• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 56
  • 26
  • 17
  • 16
  • 14
  • 13
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 458
  • 458
  • 303
  • 214
  • 160
  • 81
  • 63
  • 55
  • 53
  • 51
  • 49
  • 46
  • 45
  • 44
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Identification of a Novel G-protein Interactor, RADIL, and Functional Characterization of its Role in Cancer Cell Motility

Ahmed, Syed Mukhtar 19 March 2013 (has links)
Cell adhesion and migration play crucial roles in development of multicellular organisms, immune surveillance, wound repair and cancer metastasis. The Gβγ subunits of heterotrimeric G-proteins have been implicated in signalling activities that promote cell adhesion and migration but the molecular mechanisms are unclear. Using a mass-spectrometry based proteomic approach we identified a protein complex between Gβγ and Rap1a that is bridged by a novel Rap1 effector, Radil. Overexpression of constitutively active Rap1a, Gβγ or stimulation of cells with the GPCR ligand fMLP triggers recruitment of Radil to the plasma membrane. Exogenous expression of Radil promotes cell spreading through Rap1-dependent inside-out activation of integrins leading to enhanced cell-matrix adhesion. Structure function experiments demonstrated that the RA and PDZ domains of Radil are required for its ability to promote cell adhesion. Using phage-display and mass-spectrometry we identified the kinesin family protein KIF14 as a novel interacting partner for Radil. Both KIF14 and Radil colocalized on microtubules in a PDZ-dependent manner. Depletion of KIF14 or disruption of microtubules led to accumulation of Radil at the cell membrane. Functionally, KIF14 is a negative regulator of Radil signalling as its depletion increased cell spreading and integrin activation and both phenotypes are rescued by simultaneous knockdown of Radil. Knockdown of KIF14 affects focal adhesion dynamics, which we determined is due to delayed adhesion disassembly. Depletion of either KIF14 or Radil dramatically decreased breast cancer cell migration and invasion in vitro. Additionally, knockdown of Radil compromised the ability of cells to metastasize to the lung and reduced tu-mor growth in xenograft mouse models. Collectively, these studies describe a functional re-quirement for the Gβγ-Rap1a-Radil complex during GPCR signalling for the control of integrin-mediated cell adhesion, cell motility and cancer progression.
62

Regulation of the human delta opioid receptor

Navratilova, Edita January 2007 (has links)
Regulation of the human delta opioid receptor (hDOR) is implicated in the development of tolerance to chronic morphine (Zhu et al., 1999). In addition, DORs are promising analgesic targets for the management of chronic pain states such as inflammatory or neuropathic pain (Cahill et al., 2007). Therefore, in this study, we investigated multiple aspects of hDOR regulation, including receptor phosphorylation, beta-arrestin binding, receptor internalization, down-regulation and desensitization, using recombinant Chinese hamster ovary (CHO) cells expressing the wild-type or various mutant hDOR constructs. We found that structurally diverse delta opioid agonists regulate the hDOR by different mechanisms. We demonstrate that morphine is able to activate the initial step of the regulatory events, phosphorylation of S363, but due to requirements for simultaneous activation of multiple sites, morphine fails to promote beta-arrestin binding, receptor internalization and down-regulation. We also report that peptide delta opioid receptor agonists and a non-peptide agonist SNC80 differ in their ability to down-regulate the hDOR. Further differences in receptor phosphorylation, desensitization and beta-arrestin translocation between these two classes of full DOR agonists are reveled by truncation of the receptor's C-terminus or by mutation of the primary phosphorylation site, S363. Studies using the mutant receptors identify the C-terminus as the important domain for hDOR phosphorylation, beta-arrestin binding and down-regulation by both peptide and non-peptide agonists. S363 within the C-terminus is critically involved in receptor phosphorylation, desensitization and down-regulation, but not in beta-arrestin binding and receptor internalization. In contrast to peptide agonists, SNC80 is able to phosphorylate and activate secondary intracellular domain(s), in addition to the C-terminus, which participate in beta-arrestin recruitment and receptor desensitization and down-regulation. Therefore, agonist-specific differences were detected for multiple regulatory events between morphine, peptide agonists and SNC80. Differential agonist-mediated regulation of the human delta opioid receptor may be used to design pain therapy drugs with improved analgesic properties and minimal side effects.
63

