• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 26
  • 9
  • Tagged with
  • 84
  • 41
  • 27
  • 22
  • 21
  • 18
  • 18
  • 16
  • 16
  • 16
  • 15
  • 15
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Self-supervision for data interpretability in image classification and sample efficiency in reinforcement learning

Rajkumar, Nitarshan 06 1900 (has links)
L'apprentissage auto-surveillé (AAS), c'est-à-dire l'apprentissage de connaissances en exploitant la structure intrinsèque présente dans un ensemble de données non étiquettées, a beaucoup fait progresser l'apprentissage automatique dans la dernière décennie, et plus particulièrement dans les dernières deux années en vision informatique. Dans cet ouvrage, nous nous servons de l'AAS comme outil dans deux champs applicatifs: Pour interpréter efficacement les ensembles de données et les décisions prises par des modèles statistiques, et pour pré-entrainer un modèle d'apprentissage par renforcement pour grandement augmenter l'efficacité de son échantillonnage dans son contexte d'entraînement. Le Chapitre 1 présente les connaissances de fond nécessaires à la compréhension du reste du mémoire. Il offre un aperçu de l'apprentissage automatique, de l'apprentissage profond, de l'apprentissage auto-surveillé et de l'apprentissage par renforcement (profond). Le Chapitre 2 se détourne brièvement du sujet de l'auto-surveillance pour étudier comment le phénomène de la mémorisation se manifeste dans les réseaux de neurones profonds. Les observations que nous ferons seront alors utilisées comme pièces justificatives pour les travaux présentés dans le Chapitre 3. Ce chapitre aborde la manière dont l'auto-surveillance peut être utilisée pour découvrir efficacement les régularités structurelles présentes dans un ensemble de données d'entraînement, estimer le degré de mémorisation de celui-ci par le modèle, et l'influence d'un échantillon d'entraînement sur les résultats pour un échantillon-test. Nous passons aussi en revue de récents travaux touchant à l'importance de mémoriser la ``longue traîne'' d'un jeu de données. Le Chapitre 4 fait la démonstration d'une combinaison d'objectifs de pré-entraînement AAS axés sur les caractéristiques des données en apprentissage par renforcement, de ce fait élevant l'efficacité d'échantillonnage à un niveau comparable à celui d'un humain. De plus, nous montrons que l'AAS ouvre la porte à de plus grands modèles, ce qui a été par le passé un défi à surmonter en apprentissage par renforcement profond. Finalement, le Chapitre 5 conclut l'ouvrage avec un bref survol des contributions scientifiques et propose quelque avenues pour des recherches poussées dans le futur. / Self-Supervised Learning (SSL), or learning representations of data by exploiting inherent structure present in it without labels, has driven significant progress in machine learning over the past decade, and in computer vision in particular over the past two years. In this work, we explore applications of SSL towards two separate goals - first, as a tool for efficiently interpreting datasets and model decisions, and second, as a tool for pretraining in reinforcement learning (RL) to greatly advance sample efficiency in that setting. Chapter 1 introduces background material necessary to understand the remainder of this thesis. In particular, it provides an overview of Machine Learning, Deep Learning, Self-Supervised Representation Learning, and (Deep) Reinforcement Learning. Chapter 2 briefly detours away from this thesis' focus on self-supervision, to examine how the phenomena of memorization manifests in deep neural networks. These results are then used to partially justify work presented in Chapter 3, which examines how self-supervision can be used to efficiently uncover structural regularity in training datasets, and to estimate training memorization and the influence of training samples on test samples. Recent experimental work on understanding the importance of memorizing the long-tail of data is also revisited. Chapter 4 demonstrates how a combination of SSL pretraining objectives designed for the structure of data in RL can greatly improve sample efficiency to nearly human-level performance. Furthermore, it is shown that SSL enables the use of larger models, which has historically been a challenge in deep RL. Chapter 5 concludes by reviewing the contributions of this work, and discusses future directions.
72

Évaluation de l’efficacité du programme The Family Game sur les stratégies parentales positives auprès de parents présentant une déficience intellectuelle

Tremblay, Joany 04 1900 (has links)
Contrairement aux parents de la population générale, ceux présentant une déficience intellectuelle (DI) sont plus à risque d’être référés à la protection de la jeunesse, ainsi que de perdre la garde de leur enfant. Malgré que plusieurs programmes d’intervention parentale soient disponibles pour soutenir les parents, la plupart ne sont pas adaptés au fonctionnement d’apprentissage des personnes présentant une DI. Le programme The Family Game est un outil conçu spécifiquement pour les parents présentant une DI dans le but d’enseigner des stratégies parentales positives et d’augmenter la coopération de l’enfant. Sous forme de jeu, le programme enseigne trois stratégies parentales : a) donner des consignes claires, b) renforcer les comportements coopératifs et c) corriger les comportements inappropriés de l’enfant. Une première étude expérimentale a évalué le programme The Family Game auprès de deux mères présentant une DI et ayant un enfant âgé de 10 et 14 ans (Tahir et al., 2015). Les résultats suggèrent une amélioration des stratégies parentales enseignées chez les mères et des résultats variables quant à la généralisation des apprentissages. Dans cette perspective, d’autres études expérimentales sont nécessaires afin de mesurer les effets de ce programme. Ce projet de mémoire visait à évaluer l’efficacité du programme The Family Game sur les stratégies parentales positives auprès de parents présentant une DI. Un couple de parents présentant une DI légère et une DI moyenne et ayant un enfant âgé de 3 ans ont complété l’étude. Un protocole à niveaux de base multiples en fonction des stratégies parentales à enseigner a été utilisé pour évaluer les effets du programme. Les résultats de cette étude sont similaires aux résultats de la recherche menée par Tahir et al. (2015). Ils indiquent une amélioration de l’utilisation des trois stratégies parentales chez le couple et un maintien des apprentissages un mois après le programme. La généralisation des apprentissages était toutefois variable chez les deux parents. En somme, le programme The Family Game montre des résultats encourageants auprès des parents présentant une DI. Cependant, des stratégies supplémentaires, comme la rétroaction par vidéo, devraient être intégrées au programme afin de favoriser la généralisation des apprentissages. / Unlike parents in the general population, parents with an intellectual disability (ID) are more at risk of being referred to youth protection as well as losing custody of their child. Although several parental intervention programs are available to support parents, most are not adapted to the learning functioning of individuals with ID. The Family Game is a training program designed specifically for parents with ID for improving the cooperation of the child by teaching positive behavior management strategies. The program uses a board game format to teach three parenting strategies: a) providing clear instructions, b) reinforcing cooperative behaviors, and c) correcting inappropriate behaviors. A first experimental study evaluated The Family Game program with two mothers with ID and children aged 10 and 14 (Tahir et al., 2015). The results suggest an improvement in the parenting strategies taught and variable results regarding the generalization of learning. Thus, further experimental studies are needed to measure the effects of this program. The purpose of this study was to evaluate the effectiveness of The Family Game program on positive parenting strategies of parents with an ID. A couple of parents with mild and moderate ID with a 3-year-old child participated in the study. A multiple baseline design across skills was used to assess program effects. The results of the study are similar to those reported by Tahir et al. (2015). We observed improvements in the use of the three parenting strategies by the father and the mother as well as maintenance of learning one month after the program. However, the generalization of learning remained variable for both parents. In sum, The Family Game program shows promising results with parents with ID. However, additional strategies, such as video feedback, should be integrated into the program to support generalization.
73

