• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 56
  • 26
  • 17
  • 16
  • 14
  • 13
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 458
  • 458
  • 303
  • 214
  • 160
  • 81
  • 63
  • 55
  • 53
  • 51
  • 49
  • 46
  • 45
  • 44
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Régulation de l'activité autophagique par les récepteurs chimiotactiques couplés aux protéines G : rôle essentiel dans la migration directionnelle / Inhibition of autophagic activity by chemotactic receptors coupled to G proteins : essential role in cell migration

Coly, Pierre-Michaël 02 February 2017 (has links)
L’autophagie est un processus catabolique par lequel certaines protéines cytosoliquessont dirigées vers le compartiment lysosomial, afin d’y être dégradées. Ce processus débutepar la séquestration de constituants cytoplasmiques par une structure multimembranaireappelée phagophore. La fermeture du phagophore donne naissance à une vésicule à doublemembrane nommée autophagosome, qui fusionne avec les lysosomes, ce qui conduit à ladégradation du contenu de sa lumière. Ainsi, la modulation de l’autophagie permet unremodelage dynamique du protéome cellulaire. Bien que des données récentes ont permis dedémontrer la dégradation autophagique de protéines impliquées dans la migration cellulaire,telles que des intégrines, ou encore les protéines RhoA et Src, l'impact fonctionnel del'autophagie sur la migration cellulaire demeure sujet à controverse. Alors que l'autophagie estdécrite comme un processus pro-migratoire et pro-invasif dans certaines études, d'autrestravaux indiquent que l'inactivation des protéines pro-autophagiques stimule l'invasion descellules cancéreuses. De plus, l'effet fonctionnel des RCPG chimiotactiques sur l’activitéautophagique reste totalement inexploré. Sur la base de ces données, les objectifs de mon travail de thèse ont été i) d’évaluer les effets des RCPG chimiotactiques, le CXCR4 et l’UT,sur le processus autophagique et ii) d’étudier l’impact de cette modulation sur la migrationcellulaire. Pour ce faire, nous avons utilisé des cellules HEK-293, transfectées à l’aide deconstruits permettant l’expression des RCPG CXCR4 et UT, ainsi que la lignée deglioblastome humain U87, exprimant ces deux récepteurs de manière endogène.Nous avons dans un premier temps évalué l’activité autophagique à l’aide de laprotéine de fusion EGFP-LC3, marqueur des autophagosomes. Nous avons ainsi démontréque l’activation du CXCR4 et de l’UT provoque une diminution significative de la biogénèsedes autophagosomes. Une étape essentielle de cette biogenèse est le recrutement des protéinesAtg16L1 et Atg5 à la membrane plasmique, conduisant à la formation d'endosomes Atg16L1-Atg5-positifs, appelés « endosomes pré-autophagiques ». Cette population d’endosomesconstitue une source importante de phospholipides nécessaire à l’expansion du phagophore etla formation d’un autophagosome mature. Afin d’évaluer l’impact des RCPG chimiotactiquessur le recrutement de la protéine Atg16L1 à la membrane plasmique, nous avons bloqué leprocessus d’endocytose par l’utilisation d’un inhibiteur de la dynamine, le Dynasore. Cettemolécule provoque une accumulation marquée de la protéine Atg16L1 dans les endosomespré-autophagiques en formation, retenus à la membrane plasmique. / Autophagy is a catabolic process by which certain cytosolic proteins are directed to thelysosomal compartment to be degraded. This process begins with the sequestration ofcytoplasmic components, by a multimembrane structure called the phagophore. The closure ofthe phagophore gives rise to a double membrane vesicle called autophagosome, which thenmerges with lysosomes in order to degrade its luminal content. Autophagy modulation allowsa dynamic remodeling of the cellular proteome. Although recent evidence has demonstratedautophagic degradation of key proteins involved in cell migration, such as integrins, RhoAand the Src kinase, the functional impact of autophagy on cell migration remainscontroversial. While autophagy is described as a pro-migratory and pro-invasive process insome studies, others indicate that the inactivation of pro-autophagic proteins stimulates thecancer cell invasion. In addition, the functional effect of chemotactic GPCR on autophagicactivity remains unexplored. On the basis of these data, the objectives of my thesis were i) toevaluate the effects of the chemotactic GPCRs for SDF-1 (CXCR4) and for the vasoactivepeptide urotensin II (UT), on the autophagic process and ii) to study the impact of thismodulation on cell migration. In order to do this, we used HEK-293 cells, transfected with constructs allowing the expression of CXCR4 and UT, as well as the human glioblastomaline, U87, which endogenously expresses these two receptors. Previous studies have demonstrated a direct interaction of Atg5 with membranes,suggesting that recruitment of Atg16L1 to the plasma membrane may depend on Atg5. This prompted us to evaluate the formation of Atg16L1-positive pre-autophagic endosomes,following depletion of Atg5 levels. Several interfering RNAs, targeting the transcriptencoding Atg5, have been tested and, as expected, these interfering RNAs completely blockedthe recruitment of Atg16L1 to forming pre-autophagic endosomes. We then tested the effectsof chemotactic GPCRs on the subcellular localization of the Atg5 protein. By confocalmicroscopy, we found that a significant fraction of Atg5 localized to the plasma membraneunder basal conditions. The activation of CXCR4 or UT is accompanied by a marked decreaseof the Atg5 pool localized at the plasma membrane. Furthermore, we have demonstrated thatthe anti-autophagic effects of chemotactic GPCRs are completely abrogated byoverexpression of a recombinant Atg5 protein, suggesting that chemotactic GPCRs exert theiranti-autophagic effects by reducing the membrane pool of Atg5, necessary for the productionof pre-autophagic endosomes, and the expansion of the phagophore.
352