INVOLVEMENT OF DIFFERENT RAB GTPASES IN THE TRAFFICKING OF CXCR4 AND CCR5 HOMO- AND HETERODIMERS BETWEEN THE ENDOPLASMIC RETICULUM AND PLASMA MEMBRANE IN HEK293 AND JURKAT CELLS

Charette, Nicholle Jeanine 13 July 2011 (has links)
Little is known about the outward trafficking of receptor dimers from the endoplasmic reticulum to the plasma membrane, or the role that trafficking plays in assembly, targeting and specificity of receptor signalling. Bimolecular fluorescence complementation was used to follow prescribed receptor homo/heterodimers in Jurkat cells and clarify the trafficking itineraries those receptors follow to reach the plasma membrane. Chemokine receptors CXCR4 and CCR5 were chosen due to their implication in numerous pathologies including, HIV and cancer, and their ability to form homo and hetero-oligomers. This study demonstrates that although the individual receptors composing heterodimeric complexes are the same as in homodimeric complexes, the heterodimer traffics and signals independently of its constituent homodimers. The presence of CD4 affects the trafficking of CCR5 containing dimers but not the CXCR4 homodimer. These observations demonstrate the importance of considering receptor heterodimers as distinct signalling entities that should be more carefully and individually characterized.
64

Structural Studies Of Apelin And Its Receptor As Well As The Characteristics And Causes Of Membrane Protein Helix Kinks

Langelaan, David 26 March 2012 (has links)
Apelin, the endogenous ligand to the apelin receptor, is a small peptide involved with cardiovascular regulation. Using nuclear magnetic resonance (NMR) spectroscopy, I demonstrate that at low temperature, residues R6-L9 and G13-F17 of apelin are more structured than the rest of the peptide. I also study the interactions of apelin with sodium dodecylsulphate (SDS), dodecylphosphocholine (DPC) and 1-palmitoyl-2-hydroxy-sn- glycero-3-[phospho-RAC-(1-glycerol)] (LPPG) micelles. Apelin binds to SDS micelles through residues R6-L9, with structure being induced in this region as well as the C- terminus of the peptide. The binding to micelles along with the corresponding change in structure make it likely that apelin binds to the apelin receptor following the membrane catalysis hypothesis. NMR spectroscopy was used to determine the structure of the N- terminal tail and first transmembrane segment of the apelin receptor (AR55) in DPC micelles. AR55 has two disrupted helices from D14-K25 and from A29-K57. The second helix is the membrane spanning region of AR55 and has a significant kink located at N46. Mutagenesis of the apelin receptor and functional assays indicate that G42, G45 and N46 are essential for the proper trafficking and function of AR. In the N-terminal tail, the functionally critical residues E20 and D23 form an anionic face that could take part in initial binding of apelin to AR. The structure of AR55 was also determined in SDS micelles, LPPG micelles and a 1:1 water: 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) solution. Overall, the micelle spanning region of AR55 has a consistent structure with a kink near N46. The N-terminal tail of AR55 is more variable, having similar structures in the micelle conditions but being largely helical in 50% HFIP. NMR relaxation experiments indicate that the N-terminal tail of AR55 undergoes much more motion in LPPG micelles compared to SDS and DPC micelles. Finally, I created a program named MC-HELAN that characterizes the kinks that occur in protein helices. I used MC- HELAN to analyze all non-redundant membrane protein structures as of March 2010. Membrane protein helix kinks are remarkably common and diverse. Initial attempts to predict membrane protein kinks using only the protein sequence were unsuccessful.
65