Utilisation de l’intelligence artificielle pour identifier les marqueurs de la démence dans le trouble comportemental en sommeil paradoxal

Mekki Berrada, Loubna 08 1900 (has links)
La démence à corps de Lewy (DCL) et la maladie de Parkinson (MP) sont des maladies neurodégénératives touchant des milliers de Canadiens et leur prévalence croît avec l’âge. La MP et la DCL partagent la même pathophysiologie, mais se distinguent par l’ordre de manifestation des symptômes : la DCL se caractérise d’abord par l’apparition d’un trouble neurocognitif majeur (démence), tandis que la MP se manifeste initialement par un parkinsonisme. De plus, jusqu’à 80% des patients avec la MP développeront une démence (MPD). Il est désormais établi que le trouble comportemental en sommeil paradoxal idiopathique (TCSPi) constitue un puissant prédicteur de la DCL et la MP. En effet, cette parasomnie, marquée par des comportements indésirables durant le sommeil, est considérée comme un stade prodromal des synucléinopathies, telles que la MP, la DCL et l'atrophie multisystémique (AMS). Ainsi, la majorité des patients atteints d’un TCSPi développeront une synucléinopathie. Malgré les avancées scientifiques, les causes du TCSPi, de la MP et de la DCL demeurent inconnues et aucun traitement ne parvient à freiner ou à arrêter la neurodégénérescence. De plus, ces pathologies présentent une grande hétérogénéité dans l’apparition et la progression des divers symptômes. Face à ces défis, la recherche vise à mieux cerner les phases précoces/initiales et les trajectoires évolutives de ces maladies neurodégénératives afin d’intervenir le plus précocement possible dans leur développement. C’est pourquoi le TCSPi suscite un intérêt majeur en tant que fenêtre d'opportunités pour tester l’efficacité des thérapies neuroprotectrices contre les synucléinopathies, permettant d'agir avant que la perte neuronale ne devienne irréversible. Le TCSPi offre ainsi une occasion unique d'améliorer la détection de la démence et le suivi des individus à haut risque de déclin cognitif. D'où l'importance cruciale de pouvoir généraliser les résultats issus de la recherche sur de petites cohortes à l'ensemble de la population. Sur le plan de la cognition, les études longitudinales sur le TCSPi ont montré que les atteintes des fonctions exécutives, de la mémoire verbale et de l'attention sont les plus discriminantes pour différencier les individus qui développeront une démence de ceux qui resteront idiopathiques. De plus, un grand nombre de patients TCSPi souffrent d’un trouble neurocognitif mineur ou trouble cognitif léger (TCL), généralement considéré comme un stade précurseur de la démence. Les recherches actuelles sur les données cognitives chez cette population offrent des perspectives prometteuses, mais reposent sur des approches statistiques classiques qui limitent leur validation et généralisation. Bien qu'elles offrent une précision élevée (80 à 85%) pour détecter les patients à risque de déclin cognitif, une amélioration est nécessaire pour étendre l'utilisation de ces marqueurs à une plus large échelle. Depuis les années 2000, l'accroissement de la puissance de calcul et l'accès à davantage de ressources de mémoire ont suscité un intérêt accru pour les algorithmes d'apprentissage machine (AM). Ces derniers visent à généraliser les résultats à une population plus vaste en entraînant des modèles sur une partie des données et en les testant sur une autre, validant ainsi leur application clinique. Jusqu'à présent, aucune étude n'a évalué les apports de l'AM pour la prédiction de l'évolution des synucléinopathies en se penchant sur le potentiel de généralisation, et donc d'application clinique, à travers l'usage d'outils non invasifs et accessibles ainsi que de techniques de validation de modèles (model validation). De plus, aucune étude n'a exploré l'utilisation de l'AM associée à des méthodes de généralisation sur des données neuropsychologiques longitudinales pour élaborer un modèle prédictif de la progression des déficits cognitifs dans le TCSPi. L’objectif général de cette thèse est d’étudier l’apport de l’AM pour analyser l’évolution du profil cognitif de patients atteints d’un TCSPi. Le premier chapitre de cette thèse présente le cadre théorique qui a guidé l’élaboration des objectifs et hypothèses de recherche. Le deuxième chapitre est à deux volets (articles). Le premier vise à fournir une vue d'ensemble de la littérature des études ayant utilisé l'AM (avec des méthodes de généralisation) pour prédire l'évolution des synucléinopathies vers une démence, ainsi que les lacunes à combler. Le deuxième volet vise à explorer et