination model can be used in a molecular dynamics simulation of the three phase region of a PEMFC to generate unbiased initial clusters. The force field developed can be used to describe the interaction between this generated cluster and the electrolyte.
|
173 |
Foundation of Density Functionals in the Presence of Magnetic FieldLaestadius, Andre January 2014 (has links)
This thesis contains four articles related to mathematical aspects of Density Functional Theory. In Paper A, the theoretical justification of density methods formulated with current densities is addressed. It is shown that the set of ground-states is determined by the ensemble-representable particle and paramagnetic current density. Furthermore, it is demonstrated that the Schrödinger equation with a magnetic field is not uniquely determined by its ground-state solution. Thus, a wavefunction may be the ground-state of two different Hamiltonians, where the Hamiltonians differ by more than a gauge transformation. This implies that the particle and paramagnetic current density do not determine the potentials of the system and, consequently, no Hohenberg-Kohn theorem exists for Current Density Functional Theory formulated with the paramagnetic current density. On the other hand, by instead using the particle density as data, we show that the scalar potential in the system's Hamiltonian is determined for a fixed magnetic field. This means that the Hohenberg-Kohn theorem continues to hold in the presence of a magnetic field, if the magnetic field has been fixed. Paper B deals with N-representable density functionals that also depend on the paramagnetic current density. Here the Levy-Lieb density functional is generalized to include the paramagnetic current density. It is shown that a wavefunction exists that minimizes the "free" Hamiltonian subject to the constraints that the particle and paramagnetic current density are held fixed. Furthermore, a convex and universal current density functional is introduced and shown to equal the convex envelope of the generalized Levy-Lieb density functional. Since this functional is convex, the problem of finding the particle and paramagnetic current density that minimize the energy is related to a set of Euler-Lagrange equations. In Paper C, an N-representable Kohn-Sham approach is developed that also include the paramagnetic current density. It is demonstrated that a wavefunction exists that minimizes the kinetic energy subject to the constraint that only determinant wavefunctions are considered, as well as that the particle and paramagnetic current density are held fixed. Using this result, it is then shown that the ground-state energy can be obtained by minimizing an energy functional over all determinant wavefunctions that have finite kinetic energy. Moreover, the minimum is achieved and this determinant wavefunction gives the ground-state particle and paramagnetic current density. Lastly, Paper D addresses the issue of a Hohenberg-Kohn variational principle for Current Density Functional Theory formulated with the total current density. Under the assumption that a Hohenberg-Kohn theorem exists formulated with the total current density, it is shown that the map from particle and total current density to the vector potential enters explicitly in the energy functional to be minimized. Thus, no variational principle as that of Hohenberg and Kohn exists for density methods formulated with the total current density. / <p>QC 20140523</p>
|
174 |
First-principles study of the li adsorption on various carbon hybrid systemsKoh, Wonsang 29 June 2011 (has links)
Recent carbon allotropes such as carbon nanotubes (CNTs), fullerenes (C60s) and graphene have attracted great interests in both science and engineering due to their unique properties such as excellent electrical and mechanical properties as well as its vast surface area, and have led to many commercial applications. Especially, CNTs have been considered to be one of the promising candidates in the Li ion battery system because of its outstanding properties. However, the experimental results in the pristine CNT system have shown just slight improvement than original graphitic carbon material, which has been attributed to the weak adsorption of Li on CNTs. In this study, we investigated two types of CNT-C60 hybrid system consisting of CNTs and C60s to improve Li adsorption capabilities and predict its performance through quantum mechanical (QM) computations. First, we investigated adsorption energy of lithium (Li) on dilute CNT-C60 hybrid and CNT-C60 nanobud system as well as various electronic properties such as band structure, density of states (DOS), molecular orbital and charge distribution. Then, we expanded our interest to the more realistic condensed structure of CNT-C60 hybrid and nanobud system to examine actual electrochemical characteristics. The study of the condensed structure has been expanded to the very unique CNT-C60 nano-network system and examined mechanical strength as well as electronic properties. Finally, Li adsorption on other carbon allotropes system such as graphene-C60 hybrid and graphene-C60 bud system was investigated in order to provide fundamental understanding of electronic interaction between carbon allotrope and effect of Li adsorption.
|
175 |
Solvation!Ivana Adamovic January 2004 (has links)
19 Dec 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2009" Ivana Adamovic. 12/19/2004. Report is also available in paper and microfiche from NTIS.
|
176 |
Drama in Dynamics Boom, Splash, and Speed.Heather Marie Netzloff January 2004 (has links)
19 Dec 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 1930" Heather Marie Netzloff. 12/19/2004. Report is also available in paper and microfiche from NTIS.
|
177 |
New Palladium-Catalyzed Approaches to Heterocycles and CarbocyclesQinhua Huang January 2004 (has links)
19 Dec 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2695" Qinhua Huang. 12/19/2004. Report is also available in paper and microfiche from NTIS.