Studium membránových receptorů pomocí vazby radioligandů / The study of membrane receptors by radioligands binding

Rejhová, Alexandra January 2011 (has links)
Drug addiction, opiates respectively, is a social problem which seriousness is currently on the rise. One of key elements causing addiction is tolerance to increasing doses of drug causing abstinence syndrome during withdrawal and craving. Opioid receptors are members of a large group of receptors coupled with heterotrimeric G-proteins (GPCR), whose properties can be investigated using agonist- stimulated binding [35 S] GTPγS. Many extracellular signals are transferred into a cell through GPCR. Opioid receptor agonists inhibit the activity of adenylyl cyclase and are coupled with G-protein group Gi/Go. This work is devoted to the study of changes in isolated plasma membranes of rat forebrain containing opioid receptors of healthy subjects with membranes acquired from morphine addicted subjects. The rats were long-term morphine treated in increasing doses, to develop the dependency. The comparison is done firstly by binding of [3 H]ouabain to Na,K-ATPase, which proves to be a negative standard of changes, secondly by binding [35 S]GTPγS to G-proteins, thereby providing the functional activity of G-protein in stimulating the binding by the agonist of δ-opioid receptors DADLE or agonist of µ-opioid receptors DAMGO. Furthermore, it has been studied the influence of prostaglandin E1 on binding [35...
353

Vliv chronického působení morfínu na funkci signálních systémů řízených trimérními G-proteiny v srdci potkana / Effect of chronic morphine treatment of rats on myocardial signaling systems regulated by trimeric G-proteins

Škrabalová, Jitka January 2011 (has links)
It has recently been discovered that the effect of morphine can significantly reduce the tissue damage that occurs during myocardial ischemia. The molecular mechanisms by which morphine acts on the heart are still little understood. The aim of this thesis was to monitor the effect of chronic 27-day and 10-day administration of low (1 mg/kg/day) and high (10 mg/kg/ day) doses of morphine on the expression of selected G-protein-coupled receptors (GPCR) and on the expression and activity of adenylyl cyclase (AC). Chronic (27 days) morphine treatment reduced the expression of к-opioids receptors, but 10-day morphine exposure did not influence the expression of these receptors. Assessment of β1- and β2-AR by immunoblot technique did not show any significant change in the expression, but the more accurate determination of β-AR expression using the saturation binding studies revealed that 27-day treatment with high doses of morphine appreciable increased the total number of these receptors. Administration of high doses of morphine led to marked up-regulation of adenylyl cyclase (AC) isoforms V/VI, and the amount of AC decreased proportionally with the time of discontinuation of morphine administration. Low doses of morphine up- regulated AC only during 27-day administration. Chronic morphine exposure did...
354

