• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 93
  • 27
  • 20
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 396
  • 121
  • 98
  • 92
  • 74
  • 65
  • 64
  • 46
  • 39
  • 32
  • 31
  • 27
  • 27
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

[pt] HIDROCARBONETOS E NITROAROMÁTICOS NA BAÍA DE GUANABARA: APORTE FLUVIAL E ESTUDO GEOCRONOLÓGICO / [en] HYDROCARBONS AND NITROAROMATIC COMPOUNDS IN GUANABARA BAY: RIVERINE INPUTS AND GEOCHRONOLOGICAL STUDY

26 November 2021 (has links)
[pt] A avaliação do aporte continental de hidrocarbonetos para a zona costeira pelos corpos hídricos é de grande importância para melhor compreensão das características regionais quanto à ocupação do solo e do impacto que a urbanização exerce sobre um estuário. As distribuições de hidrocarbonetos alifáticos (n-C12 a n-C40) e hidrocarbonetos policíclicos aromáticos (46 HPAs) foram investigadas no material particulado em suspensão (MPS) e sedimentos ao longo de onze meses em seis dos principais rios e dois canais da bacia da Baía de Guanabara. O ΣHPAs variou de 27,59 a 11.514 ng L-1 no MPS e de 14,60 a 64.961 ng g-1 para as amostras de sedimento. Foram determinadas a taxa de exportação média dos rios dos rios e canais, indo de 0,03 t ano-1 observada para o rio Suruí a 1,87 t ano-1 observada para o rio Iguaçu; a contribuição de HPAs para o sedimento parte norte da baía na e as principais fontes de hidrocarbonetos. Avaliações de tipologia e estatísticas permitiram demonstrar a proporção da contribuição de fontes petrogênicas e pirolíticas nas diferentes regiões e quantificar estas contribuições. A taxa de exportação de HPAs dos cinco principais rios ao norte da baía equivale a 3 t ano-1, representando 30 porcento do aporte total anual de HPAs nesta área da Baía de Guanabara. O estudo geocronológico mostra a evolução histórica do aporte de HPAs apontando para a transição da predominância das fontes de combustão no passado para fontes petrogênicas nos anos recente e mostrou que dentre os NHPAs avaliados, apenas os compostos 2-nitrofluoranteno, 3-nitrofluoranteno e 7-nitrobenzo(a)antraceno foram observados na região noroeste enquanto 2-nitronaftaleno, 5-nitroacenafteno e 2-nitrofluoreno foram observados ao sul da baía, sugerindo a deposição preferencial de subprodutos de reações atmosféricas. Pela primeira vez foi estimada a massa de HPAs depositada ao longo do tempo no sedimento da Baía de Guanabara e realizado o estudo de NHPAs servindo como base para estudos futuros. / [en] The evaluation of the hydrocarbons continental input by end members is of great importance for a better understanding the regional characteristics in terms of land use and the impact that urbanization has on an estuary. Aliphatic (n-C12 to n-C40) and polycyclic aromatic hydrocarbons (46 PAH) were investigated in suspended particulate matter (SPM) and sediments for eleven months in six major rivers and two canals in the basin of Guanabara Bay. The ΣPAH ranged 27.59 to 11,514 ng L-1 for SPM and of 14.60 to 64,961 ng g-1 for the sediment samples. PAH flow rates of the most contaminated rivers and channels ranging of 0,03 t year-1 for Suruí river to 1,87 t year-1 to Iguaçu river; the contribution to the PAH sediment load of the receiving bay, and the main sources of hydrocarbons were determined. Typology and statistical evaluation demonstrated contribution of distinct sources in different regions and allowed quantification of these contributions. Total flow rate for the five major rivers to the bay north amounts to 3 tons year-1 and responds for 30 percent of the total PAH annual input into the northern area of the Guanabara Bay. Geochronological study shows the historical evolution of the PAH contribution pointing to the transition from the predominance of combustion sources in the past to petrogenic sources in recent years and showed that among the nitrated polycyclic aromatic hydrocarbons (NPAHs) evaluated only, 2-nitrofluoranthene, 3-nitrofluoranthene and 7-nitrobenzo(a)anthracene compounds were observed in the region NW while 2-nitronaphthalene, 5-nitroacenaphthene and 2-fluoranthene were observed south of the bay, suggesting preferential deposition of atmospheric reactions byproducts. For the first time PAH mass deposited in the bay sediments has been estimated and conducted the study about NPAHs shall serve as base for future studies.
312

Geology, Geochemistry, and Geochronology of the Nathrop Volcanics: A Comprehensive Look at the History and Formation of Ruby and Sugarloaf Mountains

