Spelling suggestions: "subject:"géométrie algorithmique"" "subject:"géométrie algorithmiques""
11 |
Échantillonnage et maillage de surfaces avec garantiesOudot, Steve Y. 14 December 2005 (has links) (PDF)
Cette dernière décennie a vu apparaître et se développer toute une théorie sur l'échantillonnage des surfaces lisses. L'objectif était de trouver des conditions d'échantillonnage qui assurent une bonne reconstruction d'une surface lisse S à partir d'un sous-ensemble fini E de points de S. Parmi ces conditions, l'une des plus importantes est sans conteste la condition d'e-échantillonnage, introduite par Amenta et Bern, qui stipule que tout point p de S doit être à distance de E au plus e fois lfs(p), où lfs(p) désigne la distance de p à l'axe médian de S. Amenta et Bern ont montré qu'il est possible d'extraire de la triangulation de Delaunay d'un e-échantillon E une surface affine par morceaux qui approxime S du point de vue topologique (isotopie) et géométrique (distance de Hausdorff). Néanmoins restaient ouvertes les questions cruciales de pouvoir vérifier si un ensemble de points donné est un e-échantillon d'une part, et de construire des e-échantillons d'une surface lisse donnée d'autre part. De plus, les conditions d'échantillonnage proposées jusque là n'offraient des garanties que dans le cas lisse, puisque lfs s'annule aux points où la surface n'est pas différentiable. Dans cette thèse, nous introduisons le concept d'e-échantillon lâche, qui peut être vu comme une version faible de la notion d'e-échantillon. L'avantage majeur des e-échantillons lâches sur les e-échantillons classiques est qu'ils sont plus faciles à vérifier et à construire. Plus précisément, vérifier si un ensemble fini de points est un e-échantillon lâche revient à regarder si les rayons d'un nombre fini de boules sont suffisamment petits. Quand la surface S est lisse, nous montrons que les e-échantillons sont des e-échantillons lâches et réciproquement, à condition que e soit suffisamment petit. Il s'ensuit que les e-échantillons lâches offrent les mêmes garanties topologiques et géométriques que les e-échantillons. Nous étendons ensuite nos résultats au cas où la surface échantillonnée est non lisse en introduisant une nouvelle grandeur, appelée rayon Lipschitzien, qui joue un rôle similaire à lfs dans le cas lisse, mais qui s'avère être bien défini et positif sur une plus large classe d'objets. Plus précisément, il caractérise la classe des surfaces Lipschitziennes, qui inclut entre autres toutes les surfaces lisses par morceaux pour lesquelles la variation des normales aux abords des points singuliers n'est pas trop forte. Notre résultat principal est que, si S est une surface Lipschitzienne et E un ensemble fini de points de S tel que tout point de S est à distance de E au plus une fraction du rayon Lipschitzien de S, alors nous obtenons le même type de garanties que dans le cas lisse, à savoir : la triangulation de Delaunay de E restreinte à S est une variété isotope à S et à distance de Hausdorff O(e) de S, à condition que ses facettes ne soient pas trop aplaties. Nous étendons également ce résultat aux échantillons lâches. Enfin, nous donnons des bornes optimales sur la taille de ces échantillons. Afin de montrer l'intérêt pratique des échantillons lâches, nous présentons ensuite un algorithme très simple capable de construire des maillages certifiés de surfaces. Etant donné une surface S compacte, Lipschitzienne et sans bord, et un paramètre positif e, l'algorithme génère un e-échantillon lâche E de S de taille optimale, ainsi qu'un maillage triangulaire extrait de la triangulation de Delaunay de E. Grâce à nos résultats théoriques, nous pouvons garantir que ce maillage triangulaire est une bonne approximation de S, tant sur le plan topologique que géométrique, et ce sous des hypothèses raisonnables sur le paramètre d'entrée e. Un aspect remarquable de l'algorithme est que S n'a besoin d'être connue qu'à travers un oracle capable de détecter les points d'intersection de n'importe quel segment avec la surface. Ceci rend l'algorithme assez générique pour être utilisé dans de nombreux contextes pratiques et sur une large gamme de surfaces. Nous illustrons cette généricité à travers une série d'applications : maillage de surfaces implicites, remaillage de polyèdres, sondage de surfaces inconnues, maillage de volumes.