utiliser pour la première fois l'AM sur des données cliniques et cognitifs pour prédire la progression vers la démence dans le TCSPi, dans un devis longitudinal. Enfin, le dernier chapitre de la thèse présente une discussion et une conclusion générale, comprenant un résumé des deux articles, ainsi que les implications théoriques, les forces, les limites et les orientations futures. / Lewy body dementia (LBD) and Parkinson's disease (PD) are neurodegenerative diseases affecting thousands of Canadians, and their prevalence increases with age. PD and DLB share the same pathophysiology, but differ in the order of symptom manifestation: DLB is characterized first by the onset of a major neurocognitive disorder (dementia), whereas PD initially manifests as parkinsonism. Moreover, up to 80% of PD patients will go on to develop dementia (PDD). It is established that idiopathic REM sleep behavior disorder (iRBD) is a powerful predictor of DLB and PD. Indeed, this parasomnia, marked by undesirable behaviors during sleep, is considered a prodromal stage of synucleinopathies, such as PD, DLB and multisystem atrophy (MSA). Therefore, the majority of patients with iRBD will develop synucleinopathy. Despite scientific advancements, the causes of iRBD, PD, and DLB remain unknown and no treatment has been able to slow or halt neurodegeneration. Furthermore, these pathologies display great heterogeneity in the onset and progression of various symptoms. Faced with these challenges, research aims to better understand the early/initial stages and the progressive trajectories of these neurodegenerative diseases in order to intervene as early as possible in their development. This is why iRBD garners major interest as a window of opportunities to test the effectiveness of neuroprotective therapies against synucleinopathies, enabling action to be taken before neuronal loss becomes irreversible. iRBD thus provides a unique opportunity to improve dementia detection and monitoring of individuals at high risk of cognitive decline. Hence the crucial importance of being able to generalize results of research on small cohorts to the entire population. In terms of cognition, longitudinal studies on iRBD have shown that impairments in executive functions, verbal memory, and attention are the most discriminating in differencing between individuals who will develop dementia from those who will remain idiopathic. In addition, many iRBD patients suffer from a mild neurocognitive disorder or mild cognitive impairment (MCI), generally considered as a precursor stage of dementia. Current research on cognitive data in this population offers promising prospects, but relies on traditional statistical approaches that limit their validation and generalizability. While they provide high accuracy (80 to 85%) for detecting patients at risk of cognitive decline, improvement is needed to extend the use of these markers to a larger scale. Since the 2000s, increased computational power and access to more memory resources have sparked growing interest in machine learning (ML) algorithms. These aim to generalize results to a broader population by training models on a subset of data and testing them on another, thus validating their clinical application. To date, no study has assessed the contributions of ML for predicting the progression of synucleinopathies, focusing on the potential for generalization, and hence clinical application, through the use of non-invasive, accessible tools and model validation techniques. Moreover, no study has explored the use of ML in conjunction with generalization methods on longitudinal neuropsychological data to develop a predictive model of cognitive deficit progression in iRBD. The general objective of this thesis is to study the contribution of ML in analyzing the evolution of the cognitive profile of patients with iRBD. The first chapter of this thesis presents the theoretical framework that guided the formulation of the research objectives and hypotheses. The second chapter is in two parts (articles). The first aims to provide an overview of the literature of studies that have used ML (with generalization methods) to predict the progression of synucleinopathies to dementia, as well as the gaps that need to be filled. The second part aims to explore and use for the first time ML on clinical and cognitive data to predict progression to dementia in iRBD, in a longitudinal design. Finally, the last chapter of the thesis presents a discussion and a general conclusion, including a summary of the two articles, as well as theoretical implications, strengths, limitations, and future directions.
74