|
178 |
Funcionais orbitais: investigação de estratégias de implementação no contexto da formulação Kohn-Sham da Teoria do Funcional da Densidade / Orbital functionals: implementation strategies in the context of the Kohn-Sham formulation of Density Functional TheoryBento, Marsal Eduardo 16 December 2014 (has links)
Made available in DSpace on 2016-12-12T20:15:51Z (GMT). No. of bitstreams: 1
Marsal Eduardo Bento.pdf: 1108751 bytes, checksum: c5c36b13c56d8d4fadcee9ddc5a9098e (MD5)
Previous issue date: 2014-12-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The development of Density Functional Theory (DFT) has been focused primarily on two main pillars: (1) the pursuit of more accurate exchange-correlation (XC) density functionals; (2) the feasibility of computational implementation when dealing with many-body systems. In this context, this work is aimed on using one-dimensional quantum systems as theoretical laboratories to investigate the implementation of orbital functionals (OFs) of density. By definition, OFs are those which depend only implicitly on the density, via an explicit formulation in terms of Kohn-Sham orbitals. Typical examples are the XC functionals arising from the Perdew-Zunger self-interaction correction (PZSIC). Formally, via Kohn-Sham equations, the implementation of OFs must be performed by means of the optimized effective potential method (OEP), which is known by requiring an excessive computational effort even when dealing with few electrons systems (N ̴ 10). Here, we proceed a systematical investigation aiming to simplify or avoid the OEP procedure, taking as reference the implementation of the PZSIC correction applied to one-dimensional Hubbard chains. / O desenvolvimento da Teoria do Funcional da Densidade (DFT) tem se concentrado, sobretudo, em dois pilares fundamentais: (1) a busca por funcionais de troca e correlação (XC) mais precisos; (2) a viabilidade de implementação computacional diante de sistemas com muitos elétrons. Nesse contexto, o objetivo principal deste trabalho consiste em utilizar sistemas quânticos unidimensionais, mais simples de serem tratados numericamente, como laboratórios teóricos para o desenvolvimento de alternativas de implementação numérica de funcionais orbitais (OFs) da densidade. Por definição, OFs são todos aqueles que dependem apenas implicitamente da densidade, via formulação explícita em termos dos orbitais Kohn-Sham. Exemplos típicos são os funcionais XC advindos da correção de auto-interação de Perdew e Zunger (PZSIC). Formalmente, via equações de Kohn-Sham, a implementação de OFs deve ser procedida por meio do método do potencial efetivo otimizado (OEP) que, no contexto computacional, é conhecido por se tornar demasiadamente custoso, inclusive para sistemas com poucos elétrons (N ̴ 10). Sendo assim, investigamos, de forma sistemática, alternativas de simplificar ou evitar o procedimento OEP, tomando como referência a implementação da correção PZSIC aplicada a cadeias de Hubbard unidimensionais.
|
179 |
Fonctionnelles de processus de Lévy et diffusions en milieux aléatoires / Functionals of Lévy processes and diffusions in random mediaVéchambre, Grégoire 30 November 2016 (has links)
Pour V un processus aléatoire càd-làg, on appelle diffusion dans le milieu aléatoire V la solution formelle de l’équation différentielle stochastique \[ dX_t = - \frac1{2} V'(X_t) dt + dB_t, \] où B est un mouvement brownien indépendant de V . Le temps local au temps t et à la position x dela diffusion, noté LX(t, x), donne une mesure de la quantité de temps passé par la diffusion au point x, avant l’instant t. Dans cette thèse nous considérons le cas où le milieu V est un processus de Lévyspectralement négatif convergeant presque sûrement vers −∞, et nous nous intéressons au comportementasymptotique lorsque t tend vers l’infini de $\mathcal{L}_X^*(t) := \sup_{\mathbb{R}} \mathcal{L}_X(t, .)$ le supremum du temps local de ladiffusion, ainsi qu’à la localisation du point le plus visité par la diffusion. Nous déterminons notammentla convergence en loi et le comportement presque sûr du supremum du temps local. Cette étude révèleque le comportement asymptotique du supremum du temps local est fortement lié aux propriétés desfonctionnelles exponentielles des processus de Lévy conditionnés à rester positifs et cela nous amène àétudier ces dernières. Si V est un processus de Lévy, V ↑ désigne le processus V conditionné à rester positif.La fonctionnelle exponentielle de V ↑ est la variable aléatoire $\int_0^{+ \infty} e^{- V^{\uparrow} (t)}dt$ . Nous étudions en particulier sa finitude, son auto-décomposabilité, l’existence de moments exponentiels, sa queue en 0, l’existence et larégularité de sa densité. / For V a random càd-làg process, we call diffusion in the random medium V the formal solution of thestochastic differential equation \[ dX_t = - \frac1{2} V'(X_t) dt + dB_t, \] where B is a brownian motion independent of V . The local time at time t and at the position x of thediffusion, denoted by LX(t, x), gives a measure of the amount of time spent by the diffusion at point x,before instant t. In this thesis we consider the case where the medium V is a spectrally negative Lévyprocess converging almost surely toward −∞, and we are interested in the asymptotic behavior, whent goes to infinity, of $\mathcal{L}_X^*(t) := \sup_{\mathbb{R}} \mathcal{L}_X(t, .)