|
12 |
Représentation géométrique des arrangements de droites du planAllègre, Guillaume 17 November 2003 (has links) (PDF)
Les arrangements de droites du plan sont étudiés en géométrie algorithmique pour leur simplicité géométrique couplée à leur grande richesse combinatoire, ou topologique. Notre contribution porte en partie sur la recherche de structures de données couplées à des algorithmes, efficaces à la fois pour la construction des arrangements et l'exploitation de l'information minimale les définissant. Mais l'apport principal de notre travail est l'étude de la représentation géo-métrique des arrangements, notamment par la définition d'une équivalence géométrique entre deux ensembles de droites du plan euclidien par isotopie, qui justifie théoriquement l'algorithme d'optimisation géométrique que nous proposons. Cet algorithme se base sur des critères de ``lisibilité'' de la représentation d'un arrangement, que nous proposons et justifions. Nous donnons également des résultats d'optimisation analytique pour les très petits nombres de droites.
|
13 |
Conversion CSG-BRep de scènes définies par des quadriquesPentcheva, Maria 30 September 2010 (has links) (PDF)
L'objet de cette thèse porte sur la conversion d'un modèle CSG vers un modèle BRep d'une scène définie par des quadriques. Cet algorithme est composé de quatre étapes : (i) le paramétrage de chaque courbe d'intersection entre quadriques ; (ii) la détermination des points d'intersection entre au moins trois quadriques ; (iii) la détection des segments ainsi obtenus qui bornent une face du modèle BRep sur chacune des quadriques séparément ; (iv) l'identification et le regroupement des chaînes de segments qui délimitent une même face sur chaque quadrique séparément (certaines faces peuvent avoir des <>, et par conséquent être constituées par au moins deux chaînes de segments). Les deux premières étapes ont été résolues grâce à deux algorithmes de la littérature. Les deux étapes restantes sont traitées par des algorithmes que nous avons conçus : respectivement VE (Visible Edges) et CA (Chains Assembling). Notre algorithme est robuste au sens où tous les cas dégénérés sont traités dans le paradigme du calcul géométrique exact. Il résout intégralement le problème de conversion CSG-BRep de scènes définies par des quadriques. Sa complexité dans le pire des cas s'élève à $O(n^4)$ où $n$ est le nombre de quadriques. Une implantation partielle a été effectuée et des tests préliminaires réalisés.
|
14 |
Aide géométrique à l'aménagement de satellitesDe Lange, Eelco 19 February 1998 (has links) (PDF)
Nous nous intéressons dans cette thèse à des problèmes d'aménagement de satellites. Le but est de développer des algorithmes efficaces et robustes menant à des outils simples pour aider l'ingénieur du bureau d'études dans ses tâches répétitives d'aménagement. Nous proposons un algorithme optimal qui calcule une section plane de la somme de Minkowski de deux polyèdres convexes et un algorithme efficace qui calcule l'union d'un ensemble de polygones par division et fusion. Nous avons soigneusement analysé la précision numérique nécessitée pour 1e fonctionnement correct de ces deux algorithmes et le traitement des dégénérescences géométriques qui peuvent apparaître. Nous avons conçu le logiciel GEOTOOLS pour le placement d'une suite d'équipements et en particulier des antennes qui ont un champ de vision. GEOTOOLS permet le placement interactif d'un objet dans un aménagement partiel en visualisant les contraintes imposées par cet aménagement (l'espace admissible). La deuxième partie de cette thèse consiste en une expérimentation de GEOTOOLS sur des modèles réalistes de satellites en plaçant des séquences d'antennes ínteractivement et automatiquement.