Insulin-like growth factor effects on vascular smooth muscle cells are in part modulated via a G protein coupled pathway

Perrault, Raissa 23 September 2010 (has links)
An important part of repair processes activated by vascular injury is the recruitment of vascular smooth muscle cells (SMC) from the existing contractile coat. Phenotypic modulation of SMCs enables these cells to proliferate and migrate into the vessel intima. Despite its importance in vessel repair, this plasticity of SMCs can also promote both the pathogenesis of atherosclerosis as well as neointimal formation following revascularization- induced injury. Vascular growth factors are major contributors to the migratory and proliferative responses to injury. IGF-1 is one such growth factor that elicits a response via its receptor, the IGF-1R, a classical tyrosine kinase receptor. However, it has been suggested that the IGF-1R may also be coupled to a heterotrimeric G protein and can thus initiate cellular responses via this alternate pathway. The objective of this study was to investigate the structural aspects of IGR-1R coupling to a heterotrimeric G protein in SMCs, as well as the contribution of this pathway to the cellular responses. In a porcine primary SMC culture model, IGF-1R co-precipitated with both the α- and β-subunits of a G protein, with the latter demonstrating activation dependent precipitation. The specific Gα class activated by IGF-1R was Gαi, in a manner that was independent of the activity of the tyrosine kinase. Both Gαi1 and Gαi2 directly interacted with the receptor. Gβγ mediated the activation of MAPK and its inhibition was sufficient to attenuate both the proliferation and migration of SMCs in vitro. In contrast, the contribution of Gαi was related to regulation of protein translation and histone modification. The data supports the conclusion that IGF-1 regulates the phenotype of vascular SMCs at least partially via a non-classical G protein-coupled receptor. Investigation into the individual subunits of the G protein complex led to the elucidation of a model in which both components play an integral role in the IGF-1 response, independent of the receptor tyrosine kinase activity. In one case, an interplay of specific Gαi-subunits leads to modulation of the VSMC translational and transcriptional responses, while in the other, release of the Gβγ-subunit activated the MAPK response in a manner that significantly contributes to both the migration and proliferation of SMCs.
66

Insulin-like growth factor effects on vascular smooth muscle cells are in part modulated via a G protein coupled pathway

Perrault, Raissa 23 September 2010 (has links)
An important part of repair processes activated by vascular injury is the recruitment of vascular smooth muscle cells (SMC) from the existing contractile coat. Phenotypic modulation of SMCs enables these cells to proliferate and migrate into the vessel intima. Despite its importance in vessel repair, this plasticity of SMCs can also promote both the pathogenesis of atherosclerosis as well as neointimal formation following revascularization- induced injury. Vascular growth factors are major contributors to the migratory and proliferative responses to injury. IGF-1 is one such growth factor that elicits a response via its receptor, the IGF-1R, a classical tyrosine kinase receptor. However, it has been suggested that the IGF-1R may also be coupled to a heterotrimeric G protein and can thus initiate cellular responses via this alternate pathway. The objective of this study was to investigate the structural aspects of IGR-1R coupling to a heterotrimeric G protein in SMCs, as well as the contribution of this pathway to the cellular responses. In a porcine primary SMC culture model, IGF-1R co-precipitated with both the α- and β-subunits of a G protein, with the latter demonstrating activation dependent precipitation. The specific Gα class activated by IGF-1R was Gαi, in a manner that was independent of the activity of the tyrosine kinase. Both Gαi1 and Gαi2 directly interacted with the receptor. Gβγ mediated the activation of MAPK and its inhibition was sufficient to attenuate both the proliferation and migration of SMCs in vitro. In contrast, the contribution of Gαi was related to regulation of protein translation and histone modification. The data supports the conclusion that IGF-1 regulates the phenotype of vascular SMCs at least partially via a non-classical G protein-coupled receptor. Investigation into the individual subunits of the G protein complex led to the elucidation of a model in which both components play an integral role in the IGF-1 response, independent of the receptor tyrosine kinase activity. In one case, an interplay of specific Gαi-subunits leads to modulation of the VSMC translational and transcriptional responses, while in the other, release of the Gβγ-subunit activated the MAPK response in a manner that significantly contributes to both the migration and proliferation of SMCs.
67