$ the supremum of the local time of the diffusion. We arealso interested in the localization of the point most visited by the diffusion. We notably establish theconvergence in distribution and the almost sure behavior of the supremum of the local time. This studyreveals that the asymptotic behavior of the supremum of the local time is deeply linked to the propertiesof the exponential functionals of Lévy processes conditioned to stay positive and this brings us to studythem. If V is a Lévy process, V ↑ denotes the process V conditioned to stay positive. The exponentialfunctional of V ↑ is the random variable $\int_0^{+ \infty} e^{- V^{\uparrow} (t)}dt$ . For this object, we study in particular finiteness,
|
180 |
Rigidez de métricas críticas para funcionais riemannianos. / Rigidity of critical metrics for functional riemanniansSilva, Adam Oliveira da 15 September 2017 (has links)
SILVA, Adam Oliveira da. Rigidez de métricas críticas para funcionais riemannianos. 2017. 78 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-19T19:08:04Z
No. of bitstreams: 1
2017_tese_aosilva.pdf: 481005 bytes, checksum: 2bdfc6ab68b042a5cfd4f67caf1e21e4 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia,
Estou devolvendo a Tese de ADAM OLIVEIRA DA SILVA, para que o arquivo seja substituído, pois o aluno já veio na BCM e orientei quais eram as correções a serem feitas.
Atenciosamente, on 2017-09-20T14:03:26Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-20T16:47:21Z
No. of bitstreams: 1
2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-21T12:26:34Z (GMT) No. of bitstreams: 1
2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5) / Made available in DSpace on 2017-09-21T12:26:35Z (GMT). No. of bitstreams: 1
2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5)
Previous issue date: 2017-09-15 / The aim of this work is to study metrics that are critical points for some Riemannian functionals. In the first part, we investigate critical metrics for functionals which are quadratic in the curvature on closed Riemannian manifolds. It is known that space form metrics are critical points for these functionals, denoted by F t,s (g). Moreover, when s = 0, always Einstein metrics are critical to F t (g). We proved that under some conditions the converse is true. For instance, among others results, we prove that if n ≥ 5 and g is a Bach-flat critical metric to F −n/4(n−1) , with second elementary symmetric function of the Schouten tensor σ 2 (A) > 0, then g should be Einstein. Furthermore, we show that a locally conformally flat critical metric with some additional conditions are space form metrics. In the second part, we study the critical metrics to volume functional on compact Riemannian manifolds with connected smooth boundary. We call such critical points of Miao-Tam
critical metrics due to the variational study making by Miao and Tam (2009). In this work, we show that the geodesics balls in space forms Rn , Sn and Hn have the maximum possible boundary volume among Miao-Tam critical metrics with connected boundary provided that the boundary be an Einstein manifold. In the same spirit, we also extend a rigidity theorem due to Boucher et al. (1984) and Shen (1997) to n-dimensional static
metrics with positive constant scalar curvature, which give us another way to get a partial answer to the Cosmic no-hair conjecture already obtained by Chrusciel (2003). / Este trabalho tem como principal objetivo estudar métricas que são pontos críticos de alguns funcionais Riemannianos. Na primeira parte, investigaremos métricas críticas de funcionais que são quadráticos na curvatura sobre variedades Riemannianas fechadas. É de conhecimento que métricas tipo formas espaciais são pontos críticos para tais funcionais, denotados aqui por F t,s (g). Além disso, no caso s = 0, métricas de Einstein são sempre críticas para F t (g). Provamos que sob algumas condições, a recíproca destes fatos
são verdadeiras. Por exemplo, dentre outros resultados, provamos que se n ≥ 5 e g é uma métrica Bach-flat crìtica para F−n/4(n−1) com segunda função simétrica elementar do tensor de Schouten σ 2 (A) > 0, então g tem que ser métrica de Einstein. Ademais, mostramos que uma métrica crítica localmente conformemente plana, com algumas hipóteses adicionais, tem que ser tipo forma espacial. Na segunda parte, estudamos as métricas críticas do funcional volume sobre variedades Riemannianas compactas com bordo suave conexo.
Chamamos tais pontos críticos de métricas críticas de Miao-Tam, devido ao estudo variacional feito por Miao e Tam (2009). Neste trabalho provamos que as bolas geodésicas das formas espaciais Rn , S n e H n possuem o valor máximo para o volume do bordo dentre todas as métricas críticas de Miao-Tam com bordo conexo, desde que o bordo seja uma variedade de Einstein. No mesmo sentido, também estendemos um teorema de rigidez devido à Boucher et al. (1984) e Shen (1997) para métricas estáticas de dimensão n e com curvatura escalar constante positiva, o qual nos fornece outra maneira para obter uma resposta parcial para a Cosmic no-hair conjecture já obtida por Chrusciel (2003).
|
Page generated in 0.0568 seconds