|
15 |
Algorithmes géométriques adaptatifsNielsen, Frank 27 September 1996 (has links) (PDF)
Les travaux effectués lors de cette thèse portent sur 1a construction d'algorithmes géométriques dit adaptatifs dans 1e sens ou leur temps de calcul s'adapte a la solution construite. Nous décrivons tout d'abord les principaux paradigmes qui permettent d'obtenir des algorithmes adaptatifs. Puis , nous proposons un algorithme quasi-optimal adaptatif pour le calcul d'enveloppe convexe d'objets planaires dont la complexité de l'enveloppe convexe de toute paire soit bornée. L'algorithme est basé sur une approche composite combinant 1e paradigme mariage avant conquête et 1a méthodologie du groupement en paquets. Nous considérons également le calcul de l'enveloppe supérieure de fonctions et la décomposition convexe partielle d'un ensemble de points. Finalement, nous nous sommes intéressés aux problèmes de perçabílíté d'objets qui ont été montré NP-difficiles. En premier lieu, nous avons étudié le cas de boîtes ísothétíques en donnant une heuristique adaptative dont 1a précision soit elle-même adaptative. Ensuite, nous avons étudié les propriétés combinatoires des objets convexes pour 1a perçabílíté. Nous obtenons une batterie d'algorithmes pour des classes variées d'objets dont certains prouvent l'exístence de théorèmes de type Helly.
|
16 |
-- Géométrie algorithmique --<br />De la théorie à la pratique,<br />Des objets linéaires aux objets courbes.Teillaud, Monique 25 September 2007 (has links) (PDF)
Si la communauté internationale de géométrie algorithmique a souvent<br />la tentation de s'engouffrer dans des recherches essentiellement<br />théoriques, et en particulier combinatoires, la grande originalité des<br />travaux à l'INRIA résidait déjà à l'époque de mes débuts dans le<br />souci de leur validation expérimentale et de leur applicabilité. <br /><br />Le domaine a suivi globalement une évolution dans cette direction,<br />en particulier grâce à l'``Impact Task Force Report''. Notre intérêt pour le transfert technologique et<br />industriel, ainsi que pour l'établissement d'une plateforme pour la<br />recherche, a pris pendant ce temps une tournure encore plus concrète<br />avec notre implication très forte dans le projet CGAL<br />dont notre équipe est l'un des moteurs.<br /><br />Ce document prend le parti de présenter les travaux sous l'angle de<br />cette préoccupation pratique.<br />Il comporte deux chapitres principaux : le premier rassemble<br />des travaux sur les triangulations, le second présente des travaux sur<br />les objets courbes. Ces deux chapitres se concluent par un ensemble de<br />directions ouvertes. Le troisième chapitre survole rapidement d'autres<br />résultats.
|
17 |
Simplification polyédrique optimale pour le renduCharrier, Emilie 04 December 2009 (has links) (PDF)
En informatique, les images sont numériques et donc composées de pixels en 2D et de voxels en 3D. Dans une scène virtuelle 3D, il est impossible de manipuler directement les objets comme des ensembles de voxels en raison du trop gros volume de données. Les objets sont alors polyédrisés, c'est-à-dire remplacés par une collection de facettes. Pour ce faire, il est primordial de savoir décider si un sous-ensemble de voxels peut être transformé en une facette dans la représentation polyédrique. Ce problème est appelé reconnaissance de plans discrets. Pour le résoudre, nous mettons en place un nouvel algorithme spécialement adapté pour les ensembles de voxels denses dans une boite englobante. Notre méthode atteint une complexité quasi-linéaire dans ce cas et s'avère efficace en pratique. En parallèle, nous nous intéressons à un problème algorithmique annexe intervenant dans notre méthode de reconnaissance de plans discrets. Il s'agit de calculer les deux enveloppes convexes des points de Z2 contenus dans un domaine vertical borné et situés de part et d'autre d'une droite quelconque. Nous proposons une méthode de complexité optimale et adaptative pour calculer ces enveloppes convexes. Nous présentons le problème de manière détournée : déterminer le nombre rationnel à dénominateur borné qui approxime au mieux un nombre réel donné. Nous établissons le lien entre ce problème numérique et son interprétation géométrique dans le plan. Enfin, nous proposons indépendamment un nouvel algorithme pour calculer l'épaisseur d'un ensemble de points dans le réseau Zd. Notre méthode est optimale en 2D et gloutonne mais efficace en dimension supérieure
|
18 |
Algorithme des complexes CAT (0) planaires et rectangulairesMaftuleac, Daniela 28 June 2012 (has links)
Dans cette thèse, nous étudions des problèmes algorithmiques dans les complexes CAT(0) planaires et rectangulaires munis d'une m ́etrique intrinsèque l_2. Nous proposons des algorithmes de calcul du plus court chemin dans les complexes CAT(0) planaires et rectangulaires et de construction de l'enveloppe convexe d'un ensemble fini de points dans les complexes CAT(0) planaires. E ́tant donné un complexe CAT(0) rectangulaire 2-dimensionnel K à n sommets, nous proposons un algorithme qui, pour toute paire de points calcule la distance et le plus court chemin en temps sous-lin ́eaire en nombre de sommets de K, en utilisant une structure de données de taille O(n^2). Le deuxième problème étudié est celui du plus court chemin entre un point-source donné et tout autre point dans un complexe CAT(0) planaire K a n sommets. Pour cela, nous proposons un