• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 13
  • 13
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nrg1p and Rfg1p in Candida albicans yeast-to-hyphae transition

Lacroix, Céline. January 2008 (has links)
The ability of Candida albicans to change morphology plays several roles in its virulence and as a human commensal. The yeast-to-hyphae transition is tightly regulated by several sets of activating and repressing pathways. The DNA-binding proteins Rfg1p, Nrg1p and the global repressor Tup1p are part of the repressors found to regulate this morphogenesis. Knowledge of these repressors is based on extrapolations from homology to S. cerevisiae and from expression studies of mutants in inducing conditions, all of which are indirect means of determining a protein's function. We proposed a genome-wide location study of the Nrg1 and Rfg1 transcription factors to obtain direct data to identify their in vivo targets. Our results suggest different avenues for Nrg1p function and a regulation behaviour diverging from the previously suggested model: Nrg1p acts not only as a repressor but also as a transcription activator. Furthermore it regulates its target genes through binding in their coding regions instead binding to the expected regulatory elements on promoters.
22

The regulation of S phase progression rate in yeast in response to DNA damage /

Paulovich, Amanda G. January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references.
23

Nrg1p and Rfg1p in Candida albicans yeast-to-hyphae transition

Lacroix, Céline. January 2008 (has links)
No description available.
24

Mechanistic Analysis of Chromatin Remodeling Enzymes: a Dissertation

Jaskelioff, Mariela 29 May 2003 (has links)
The inherently repressive nature of chromatin presents a sizeable barrier for all nuclear processes in which access to DNA is required. Therefore, eukaryotic organisms ranging from yeast to humans rely on a battery of enzymes that disrupt the chromatin structure as a means of regulating DNA transactions. These enzymes can be divided into two broad classes: those that covalently modify histone proteins, and those that actively disrupt nucleosomal structure using the free energy derived from ATP hydrolysis. The latter group, huge, multisubunit ATP-dependent chromatin remodeling factors, are emerging as a common theme in all nuclear processes in which access to DNA is essential. Although transcription is the process for which a requirement for chromatin remodeling is best documented, it is now becoming clear that other processes like replication, recombination and DNA repair rely on it as well. A growing number of ATP-dependent remodeling machines has been uncovered in the last 10 years. Although they differ in their subunit composition, organism or tissue restriction, substrate specificity, and regulating/recruiting partners, it has become increasingly evident that all ATP-dependent chromatin remodeling factors share a similar underlying mechanism. This mechanism is the subject of the studies presented in this thesis. Chromatin-remodeling factors seem to bind both the histone and DNA components of nucleosomes. From a fixed position on nucleosomes, the remodeling factors appear to translocate on the DNA, generating torsional stress on the double helix. This activity has several consequences, including the distortion of the DNA structure on the surface of the histone octamer, the disruption of histone-DNA interactions, and the mobilization of the nucleosome core with respect to the DNA. The work presented in this thesis, along with data reported by other groups, supports the hypothesis that yeast SWI/SNF chromatin remodeling complex and the recombinational repair factor, Rad54p, both employ similar mechanisms to regulate gene transcription, and facilitate homologous DNA pairing and recombination, respectively.
25

Pyrenophora tritici-repentis : investigation of factors that contribute to pathogenicity

Holman, Thomas W. (Thomas Wade) 15 August 2012 (has links)
Pyrenophora tritici-repentis (Ptr) is the necrotrophic fungus responsible for tan spot of wheat (Triticum aestivum). Ptr causes disease on susceptible wheat cultivars through the production and secretion of host-selective toxins (HSTs). HSTs are compounds that are only known to be produced by fungi and considered to be primary determinants of pathogenicity. Infiltration of these toxins into sensitive wheat elicits the same symptoms as the pathogen, which simplifies investigations of host- pathogen interactions due to exclusion of the pathogen. These characteristics make HSTs ideal molecules to dissect molecular plant-microbe interactions. Known HSTs of Ptr include Ptr ToxA (ToxA), Ptr ToxB (ToxB) and Ptr ToxC (ToxC). ToxA is the most characterized toxin of Ptr, as well as the first proteinaceous HST identified. The proposed mode-of-action for ToxA includes internalization into sensitive wheat mesophyll cells, localization to the chloroplast, photosystem perturbations and elicitation of high amounts of reactive oxygen species (ROS), all of which lead to necrosis. However, it is still unknown how ToxA is transported to the chloroplast. To identify additional interacting components involved in ToxA symptom development, genes were silenced in tobacco plants (Nicotiana benthamiana) using the tobacco rattle virus (TRV) virus-induced gene-silencing (VIGS) system. Four genes were identified that potentially could play a role in ToxA-induced cell death: a 40S ribosomal subunit, peroxisomal glycolate oxidase (GOX), a thiamine biosynthetic enzyme (Thi1), and the R-gene mediator, Sgt1. Ptr exhibits a complex race structure determined by the HST(s) produced and the symptom(s) elicited on sensitive wheat cultivars. Currently, there are eight characterized races and other HSTs and races have been proposed. Isolate SO3 was discovered in southern Oregon and elicits ToxA-like symptoms on a wheat differential set, yet lacks the ToxA gene. The transcriptome of SO3 was sequenced, assembled, and aligned to a ToxA-producing isolate, Pt-1C-BFP, which will aid in the identification of the protein(s) that may be responsible for these ToxA-like symptoms. SO3 contains a set of 497 sequences that were not found in the ToxA-producing isolate Pt-1C-BFP (BFP). These sequences should be further investigated to identify those that encode small secreted proteins (SSPs) and could potentially serve as HSTs and pathogenicity factors of SO3. / Graduation date: 2013
26

Structural and functional analysis of MCM helicases in eukaryotic DNA replication /

Leon, Ronald P. January 2007 (has links)
Thesis (Ph.D. in Biophysics & Genetics, Program in Molecular Biology) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 90-98). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
27

Hydrophobins in wood biology and biotechnology / Hydrophobinen in Holz Biologie und Biotechnologie

Peddireddi, Sudhakar 28 March 2008 (has links)
No description available.

Page generated in 0.0998 seconds