Regulation of the Dopamine D3 Receptor by Adenylyl Cyclase 5

Habibi Khorasani, Hedieh 10 May 2022 (has links)
The D3 dopamine receptor (D3R) belongs to D2-class of dopamine receptors (DARs) and is involved in emotion, movement, and reward. D3R dysfunction has been reported in some neuropsychiatric disorders such as addiction, cognitive deficits, depression, schizophrenia, and Parkinson’s disease. Genetic studies have shown two polymorphic variants of the D3R gene resulting from substitution of serine to glycine at position nine of the amino terminus. Isoform 5 of adenylyl cyclase (AC5) is one of the nine transmembrane bound ACs in the brain and myocardium. Previous studies in rats have shown that AC5 is expressed in the striatum, nucleus accumbens and olfactory tubercle and at lower levels in islands of Calleja, where the D3R is also expressed. Previous studies showed that although D2R and D4R inhibit ACs activity in different cell types, inhibition of ACs by D3R is weak and often undetectable. It has been shown that D3R selectively inhibits AC5 activity in human embryonic kidney 293 (HEK293) cells co-transfected with D3R and AC5. Co-expression of D3R and AC5 in brain regions which are major coordinators of normal and pathological movement, and the selective inhibition of AC5 activity by D3R raise the possibility of a functional link between AC5 and D3R in the modulation of signal transduction and trafficking. I hypothesized that AC5 plays a unique role in modulation of D3R trafficking and signaling pathways through interaction between D3R and AC5. Herein, I demonstrated an interaction between D3R and AC5 in vivo and in vitro using reciprocal co-immunoprecipitation/immunoblotting (co-IP/IB) assays. Interestingly, DA may facilitate the formation of protein complex between D3R and AC5 in vitro. Radio ligand binding assays revealed that heterodimerization of D3R polymorphic variants with AC5 does not change ligand binding affinity and expression of the D3R. Furthermore, taking advantages of GloSensor assays, selective inhibition of AC5 activity by D3Ser9 and D3Gly9 has been shown following activation by DA and quinpirole. Using ELISA studies showed that AC5 promotes cell surface expression and total expression of D3Ser9 and D3Gly9. Moreover, ELISA results suggested that AC5 facilitates DA-induced D3Ser9 endocytosis in dynamin and β-arrestin 2 dependent process, while having no effect on D3Gly9 polymorphic variant. The results also revealed that AC5 attenuates heterologous (PKC-induced) internalization of D3Ser9, while it does not have any effect on D3Gly9 heterologous internalization. My results also displayed a complex formation between D3R, AC5 and, β-arrestin 2 under basal and DA stimulation conditions, which emphasize the role of β-arrestin 2 in D3R signal transduction. Overall, a new regulatory mechanism for D3R has been suggested. My results suggested that complex formation between both D3R polymorphic variants with AC5 can regulate signaling and trafficking properties of D3R without changing the binding affinity of the receptor. These data will be meaningful for understanding of diseases and developing treatment strategies.
355

Uncovering the mechanisms of trans-arachidonic acids : function and implications for cerebral ischemia and beyond