algorithme qui, pour tout point y de K, étant donnée le point source x et la carte géodésique SPM(x), construit le plus court chemin γ(x,y) en temps O(n), en utilisant une structure de données de taille O(n^2). Enfin, nous nous intéressons au calcul de l'enveloppe convexe d'un ensemble de k points dans un complexe CAT(0) planaire à n sommets. Nous proposons un algorithme qui construit l'enveloppe convexe en temps O(n^2 + nk log k) en utilisant une structure de données de taille O(n^2 + k). / In this thesis, we study algorithmic problems in CAT(0) planar and rectangular complexes with an intrinsic l_2−metric. We present algorithms for some algorithmic problems, such as computing the shortest path and the convex hull of a finite set of points in CAT(0) planar and rectangular complexes. We present an efficient algorithm for answering two-point distance queries in a given CAT(0) rectangular complex K with n vertices. Namely, we show that for a CAT(0) rectangular complex K with n vertices, one can construct a data structure of size O(n^2) so that, given any two points in K, the shortest path can be computed in subliniar time of n. The second problem presented is computing shortest path from a single-source to the query point in a CAT(0) planar complex. We propose an algorithm which computes in O(n) time the shortest path between a given point and the query point in a CAT(0) planar complex with n vertices, using a given shortest path map and data structure of size O(n^2). Finally, we study the problem of computing the convex hull of a set of k points in a CAT(0) planar complex with n vertices. We describe an algorithm which computes the convex hull in O(n^2 + nk log k) time, using a data structure of size O(n^2 + k).
|
19 |
Transport optimal semi-discret et applications en optique anidolique / Semi-discrete optimal transport and applications in non-imaging opticsMeyron, Jocelyn 16 October 2018 (has links)
Dans cette thèse, nous nous intéressons à la résolution de nombreux problèmes d’optique anidolique. Plus précisément, il s’agit de construire des composants optiques qui satisfont des contraintes d’illumination à savoir que l’on veut que la lumière réfléchie(ou réfractée) par ce composant corresponde à une distribution fixée en avance. Comme applications, nous pouvons citer la conception de phares de voitures ou de caustiques. Nous montrons que ces problèmes de conception de composants optiques peuvent être vus comme des problèmes de transport optimal et nous expliquons en quoi cette formulation permet d’étudier l’existence et la régularité des solutions. Nous montrons aussi comment, en utilisant des outils de géométrie algorithmique, nous pouvons utiliser une méthode numérique efficace, la méthode de Newton amortie, pour résoudre tous ces problèmes. Nous obtenons un algorithme générique capable de construire efficacement un composant optique qui réfléchit (ou réfracte)une distribution de lumière prescrite. Nous montrons aussi la convergence de l’algorithme de Newton pour résoudre le problème de transport optimal dans le cas où le support de la mesure source est une union finie de simplexes. Nous décrivons également la relation commune qui existe entre huit différents problèmes de conception de composants optiques et montrons qu’ils peuvent tous être vus comme des équations de Monge-Ampère discrètes. Nous appliquons aussi la méthode de Newton à de nombreux problèmes de conception de composants optiques sur différents exemples simulés ainsi que sur des prototypes physiques. Enfin, nous nous intéressons à un problème apparaissant en transport optimal numérique à savoir le choix du point initial. Nous développons trois méthodes simples pour trouver de “bons” points initiaux qui peuvent être ensuite utilisés comme point de départ dans des algorithmes de résolution de transport optimal. / In this thesis, we are interested in solving many inverse problems arising inoptics. More precisely, we are interested in designing optical components such as mirrors andlenses that satisfy some light conservation constraints meaning that we want to control thereflected (or refracted) light in order match a prescribed intensity. This has applications incar headlight design or caustic design for example. We show that optical component designproblems can be recast as optimal transport ones for different cost functions and we explainhow this allows to study the existence and the regularity of the solutions of such problems. Wealso show how, using computational geometry, we can use an efficient numerical method namelythe damped Newton’s algorithm to solve all these problems. We will end up with a singlegeneric algorithm able to efficiently build an optical component with a prescribed reflected(or refracted) illumination. We show the convergence of the Newton’s algorithm to solve theoptimal transport problem when the source measure is supported on a finite union of simplices.We then describe the common relation between eight optical component design problemsand show that they can all be seen as discrete Monge-Ampère equations. We also apply theNewton’s method to optical component design and show numerous simulated and fabricatedexamples. Finally, we look at a problem arising in computational optimal transport namelythe choice of the initial weights. We develop three simple procedures to find “good” initialweights which can be used as a starting point in computational optimal transport algorithms.