Defining the Mechanisms by which Palmitoylation Regulates the Localization and Function of RGS4

Dissanayake, Kaveesh 31 December 2010 (has links)
Regulator of G-protein signalling 4 (RGS4) modulates Gq and Gi signalling at the plasma membrane (PM). It has been demonstrated that the addition of palmitate to cysteine residues is an important regulator of RGS protein localization and function. The family of palmitate transferase enzymes shares a conserved Asp-His-His-Cys (DHHC) motif. We set out to establish the DHHC isoform(s) that affect RGS4 activity in HEK201 cells. Confocal microscopy revealed that overexpression of DHHCs 3 and 7 mobilized RGS4 to the Golgi. Knockdown of either DHHC3 or DHHC7 attenuated RGS4 inhibition of Gαq-coupled Ca2+ release and reduced RGS4 PM localization. Consistent with a role in promoting RGS4 lipid bilayer targeting, dominant negative mutants of the five most highly expressed DHHCs in HEK201 cells also diminished RGS4 PM association. Together, these data suggest that members of the mammalian DHHC family regulate RGS4 localization and function, likely through palmitoylation of its target cysteine residues.
68

Identification of a Novel G-protein Interactor, RADIL, and Functional Characterization of its Role in Cancer Cell Motility

Ahmed, Syed Mukhtar 19 March 2013 (has links)
Cell adhesion and migration play crucial roles in development of multicellular organisms, immune surveillance, wound repair and cancer metastasis. The Gβγ subunits of heterotrimeric G-proteins have been implicated in signalling activities that promote cell adhesion and migration but the molecular mechanisms are unclear. Using a mass-spectrometry based proteomic approach we identified a protein complex between Gβγ and Rap1a that is bridged by a novel Rap1 effector, Radil. Overexpression of constitutively active Rap1a, Gβγ or stimulation of cells with the GPCR ligand fMLP triggers recruitment of Radil to the plasma membrane. Exogenous expression of Radil promotes cell spreading through Rap1-dependent inside-out activation of integrins leading to enhanced cell-matrix adhesion. Structure function experiments demonstrated that the RA and PDZ domains of Radil are required for its ability to promote cell adhesion. Using phage-display and mass-spectrometry we identified the kinesin family protein KIF14 as a novel interacting partner for Radil. Both KIF14 and Radil colocalized on microtubules in a PDZ-dependent manner. Depletion of KIF14 or disruption of microtubules led to accumulation of Radil at the cell membrane. Functionally, KIF14 is a negative regulator of Radil signalling as its depletion increased cell spreading and integrin activation and both phenotypes are rescued by simultaneous knockdown of Radil. Knockdown of KIF14 affects focal adhesion dynamics, which we determined is due to delayed adhesion disassembly. Depletion of either KIF14 or Radil dramatically decreased breast cancer cell migration and invasion in vitro. Additionally, knockdown of Radil compromised the ability of cells to metastasize to the lung and reduced tu-mor growth in xenograft mouse models. Collectively, these studies describe a functional re-quirement for the Gβγ-Rap1a-Radil complex during GPCR signalling for the control of integrin-mediated cell adhesion, cell motility and cancer progression.
69

Defining the Mechanisms by which Palmitoylation Regulates the Localization and Function of RGS4