Kooli, Amna. January 2008 (has links)
No description available.
356

Discovering Natural Product Chemistries for Vector Control

Lide Bi (15347593) 25 April 2023 (has links)
<p>  </p> <p>Vector-borne diseases (VBDs) represent a significant health burden worldwide, threatening approximately 80% of the global population. Insecticide-based vector control is the most effective method to manage many VBDs, but its efficacy has been declining due to high levels of resistance in vector populations to the main insecticide classes which operate via limited modes of action. Therefore, the discovery of new chemistries from non-conventional chemical classes and with novel modes of action is a priority for the control of vectors and VBDs. Natural products (NPs) are diverse in chemical structures and, potentially, modes of action. They have been used as insecticides for many decades and have inspired the development of multiple synthetic insecticides, suggesting the discovery of novel NPs could lead to the development of highly effective insecticides. </p> <p><br></p> <p>In this thesis, I report two studies with a main goal to identify novel mosquito-active insecticide leads that operate via modes of action distinct from existing insecticides. First, I tested the hypothesis that new mosquito-active insecticide leads with novel chemical structures, possibly operating via novel modes of action, can be identified by high-content larval phenotypic screening against a natural product collection and using novel phenotypic endpoints in addition to mortality endpoints. Here, I performed a high-content larval phenotypic screen using first instar (L1) larvae of <em>Aedes aegypti</em> (Linnaeus, 1762) against 3,680 compounds from the AnalytiCon MEGx Natural Product Libraries and a screening platform developed by Murgia et al., (2022). Compounds were screened in a 384-well plate format using the Perkin Elmer Opera Phenix and larvae were scored for lethal and novel phenotypic endpoints. Screening revealed five chemistries that caused larval mortality, including rotenone and a new NP chemistry, NP-4. The identification of rotenone confirmed the ability of the screen to detect mosquito-active NP chemistries. NP-4 caused high levels of larval mortality in the screen, and toxicity was confirmed in a subsequent concentration-response assay against third instar (L3) larvae of <em>Ae. aegypti</em>. 140 chemistries that caused atypical larval phenotypes, including cuticular pigmentation and morphometric changes relative to negative controls, were also identified by the screen. Some of these chemistries may operate by disruption of pathways regulating melanization, growth and development, and novel targets in the insect nervous systems, thus representing potential leads for further insecticide toxicity and mode of action studies. To facilitate quantitative analyses of atypical phenotypes, an attempt was made to assess the morphometrics of the thorax in larvae exposed to test chemistry, relative to control larvae. However, assessment was limited by the number of larvae images of suitable quality for measurements. </p> <p><br></p> <p>In the second study, I tested the hypothesis that metergoline (Murgia et al., 2022) and NP-4 (this study), two chemistries identified by the HTP phenotypic screen described in this project, operate via disruption of targets in the insect nervous systems that are distinct from the current insecticidal modes of products used in mosquito control programs. Specifically, I explored the hypothesis that metergoline operates via one or more insect orthologs of the mammalian G protein-coupled serotonin and dopamine receptors. An electrophysiology study was performed using the suction electrode technique and ganglia of the German cockroach, <em>Blattella germanica </em>(Linnaeus, 1767). To facilitate the investigation of metergoline agonism/antagonism and disruption of invertebrate GPCR signaling, 5-hydroxytryptamine (5-HT; serotonin) was included as a chemical probe. Electrophysiological recordings showed 5-HT (10µM and 1mM) and metergoline (10µM) caused no significant neurological activity at the tested concentrations in comparison to the saline control. However, a consistent neuro-inhibitory trend was observed, suggesting possible agonism of a 5-HT1-like receptor ortholog and antagonism of a putative 5-HT7-like receptor ortholog in the cockroach, respectively.  NP-4 caused significant neuro-inhibition at the tested concentration of 20µM, in comparison to the negative saline control. Given the demonstration of rapid contact toxicity to <em>Ae. aegypti</em> larvae and neurological inhibition in <em>B. germanica</em>, we propose NP-4 may act at one or more conserved targets in the insect nervous systems, which remain to be elucidated. </p> <p><br></p> <p>The significance of the present study is three-fold. First, this study reports the first high-content phenotypic screen of mosquito larvae against a NP collection and identification of 145 mosquito-active chemistries associated with lethal and phenotypic endpoints. These data confirm that the screening platform provided an innovative and effective system to rapidly identify mosquito-active small molecules with potential novel modes of action. Second, metergoline and NP-4 represent potential novel chemical leads for the development of new insecticides that can be incorporated into vector control programs targeting insecticide-resistant populations. Lastly, the study describes the first electrophysiology study of 5-HT, metergoline, and NP-4 via the suction electrode technique in an insect system and contributes new knowledge to the study of the insect serotonergic system, which represents an expanding area of vector biology research given its roles in feeding regulation.  </p> <p><br></p> <p>Future studies resulting from this thesis might include: (1) development of a set of morphometric criteria for quantitative analyses of atypical larval phenotypes, (2) incorporation of new phenotypic endpoints to expand the capacity of the screen to identify novel mode of action chemistries for insecticide discovery, and (3) identification of chemistry candidates suitable for further development from the 140 chemistries associated with atypical larval phenotypes in the primary screen using chemo-informatic and toxicological studies. In addition, studies using reverse transcription-polymerase chain reaction (RT-PCR), cell-based expression systems, mutant/insecticide resistant strains, and patch clamp electrophysiology could be pursued to further investigate the molecular mode of action of metergoline and NP-4, and potential for vector control.</p>
357

Investigation of Photochemistry and Photobiology of Retinal in Visual and Non-visual Cellular Signaling

Ratnayake, Kasun Chinthaka January 2020 (has links)
No description available.
358

Molecular Effects of Auto-Antibodies on Angiotensin II Type 1 Receptor Signaling and Cell Proliferation