Advancing adversarial robustness with feature desensitization and synthesized data

Bayat, Reza 07 1900 (has links)
Cette thèse porte sur la question critique de la vulnérabilité des modèles d’apprentissage profond face aux attaques adversariales. Susceptibles à de légères perturbations invisibles à l'œil humain, ces modèles peuvent produire des prédictions erronées. Les attaques adversariales représentent une menace importante quant à l’utilisation de ces modèles dans des systèmes de sécurité critique. Pour atténuer ces risques, l’entraînement adversarial s’impose comme une approche prometteuse, consistant à entraîner les modèles sur des exemples adversariaux pour renforcer leur robustesse. Dans le Chapitre 1, nous offrons un aperçu détaillé de la vulnérabilité adversariale, en décrivant la création d’échantillons adversariaux ainsi que leurs répercussions dans le monde réel. Nous expliquons le processus de conception de ces exemples et présentons divers scénarios illustrant leurs conséquences potentiellement catastrophiques. En outre, nous examinons les défis associés à l'entraînement adversarial, en mettant l’emphase sur des défis tels que le manque de robustesse face à une large gamme d’attaques et le compromis entre robustesse et généralisation, qui sont au cœur de cette étude. Le Chapitre 2 présente la Désensibilisation des Caractéristiques Adversariales (AFD), une méthode innovante utilisant des techniques d’adaptation de domaine pour renforcer la robustesse adversariale. L’AFD vise à apprendre des caractéristiques invariantes aux perturbations adversariales, augmentant ainsi la résilience face à divers types et intensités d’attaques. Cette approche consiste à entraîner simultanément un discriminateur de domaine et un classificateur afin de réduire la divergence entre les représentations de données naturelles et adversariales. En alignant les caractéristiques des deux domaines, l'AFD garantit que les caractéristiques apprises sont à la fois prédictives et robustes, atténuant ainsi le surapprentissage à des schémas d'attaque spécifiques et favorisant une défense plus globale. Le Chapitre 3 présente l’Entraînement Adversarial avec Données Synthétisées, une méthode visant à combler l’écart entre la robustesse et la généralisation des réseaux de neurones. En utilisant des données synthétisées générées par des techniques avancées, ce chapitre explore comment l'incorporation de telles données peut atténuer le surapprentissage et améliorer la performance globale des modèles entraînés adversarialement. Les résultats montrent que, bien que l’entraînement adversarial soit souvent confronté à un compromis entre robustesse et généralisation, l’utilisation de données synthétisées permet de maintenir une haute précision des données corrompues et hors distribution sans compromettre la robustesse. Cette approche offre une voie prometteuse pour développer des réseaux de neurones à la fois résilients aux attaques adversariales et capables de bien généraliser à de nombreux scénarios. Le Chapitre 4 conclut la thèse en résumant les principales découvertes et contributions de cette recherche. De plus, il propose plusieurs pistes pour des recherches futures visant à améliorer davantage la sécurité et la fiabilité des modèles d’apprentissage profond. Ces pistes incluent l’exploration de l’effet des données synthétisées sur une gamme plus large de tâches de généralisation, le développement d’approches alternatives moins coûteuses en termes de calcul d’entraînement, et l’adaptation de nouvelles techniques guidées par l’information en retour pour synthétiser des données qui favorise l’efficacité d’échantillonnage. En suivant ces directions, les recherches futures pourront s’appuyer sur les bases présentées dans cette thèse et continuer à faire progresser le domaine de la robustesse adversariale, menant à des systèmes d’apprentissage automatique plus sécuritaires et plus fiables. À travers ces contributions, cette thèse avance la compréhension de la robustesse adversariale et propose des solutions pratiques pour améliorer la sécurité et la fiabilité des systèmes d'apprentissage automatique. En abordant les limites des méthodes actuelles d'entraînement adversarial et en introduisant des approches innovatrices comme l'AFD et l'incorporation de données synthétisées, cette recherche ouvre le chemin à des modèles d'apprentissage automatique plus robustes et généralisables. / This thesis addresses the critical issue of adversarial vulnerability in deep learning models, which are susceptible to slight, human-imperceptible perturbations that can lead to incorrect predictions. Adversarial attacks pose significant threats to the deployment of these models in safety-critical systems. To mitigate these threats, adversarial training has emerged as a prominent approach, where models are trained on adversarial examples to enhance their robustness. In Chapter 1, we provide a comprehensive background on adversarial vulnerability, detailing the creation of adversarial examples and their real-world implications. We illustrate how adversarial examples are crafted and present various scenarios demonstrating their potential catastrophic outcomes. Furthermore, we explore the challenges associated with adversarial training, focusing on issues like the lack of robustness against a broad range of attack strengths and a trade-off between robustness and generalization, which are the subjects of our study. Chapter 2 introduces Adversarial Feature Desensitization (AFD), a novel method that leverages domain adaptation techniques to enhance adversarial robustness. AFD aims to learn features that are invariant to adversarial perturbations, thereby improving resilience across various attack types and strengths. This approach involves training a domain discriminator alongside the classifier to reduce the divergence between natural and adversarial data representations. By aligning the features from both domains, AFD ensures that the learned features are both predictive and robust, mitigating overfitting to specific attack patterns and promoting broader defensive capability. Chapter 3 presents Adversarial Training with Synthesized Data, a method aimed at bridging the gap between robustness and generalization in neural networks. By leveraging synthesized data generated through advanced techniques, this chapter explores how incorporating such data can mitigate robust overfitting and enhance the overall performance of adversarially trained models. The findings indicate that while adversarial training traditionally faces a trade-off between robustness and generalization, the use of synthesized data helps maintain high accuracy on corrupted and out-of-distribution data without compromising robustness. This approach provides a promising pathway to develop neural networks that are both resilient to adversarial attacks and capable of generalizing well to a wide range of scenarios. Chapter 4 concludes the thesis by summarizing the key findings and contributions of this thesis. Additionally, it outlines several avenues for future research to further enhance the security and reliability of deep learning models. Future research could explore the effect of synthesized data on a broader range of generalization tasks, develop alternative approaches to adversarial training that are less computationally expensive, and adapt new feedback-guided techniques for synthesizing data to enhance sample efficiency. By pursuing these directions, future research can build on the foundations laid by this thesis and continue to advance the field of adversarial robustness, ultimately leading to safer and more reliable machine learning systems. Through these contributions, this thesis advances the understanding of adversarial robustness and proposes practical solutions to enhance the security and reliability of machine learning systems. By addressing the limitations of current adversarial training methods and introducing innovative approaches like AFD and the incorporation of synthesized data, this research paves the way for more robust and generalizable machine learning models capable of withstanding a diverse array of adversarial attacks.
75

Généralisation du lemme de Gronwall-Bellman pour la stabilisation des systèmes fractionnaires / Generalization of Gronwall-Bellman lemma for the stabilization of fractional-order systems