Dissanayake, Kaveesh 31 December 2010 (has links)
Regulator of G-protein signalling 4 (RGS4) modulates Gq and Gi signalling at the plasma membrane (PM). It has been demonstrated that the addition of palmitate to cysteine residues is an important regulator of RGS protein localization and function. The family of palmitate transferase enzymes shares a conserved Asp-His-His-Cys (DHHC) motif. We set out to establish the DHHC isoform(s) that affect RGS4 activity in HEK201 cells. Confocal microscopy revealed that overexpression of DHHCs 3 and 7 mobilized RGS4 to the Golgi. Knockdown of either DHHC3 or DHHC7 attenuated RGS4 inhibition of Gαq-coupled Ca2+ release and reduced RGS4 PM localization. Consistent with a role in promoting RGS4 lipid bilayer targeting, dominant negative mutants of the five most highly expressed DHHCs in HEK201 cells also diminished RGS4 PM association. Together, these data suggest that members of the mammalian DHHC family regulate RGS4 localization and function, likely through palmitoylation of its target cysteine residues.
70

Cellular role for Developmentally Regulated G-proteins in plants: Heat stress and protein renaturation.

Anthony O'Connell Unknown Date (has links)
Developmentally regulated G-proteins (DRGs) are a highly conserved family of GTP binding proteins found in archaea, plants, fungi and animals. Their function is poorly understood but they are implicated in cell division, proliferation, and growth, as well as several human medical conditions. The research reported here has utilised a variety of approaches including structural biology, biochemistry, expression profiling, and mutant analysis in order to investigate the cellular function of DRG proteins in plants. Recombinant, biologically active atDRG1 and atDRG2 protein from Arabidopsis thaliana was purified using in vitro refolding and was used in both structural studies and biochemical analysis. Crystallographic studies were carried out for both atDRG1 and atDRG2 across 3840 unique, independent crystallisation conditions for each protein. Heterogeneous nucleation was also used in a separate crystallography screen in order to induce nucleation and subsequent crystal growth however no diffraction quality protein crystal were produced in this study. The nucleotide binding and hydrolysis properties of recombinant atDRG1 and atDRG2 were measured in vitro, representing the first biochemical characterisation of DRG proteins. Both atDRG1 and atDRG2 were found to bind GDP and GTP in vitro without the assistance of exogenous exchange or activation factors. The Kcat for GTP hydrolysis by atDRG1 and atDRG2 was found to be 7.44 x 10-4 min-1 and 1.18 x 10-3 min-1 respectively which is consistent with proteins related to the DRG subfamily. An Arabidopsis thaliana atDRG2a knockout mutant was identified and characterised in this study as well representing the first DRG knockout mutant in a multicellular organism. We found that complete knockout of atDRG2a is not lethal in Arabidopsis and that the nearly identical atDRG2b protein is not upregulated in response to an absence of atDRG2a in the cell. The mutant did not display an obvious phenotype compared to wild-type. The expression profiles of the three Arabidopsis thaliana drg genes, drg1, drg2a, and drg2b, were characterised using drg promoter:GUS Arabidopsis transgenics and revealed several interesting features. Under normal conditions, drg1 and drg2a transcripts are present in all cells whilst drg2b transcripts are undetectable. When heat stress is applied, drg2b and drg1 are specifically up regulated and drg2a is not. During seed imbibition, drg2a and drg1 are specifically upregulated whilst drg2b is not. The expression pattern of the drg family closely mirrors that of chaperone/heat shock proteins and this would agree with previous research that suggests that DRG2a may perform a chaperone role. The ability of DRGs to bind nucleotides without assistance, their slow rate of GTP hydrolysis, heat stress activation, abundance in seeds, cytosolic localization, and domain conservation, all agree with the models proposed for spoOB associated G-protein (Obg) function, whereby Obgs stabilise or refold ribosomes or other proteins in response to stress. It is possible that DRGs perform a similar and complementary function to Obgs, specifically during heat stress, despite the low level of sequence conservation between Obgs and DRGs.

Page generated in 0.0463 seconds