Philippe, Aurelie, Kleinau, Gunnar, Gruner, Jason Jannis, Wu, Sumin, Postpieszala, Daniel, Speck, David, Heidecke, Harald, Dowell, Simon J., Riemekasten, Gabriela, Hildebrand, Peter W., Kamhieh-Milz, Julian, Catar, Rusan, Szczepek, Michal, Dragun, Duska, Scheerer, Patrick 17 January 2024 (has links)
The angiotensin II (Ang II) type 1 receptor (AT1R) is involved in the regulation of blood pressure (through vasoconstriction) and water and ion homeostasis (mediated by interaction with the endogenous agonist). AT1R can also be activated by auto-antibodies (AT1R-Abs), which are associated with manifold diseases, such as obliterative vasculopathy, preeclampsia and systemic sclerosis. Knowledge of the molecular mechanisms related to AT1R-Abs binding and associated signaling cascade (dys-)regulation remains fragmentary. The goal of this study was, therefore, to investigate details of the effects of AT1R-Abs on G-protein signaling and subsequent cell proliferation, as well as the putative contribution of the three extracellular receptor loops (ELs) to Abs-AT1R signaling. AT1R-Abs induced nuclear factor of activated T-cells (NFAT) signaling, which reflects Gq/11 and Gi activation. The impact on cell proliferation was tested in different cell systems, as well as activation-triggered receptor internalization. Blockwise alanine substitutions were designed to potentially investigate the role of ELs in AT1R-Abs-mediated effects. First, we demonstrate that Ang II-mediated internalization of AT1R is impeded by binding of AT1R-Abs. Secondly, exclusive AT1RAbs- induced Gq/11 activation is most significant for NFAT stimulation and mediates cell proliferation. Interestingly, our studies also reveal that ligand-independent, baseline AT1R activation of Gi signaling has, in turn, a negative effect on cell proliferation. Indeed, inhibition of Gi basal activity potentiates proliferation triggered by AT1R-Abs. Finally, although AT1R containing EL1 and EL3 blockwise alanine mutations were not expressed on the human embryonic kidney293T (HEK293T) cell surface, we at least confirmed that parts of EL2 are involved in interactions between AT1R and Abs. This current study thus provides extended insights into the molecular action of AT1R-Abs and associated mechanisms of interrelated pathogenesis.
359

Involvement of GPR17 in Neuronal Fibre Outgrowth

Braune, Max, Scherf, Nico, Heine, Claudia, Sygnecka, Katja, Pillaiyar, Thanigaimalai, Parravicini, Chiara, Heimrich, Bernd, Abbracchio, Maria P., Müller, Christa E., Franke, Heike 22 January 2024 (has links)
Characterization of new pharmacological targets is a promising approach in research of neurorepair mechanisms. The G protein-coupled receptor 17 (GPR17) has recently been proposed as an interesting pharmacological target, e.g., in neuroregenerative processes. Using the well-established ex vivo model of organotypic slice co-cultures of the mesocortical dopaminergic system (prefrontal cortex (PFC) and substantia nigra/ventral tegmental area (SN/VTA) complex), the influence of GPR17 ligands on neurite outgrowth from SN/VTA to the PFC was investigated. The growthpromoting effects of Montelukast (MTK; GPR17- and cysteinyl-leukotriene receptor antagonist), the glial cell line-derived neurotrophic factor (GDNF) and of two potent, selective GPR17 agonists (PSB-16484 and PSB-16282) were characterized. Treatment with MTK resulted in a significant increase in mean neurite density, comparable with the effects of GDNF. The combination of MTK and GPR17 agonist PSB-16484 significantly inhibited neuronal growth. qPCR studies revealed an MTK-induced elevated mRNA-expression of genes relevant for neuronal growth. Immunofluorescence labelling showed a marked expression of GPR17 on NG2-positive glia. Western blot and RT-qPCR analysis of untreated cultures suggest a time-dependent, injury-induced stimulation of GPR17. In conclusion, MTK was identified as a stimulator of neurite fibre outgrowth, mediating its effects through GPR17, highlighting GPR17 as an interesting therapeutic target in neuronal regeneration.
360

cAMP BIOSENSORS AND SPATIOTEMPORAL cAMP SIGNALING IN ADULT CARDIAC MYOCYTES

Warrier, Sunita 06 April 2007 (has links)
No description available.

Page generated in 0.0451 seconds