N'Doye, Ibrahima 23 February 2011 (has links)
Dans ce mémoire, nous avons proposé une méthode basée sur l'utilisation de la généralisation du lemme de Gronwall-Bellman pour garantir des conditions suffisantes de stabilisation asymptotique pour une classe de systèmes non linéaires fractionnaires. Nous avons étendu ces résultats dans la stabilisation asymptotique des systèmes non linéaires singuliers fractionnaires et proposé des conditions suffisantes de stabilité asymptotique de l'erreur d'observation dans le cas de l'étude des observateurs pour les systèmes non linéaires fractionnaires et singuliers fractionnaires.Pour les systèmes non linéaires à dérivée d'ordre entier, nous avons proposé par l'application de la généralisation du lemme de Gronwall-Bellman des conditions suffisantes pour :- la stabilisation exponentielle par retour d'état statique et par retour de sortie statique,- la stabilisation exponentielle robuste en présence d'incertitudes paramétriques,- la commande basée sur un observateur.Nous avons étudié la stabilisation des systèmes linéaires fractionnaires avec les lois de commande suivantes~: retour d'état statique, retour de sortie statique et retour de sortie basé sur un observateur. Puis, nous avons proposé des conditions suffisantes de stabilisation lorsque le système linéaire fractionnaire est affecté par des incertitudes non linéaires paramétriques. Enfin, nous avons traité la synthèse d'un observateur pour ces systèmes. Les résultats proposés pour les systèmes linéaires fractionnaires ont été étendus au cas où ces systèmes fractionnaires sont singuliers.La technique de stabilisation basée sur l'utilisation de la généralisation du lemme de Gronwall-Bellman est étendue aux systèmes non linéaires fractionnaires et aux systèmes non linéaires singuliers fractionnaires. Des conditions suffisantes de stabilisation asymptotique, de stabilisation asymptotique robuste et de commande basée sur un observateur ont été obtenues pour les classes de systèmes non linéaires fractionnaires et non linéaires singuliers fractionnaires.Par ailleurs, une méthode de synthèse d'observateurs pour ces systèmes non linéaires fractionnaires et non linéaires singuliers fractionnaires est proposée. Cette approche est basée sur la résolution d'un système d'équations de Sylvester. L'avantage de cette méthode est que, d'une part, l'erreur d'observation ne dépend pas explicitement de l'état et de la commande du système et, d'autre part, qu'elle unifie la synthèse d'observateurs de différents ordres (observateurs d'ordre réduit, d'ordre plein et d'ordre minimal). / In this dissertation, we proposed sufficient conditions for the asymptotical stabilization of a class of nonlinear fractional-order systems based on the generalization of Gronwall-Bellman lemma. We extended these results for the asymptotical stabilization of nonlinear singular fractional-order systems and proposed sufficient conditions for the existence and asymptotic stability of the observation error for the nonlinear fractional-order systems and nonlinear singular fractional-order systems.For the nonlinear integer-order systems, the proposed generalization of Gronwall-Bellman lemma allowed us to obtain sufficient conditions for :- the static state feedback and the static output feedback exponential stabilizations,- the robust exponential stabilization with regards to parameter uncertainties,- the observer-based control.We treated three cases for the asymptotical stabilization of linear fractional-order systems : the static state feedback, the static output feedback and the observer-based output feedback. Then, we proposed sufficient conditions for the asymptotical stabilization of linear fractional-order systems with nonlinear uncertain parameters. Finally, we treated the observer design for the linear and nonlinear fractional-order systems and for the linear and nonlinear singular fractional-order systems.The stabilization technique based on the generalization of Gronwall-Bellman lemma is extended to nonlinear fractional-order systems and nonlinear singular fractional-order systems. Sufficient conditions for the asymptotical stabilization, the robust asymptotical stabilization and the observer-based control of a class of nonlinear fractional-order systems and nonlinear singular fractional-order systems were obtained.Furthermore, the observer design for the nonlinear fractional-order systems and nonlinear singular fractional-order systems is proposed. This approach is based on a parameterization of the solutions of generalized Sylvester equations. The conditions for the existence of these observers are given and sufficient conditions for their stability are derived using linear matrix inequalities (LMIs) formulation and the generalization of Gronwall-Bellman lemma. The advantage of this method is that, firstly, the observation error does not depend explicitly on the state and control system and, secondly, this method unifies the design of full, reduced and minimal orders observers
76

Restauration de la symétrie de parité intrinsèque dans les noyaux atomiques à partir d'approches de type champ moyen plus corrélations

Tran, Viet Nhan Hao 07 April 2010 (has links)
Nous nous sommes intéressés à la restauration de la symétrie de réflexion droite-gauche brisée dans certains calculs effectués en utilisant l'approche HTDA (Higher Tamm-Dancoff Approximation). Cette approche a été proposée par le groupe de Bordeaux pour traiter de façon microscopique les corrélations en conservant explicitement les nombres de nucléons. La projection sur la parité par la méthode PAV (projection après variation) utilisant une généralisation du théorème de Wick de type Löwdin s'est avérée être très bien adaptée dans le cadre d'un modèle simplifié pour ce type de calcul et a permis de tourner certaines difficultés propres aux calculs qui utilisent la théorie de la fonctionnelle de la densité déduite par exemple de l'interaction de Skyrme. Les résultats obtenus pour des noyaux lourds manifestant une déformation octupôlaire ou à tout le moins une grande déformabilité pour ce mode, sont en gros tout à fait cohérents avec les calculs antérieurs effectués dans une approche HFB ou HF+BCS. D'autre part nos résultats montrent qu'on peut abaisser par projection sur la parité positive la hauteur de la seconde barrière de fission par une quantité de l'ordre de 1 MeV. / This thesis has been concerned with the restoration of the left-right symmetry broken in some instances. This has been achieved in the framework of the Higher Tamm-Dancoff Approximation (HTDA) proposed by the Bordeaux group to treat correlations in an explicitly particle-number conserving microscopic approach. The parity-projected calculations performed within a PAV (projection after variation) method using a generalized Wick's theorem due to Löwdin has appeared to be a very well-suited frame. It has been implemented within a simple model approach. This has been proposed to clear out some difficulties appearing when one uses an Energy Density Functional approach with an energy density functional issued from an underlying Skyrme interaction. As a result we obtain a fairly good global agreement of our results with previous ones issuing from an HFB approach or its HF+BCS limit, for some heavy nuclei exhibiting a stable octupole deformation or at least a remarkable smoothness for this collective mode. As another result, we have shown that the projection on a positive parity solution is able to reduce the second fission barrier height by about 1 MeV.
77

L'inégalité de la réparation des victimes en droit commun et en accidents du travail / Compensation for injury inequality between industrial accident system and common law scheme