|
20 |
Reconstruction Volumique de Résultats de Simulation à Base Chimère / Volumetric Reconstruction of Chimera Simulation ResultsHuynh, Minh Duc 09 July 2012 (has links)
La simulation numérique des écoulements est une étape essentielle de la conception des turbines à gaz équipant les hélicoptères. La recherche permanente de la performance a conduit à des géométries de turbines très complexes et il devient de plus en plus difficile de modéliser des grilles de simulation qui épousent parfaitement la CAO des moteurs. La technique chimère permet de s’affranchir des contraintes de recollement parfait des différentes grilles en autorisant leur chevauchement. Cependant elle soulève de nouveaux problèmes lors de la phase de post-traitement, lorsqu’il s’agit d’exploiter les résultats de simulation afin de faire de nouveaux calculs ou de les visualiser, parce que les outils usuels ne sont pas adaptés à ces configurations particulières. Dans le cadre des deux premiers projets du programme MOSART du pôle de compétitivité Aerospace Valley, respectivement MACAO et OSMOSES, nous avons travaillé en collaboration avec l’entreprise Turbomeca à la conception d’une méthode de reconstruction volumique afin de traiter les résultats de simulations à base chimère. Nous avons ainsi proposé une méthode innovante permettant de reconstruire une partition de l’espace de simulation exempte de chevauchement entre grilles. La nouvelle partition conserve le maximum de propriétés des grilles d’origine et assure en tout point la conformité aux bords. La complexité théorique est linéaire avec la taille des grilles d’origine et nous permet d’obtenir des temps de traitement de l’ordre de la seconde pour des grilles de plusieurs centaines de milliers de mailles. Le principal intérêt de ce travail est de rendre exploitables les résultats de simulations à base chimère par les outils de post-traitement, qu’il s’agisse d’outils maison ou des nombreux logiciels commerciaux ou OpenSource disponibles, condition indispensable pour l’adoption de la méthode chimère par les bureaux d’études. / Computationnal fluid dynamics is an essential step in gas turbine modelling. Continuous optimization of turbines has led to sophisticated geometries, which raises severe issues for the design of adapted simulation grids. The chimera technique aims at relaxing geometry matching constraints by allowing grids overlap. However, post-processing of simulation results performed over chimera grids raises new issues because usual tools are not tuned for this particular geometricconfigurations. In the framework of the MOSART programme of the world competitiveness cluster Aerospace Valley, we have been working in collaboration with Turbomeca in order to develop a technique for the volumetric reconstruction of chimerasimulation results. We propose an innovative method that allows us to build a collection of non-overlapping grids while preserving the main properties of the former simulation grids and featuring boundary conforming property everywhere.The theorical complexity of our algorithms has proved to be linear in the size of the former grids and leads to computation times of a few seconds for grids of hundreds of thousands of cells. The main impact of this work leads in the possibility of using any post-processing tool, including a large number of OpenSource solutions, for post-processing chimera simulation results, which is a mandatory condition for the wide acceptance of this method by industry actors.
|
Page generated in 0.0576 seconds