Settembre, Sabrina 15 December 2017 (has links)
La thèse fait le constat d'une inégalité manifeste entre le régime des accidents du travail et celui du droit commun. Un salarié blessé dans le cadre de son activité professionnelle aura droit à une réparation forfaitaire. Cette indemnité tend à compenser la perte de salaire et l'incidence professionnelle. Les préjudices personnels en sont exclus sauf l'hypothèse de la faute inexcusable de l'employeur. Le fonctionnaire n'a pas le même traitement que le salarié et bénéficie d'une meilleure protection. Enfin, en matière d'accidents de la circulation, de la vie et même d'agressions, la victime a droit à l'indemnisation de la totalité des préjudices subis. Au vu de ces inégalités, il est important d'apporter des solutions tendant à supprimer ces disparités entre les régimes d'accidents du travail mais également entre le système des accidents du travail et de droit commun. Cette volonté d'anéantir ces inégalités s'inscrit dans la politique actuelle de notre droit. Il est impensable que les travailleurs se voient priver des préjudices personnels alors que l'accident a des effets dans leur vie courante. C'est pourquoi, cet ouvrage préconise des solutions afin de rétablir une égalité entre les justiciables / Thesis have to admit there are inequalities in own system of compensation for injury. Industrial accident's victims we are not considered likes accidents road victims and others. A worker injured will can request flate-rate compensation. This accident compensation will be established on the basis of income and professionally incidence. Personal damages are excluded except case of inforgivable fault employer's. State employee haven't same traitment than worker and he has got a best protection. At last, it is right to say road accident victim's, mugging victim's could ask indemnity on bodily injuri. They could request personal and economic damages. In view of inequality, we make changes to system in order to cancel these gap in compensation. This willingness to abolish inequality it's current political and human rights practices. From now on, it's imbelievable to think to deprive workers of personal damages while this accident are effects on the private life employee. That is why, hand work recommend solutions to restore equality between citizen
78

Towards causal federated learning : a federated approach to learning representations using causal invariance

Francis, Sreya 10 1900 (has links)
Federated Learning is an emerging privacy-preserving distributed machine learning approach to building a shared model by performing distributed training locally on participating devices (clients) and aggregating the local models into a global one. As this approach prevents data collection and aggregation, it helps in reducing associated privacy risks to a great extent. However, the data samples across all participating clients are usually not independent and identically distributed (non-i.i.d.), and Out of Distribution (OOD) generalization for the learned models can be poor. Besides this challenge, federated learning also remains vulnerable to various attacks on security wherein a few malicious participating entities work towards inserting backdoors, degrading the generated aggregated model as well as inferring the data owned by participating entities. In this work, we propose an approach for learning invariant (causal) features common to all participating clients in a federated learning setup and analyse empirically how it enhances the Out of Distribution (OOD) accuracy as well as the privacy of the final learned model. Although Federated Learning allows for participants to contribute their local data without revealing it, it faces issues in data security and in accurately paying participants for quality data contributions. In this report, we also propose an EOS Blockchain design and workflow to establish data security, a novel validation error based metric upon which we qualify gradient uploads for payment, and implement a small example of our Blockchain Causal Federated Learning model to analyze its performance with respect to robustness, privacy and fairness in incentivization. / L’apprentissage fédéré est une approche émergente d’apprentissage automatique distribué préservant la confidentialité pour créer un modèle partagé en effectuant une formation distribuée localement sur les appareils participants (clients) et en agrégeant les modèles locaux en un modèle global. Comme cette approche empêche la collecte et l’agrégation de données, elle contribue à réduire dans une large mesure les risques associés à la vie privée. Cependant, les échantillons de données de tous les clients participants sont généralement pas indépendante et distribuée de manière identique (non-i.i.d.), et la généralisation hors distribution (OOD) pour les modèles appris peut être médiocre. Outre ce défi, l’apprentissage fédéré reste également vulnérable à diverses attaques contre la sécurité dans lesquelles quelques entités participantes malveillantes s’efforcent d’insérer des portes dérobées, dégradant le modèle agrégé généré ainsi que d’inférer les données détenues par les entités participantes. Dans cet article, nous proposons une approche pour l’apprentissage des caractéristiques invariantes (causales) communes à tous les clients participants dans une configuration d’apprentissage fédérée et analysons empiriquement comment elle améliore la précision hors distribution (OOD) ainsi que la confidentialité du modèle appris final. Bien que l’apprentissage fédéré permette aux participants de contribuer leurs données locales sans les révéler, il se heurte à des problèmes de sécurité des données et de paiement précis des participants pour des contributions de données de qualité. Dans ce rapport, nous proposons également une conception et un flux de travail EOS Blockchain pour établir la sécurité des données, une nouvelle métrique basée sur les erreurs de validation sur laquelle nous qualifions les téléchargements de gradient pour le paiement, et implémentons un petit exemple de notre modèle d’apprentissage fédéré blockchain pour analyser ses performances.
79

Large state spaces and self-supervision in reinforcement learning

Touati, Ahmed 08 1900 (has links)
L'apprentissage par renforcement (RL) est un paradigme d'apprentissage orienté agent qui s'intéresse à l'apprentissage en interagissant avec un environnement incertain. Combiné à des réseaux de neurones profonds comme approximateur de fonction, l'apprentissage par renforcement profond (Deep RL) nous a permis récemment de nous attaquer à des tâches très complexes et de permettre à des agents artificiels de maîtriser des jeux classiques comme le Go, de jouer à des jeux vidéo à partir de pixels et de résoudre des tâches de contrôle robotique. Toutefois, un examen plus approfondi de ces remarquables succès empiriques révèle certaines limites fondamentales. Tout d'abord, il a été difficile de combiner les caractéristiques souhaitables des algorithmes RL, telles que l'apprentissage hors politique et en plusieurs étapes, et l'approximation de fonctions, de manière à obtenir des algorithmes stables et efficaces dans de grands espaces d'états. De plus, les algorithmes RL profonds ont tendance à être très inefficaces en raison des stratégies d'exploration-exploitation rudimentaires que ces approches emploient. Enfin, ils nécessitent une énorme quantité de données supervisées et finissent par produire un agent étroit capable de résoudre uniquement la tâche sur laquelle il est entrainé. Dans cette thèse, nous proposons de nouvelles solutions aux problèmes de l'apprentissage hors politique et du dilemme exploration-exploitation dans les grands espaces d'états, ainsi que de l'auto-supervision dans la RL. En ce qui concerne l'apprentissage hors politique, nous apportons deux contributions. Tout d'abord, pour le problème de l'évaluation des politiques, nous montrons que la combinaison des méthodes populaires d'apprentissage hors politique et à plusieurs étapes avec une paramétrisation linéaire de la fonction de valeur pourrait conduire à une instabilité indésirable, et nous dérivons une variante de ces méthodes dont la convergence est prouvée. Deuxièmement, pour l'optimisation des politiques, nous proposons de stabiliser l'étape d'amélioration des politiques par une régularisation de divergence hors politique qui contraint les distributions stationnaires d'états induites par des politiques consécutives à être proches les unes des autres. Ensuite, nous étudions l'apprentissage en ligne dans de grands espaces d'états et nous nous concentrons sur deux hypothèses structurelles pour rendre le problème traitable : les environnements lisses et linéaires. Pour les environnements lisses, nous proposons un algorithme en ligne efficace qui apprend activement un partitionnement adaptatif de l'espace commun en zoomant sur les régions les plus prometteuses et fréquemment visitées. Pour les environnements linéaires, nous étudions un cadre plus réaliste, où l'environnement peut maintenant évoluer dynamiquement et même de façon antagoniste au fil du temps, mais le changement total est toujours limité. Pour traiter ce cadre, nous proposons un algorithme en ligne efficace basé sur l'itération de valeur des moindres carrés pondérés. Il utilise des poids exponentiels pour oublier doucement les données qui sont loin dans le passé, ce qui pousse l'agent à continuer à explorer pour découvrir les changements. Enfin, au-delà du cadre classique du RL, nous considérons un agent qui interagit avec son environnement sans signal de récompense. Nous proposons d'apprendre une paire de représentations qui mettent en correspondance les paires état-action avec un certain espace latent. Pendant la phase non supervisée, ces représentations sont entraînées en utilisant des interactions sans récompense pour encoder les relations à longue portée entre les états et les actions, via une carte d'occupation prédictive. Au moment du test, lorsqu'une fonction de récompense est révélée, nous montrons que la politique optimale pour cette récompense est directement obtenue à partir de ces représentations, sans aucune planification. Il s'agit d'une étape vers la construction d'agents entièrement contrôlables. Un thème commun de la thèse est la conception d'algorithmes RL prouvables et généralisables. Dans la première et la deuxième partie, nous traitons de la généralisation dans les grands espaces d'états, soit par approximation de fonctions linéaires, soit par agrégation d'états. Dans la dernière partie, nous nous concentrons sur la généralisation sur les fonctions de récompense et nous proposons un cadre d'apprentissage non-supervisé de représentation qui est capable d'optimiser toutes les fonctions de récompense. / Reinforcement Learning (RL) is an agent-oriented learning paradigm concerned with learning by interacting with an uncertain environment. Combined with deep neural networks as function approximators, deep reinforcement learning (Deep RL) allowed recently to tackle highly complex tasks and enable artificial agents to master classic games like Go, play video games from pixels, and solve robotic control tasks. However, a closer look at these remarkable empirical successes reveals some fundamental limitations. First, it has been challenging to combine desirable features of RL algorithms, such as off-policy and multi-step learning with function approximation in a way that leads to both stable and efficient algorithms in large state spaces. Moreover, Deep RL algorithms tend to be very sample inefficient due to the rudimentary exploration-exploitation strategies these approaches employ. Finally, they require an enormous amount of supervised data and end up producing a narrow agent able to solve only the task that it was trained on. In this thesis, we propose novel solutions to the problems of off-policy learning and exploration-exploitation dilemma in large state spaces, as well as self-supervision in RL. On the topic of off-policy learning, we provide two contributions. First, for the problem of policy evaluation, we show that combining popular off-policy and multi-step learning methods with linear value function parameterization could lead to undesirable instability, and we derive a provably convergent variant of these methods. Second, for policy optimization, we propose to stabilize the policy improvement step through an off-policy divergence regularization that constrains the discounted state-action visitation induced by consecutive policies to be close to one another. Next, we study online learning in large state spaces and we focus on two structural assumptions to make the problem tractable: smooth and linear environments. For smooth environments, we propose an efficient online algorithm that actively learns an adaptive partitioning of the joint space by zooming in on more promising and frequently visited regions. For linear environments, we study a more realistic setting, where the environment is now allowed to evolve dynamically and even adversarially over time, but the total change is still bounded. To address this setting, we propose an efficient online algorithm based on weighted least squares value iteration. It uses exponential weights to smoothly forget data that are far in the past, which drives the agent to keep exploring to discover changes. Finally, beyond the classical RL setting, we consider an agent interacting with its environments without a reward signal. We propose to learn a pair of representations that map state-action pairs to some latent space. During the unsupervised phase, these representations are trained using reward-free interactions to encode long-range relationships between states and actions, via a predictive occupancy map. At test time, once a reward function is revealed, we show that the optimal policy for that reward is directly obtained from these representations, with no planning. This is a step towards building fully controllable agents. A common theme in the thesis is the design of provable RL algorithms that generalize. In the first and the second part, we deal with generalization in large state spaces either by linear function approximation or state aggregation. In the last part, we focus on generalization over reward functions and we propose a task-agnostic representation learning framework that is provably able to solve all reward functions.
80

On sample efficiency and systematic generalization of grounded language understanding with deep learning

Bahdanau, Dzmitry 01 1900 (has links)
En utilisant la méthodologie de l'apprentissage profond qui préconise de s'appuyer davantage sur des données et des modèles neuronaux flexibles plutôt que sur les connaissances de l'expert dans le domaine, la communauté de recherche a récemment réalisé des progrès remarquables dans la compréhension et la génération du langue naturel. Néanmoins, il reste difficile de savoir si une simple extension des méthodes d'apprentissage profond existantes sera suffisante pour atteindre l'objectif d'utiliser le langage naturel pour l'interaction homme-machine. Nous nous concentrons sur deux aspects connexes dans lesquels les méthodes actuelles semblent nécessiter des améliorations majeures. Le premier de ces aspects est l'inefficacité statistique des systèmes d'apprentissage profond: ils sont connus pour nécessiter de grandes quantités de données pour bien fonctionner. Le deuxième aspect est leur capacité limitée à généraliser systématiquement, à savoir à comprendre le langage dans des situations où la distribution des données change mais les principes de syntaxe et de sémantique restent les mêmes. Dans cette thèse, nous présentons quatre études de cas dans lesquelles nous cherchons à apporter plus de clarté concernant l'efficacité statistique susmentionnée et les aspects de généralisation systématique des approches d'apprentissage profond de la compréhension des langues, ainsi qu'à faciliter la poursuite des travaux sur ces sujets. Afin de séparer le problème de la représentation des connaissances du monde réel du problème de l'apprentissage d'une langue, nous menons toutes ces études en utilisant des langages synthétiques ancrés dans des environnements visuels simples. Dans le premier article, nous étudions comment former les agents à suivre des instructions compositionnelles dans des environnements avec une forme de supervision restreinte. À savoir pour chaque instruction et configuration initiale de l'environnement, nous ne fournissons qu'un état cible au lieu d'une trajectoire complète avec des actions à toutes les étapes. Nous adaptons les méthodes d'apprentissage adversariel par imitation à ce paramètre et démontrons qu'une telle forme restreinte de données est suffisante pour apprendre les significations compositionelles des instructions. Notre deuxième article se concentre également sur des agents qui apprennent à exécuter des instructions. Nous développons la plateforme BabyAI pour faciliter des études plus approfondies et plus rigoureuses de ce cadre d'apprentissage. La plateforme fournit une langue BabyAI compositionnelle avec $10 ^ {19}$ instructions, dont la sémantique est précisément définie dans un environnement partiellement observable. Nous rapportons des résultats de référence sur la quantité de supervision nécessaire pour enseigner à l'agent certains sous-ensembles de la langue BabyAI avec différentes méthodes de formation, telles que l'apprentissage par renforcement et l'apprentissage par imitation. Dans le troisième article, nous étudions la généralisation systématique des modèles de réponse visuelle aux questions (VQA). Dans le scénario VQA, le système doit répondre aux questions compositionelles sur les images. Nous construisons un ensemble de données de questions spatiales sur les paires d'objets et évaluons la performance des différents modèles sur les questions concernant les paires d'objets qui ne se sont jamais produites dans la même question dans la distribution d'entraînement. Nous montrons que les modèles dans lesquels les significations des mots sont représentés par des modules séparés qui effectuent des calculs indépendants généralisent beaucoup mieux que les modèles dont la conception n'est pas explicitement modulaire. Cependant, les modèles modulaires ne généralisent bien que lorsque les modules sont connectés dans une disposition appropriée, et nos expériences mettent en évidence les défis de l'apprentissage de la disposition par un apprentissage de bout en bout sur la distribution d'entraînement. Dans notre quatrième et dernier article, nous étudions également la généralisation des modèles VQA à des questions en dehors de la distribution d'entraînement, mais cette fois en utilisant le jeu de données CLEVR, utilisé pour les questions complexes sur des scènes rendues en 3D. Nous générons de nouvelles questions de type CLEVR en utilisant des références basées sur la similitude (par exemple `` la balle qui a la même couleur que ... '') dans des contextes qui se produisent dans les questions CLEVR mais uniquement avec des références basées sur la localisation (par exemple `` le balle qui est à gauche de ... ''). Nous analysons la généralisation avec zéro ou quelques exemples de CLOSURE après un entraînement sur CLEVR pour un certain nombre de modèles existants ainsi qu'un nouveau modèle. / By using the methodology of deep learning that advocates relying more on data and flexible neural models rather than on the expert's knowledge of the domain, the research community has recently achieved remarkable progress in natural language understanding and generation. Nevertheless, it remains unclear whether simply scaling up existing deep learning methods will be sufficient to achieve the goal of using natural language for human-computer interaction. We focus on two related aspects in which current methods appear to require major improvements. The first such aspect is the data inefficiency of deep learning systems: they are known to require extreme amounts of data to perform well. The second aspect is their limited ability to generalize systematically, namely to understand language in situations when the data distribution changes yet the principles of syntax and semantics remain the same. In this thesis, we present four case studies in which we seek to provide more clarity regarding the aforementioned data efficiency and systematic generalization aspects of deep learning approaches to language understanding, as well as to facilitate further work on these topics. In order to separate the problem of representing open-ended real-world knowledge from the problem of core language learning, we conduct all these studies using synthetic languages that are grounded in simple visual environments. In the first article, we study how to train agents to follow compositional instructions in environments with a restricted form of supervision. Namely for every instruction and initial environment configuration we only provide a goal-state instead of a complete trajectory with actions at all steps. We adapt adversarial imitation learning methods to this setting and demonstrate that such a restricted form of data is sufficient to learn compositional meanings of the instructions. Our second article also focuses on instruction following. We develop the BabyAI platform to facilitate further, more extensive and rigorous studies of this setup. The platform features a compositional Baby language with $10^{19}$ instructions, whose semantics is precisely defined in a partially-observable gridworld environment. We report baseline results on how much supervision is required to teach the agent certain subsets of Baby language with different training methods, such as reinforcement learning and imitation learning. In the third article we study systematic generalization of visual question answering (VQA) models. In the VQA setting the system must answer compositional questions about images. We construct a dataset of spatial questions about object pairs and evaluate how well different models perform on questions about pairs of objects that never occured in the same question in the training distribution. We show that models in which word meanings are represented by separate modules that perform independent computation generalize much better than models whose design is not explicitly modular. The modular models, however, generalize well only when the modules are connected in an appropriate layout, and our experiments highlight the challenges of learning the layout by end-to-end learning on the training distribution. In our fourth and final article we also study generalization of VQA models to questions outside of the training distribution, but this time using the popular CLEVR dataset of complex questions about 3D-rendered scenes as the platform. We generate novel CLEVR-like questions by using similarity-based references (e.g. ``the ball that has the same color as ...'') in contexts that occur in CLEVR questions but only with location-based references (e.g. ``the ball that is to the left of ...''). We analyze zero- and few- shot generalization to CLOSURE after training on CLEVR for a number of existing models as well as a novel one.

Page generated in 0.0968 seconds