Nelson, Jennifer 21 September 2021 (has links)
No description available.
313

Multi-Stage Construction of the Little Cottonwood Stock, Utah: Origin, Intrusion, Venting,Mineralization, and Mass Movement

Jensen, Collin G 01 July 2019 (has links)
The Little Cottonwood stock in central Utah, USA, is a composite granitic pluton that hosts the White Pine porphyry Mo-W deposit towards its northeast margin. The deposit is centered on the smaller White Pine intrusion, and associated igneous units include the Red Pine porphyry, phreatomagmatic pebble dikes, and rhyolite dikes. Twelve new U-Pb zircon LA-ICP-MS ages, for samples from this deposit and in pebble dikes from the nearby East Traverse Mountains, give peak ages of about 30 Ma and 27 Ma for the Little Cottonwood stock and White Pine intrusion, respectively, which correlate well with ages from previous studies. Ages of about 26 Ma were obtained for the previously undated Red Pine porphyry.The ages of the Little Cottonwood stock, White Pine intrusion, and Red Pine porphyry, as well as disparities in whole rock elemental differentiation trends, suggest that these units are magmatically distinct, and are not simply derivatives of one another with varying degrees of differentiation. Quench textures and resorbed quartz in the Red Pine porphyry are evidence that the magma system vented, which probably produced volcanic eruptions and emplacement of pebble dikes nearly synchronously with quartz-sericite-pyrite alteration and Mo-W mineralization. The mineralogy and geochemistry of these units imply that the magmas formed in a subduction-related magmatic arc setting rather than in an extensional basin related to orogenic collapse.Pebble dikes in the East Traverse Mountains 17 km away contain igneous clasts that resemble the units in the White Pine deposit in texture, mineralogy, and in U-Pb zircon ages. This supports other recent studies that suggest that the East Traverse Mountains rested atop the White Pine deposit prior to being displaced in a mega-landslide, and the pebble dikes in both locations are the top and bottom of the same mineralized phreatomagmatic system.The construction of the pluton began with intrusion of the Little Cottonwood stock, then the White Pine and Red Pine magmas. Fluid exsolution from the Red Pine magma accompanied venting, inception of the mineralizing hydrothermal system, and quenching to a porphyritic stock. Pebble dikes intruded into the overlying East Traverse Mountain block, which catastrophically failed millions of years later and was emplaced in its current location.
314

OSL Dating of a Coastal Swift Creek Occupation at Harrison Ring, Bay County, Florida

Rodrigues, Kathleen 11 1900 (has links)
A total of 17 samples were collected for OSL dating from a Swift Creek archaeological site, known as Harrison Ring, which lies on the Tyndall Air force peninsula in northwest Florida. High-resolution vertical sampling conducted at 10 cm intervals from the surface was performed in order to determine the timing of occupation at the site, and to look for patterns in radiation dosimetry and post-depositional disturbance that can compromise OSL results. We find OSL ages determined using both 0.5 mm aliquots and single grains at the archaeological levels (approximately 1751 ± 339 years ago) to be consistent with the timing of early Swift Creek cultures on the Florida Gulf Coast. The ages we report are both consistent with radiocarbon dates taken at Harrison Ring, and those taken at other Swift Creek sites on the Gulf Coast. In general, we find OSL equivalent doses that show high overdispersion and skewness that we attribute to beta-microdosimetry and possible bioturbation in the profiles. We also present results from a test with a novel dosimetric technique employing Al2O3:C chips. By using Al2O3:C dosimeters, we find that large variability in beta dose rates exist in the sedimentary profile at Harrison Ring. By testing a combination of dosimetric techniques in a site with a well-constrained age, we find that the best agreement with independent age control exists when calculating ages using a beta dose rate from NAA/DNC and gamma dose rate from Al2O3:C dosimetry. / Thesis / Master of Science (MSc)
315

Utilizing a tectonic framework to constrain the mineral system and remobilization in the Kiruna mining district, Sweden

Logan, Leslie January 2022 (has links)
The Kiruna mining district, located in the northern Norrbotten ore province, Sweden, is a geologically and economically important area, being the type-locality for Kiruna iron oxide-apatite (IOA) deposits and also host to a variety of other deposits including syngenetic stratiform exhalative Cu-(Fe-Zn) (Viscaria, Eastern Pahtohavare), epigenetic stratabound Cu ± Au (Pahtohavare), and iron oxide-copper-gold (IOCG, Rakkurijärvi) deposits. However, the timing of IOA versus IOCG within the tectonic evolution is in question based on structural investigations showing Cu- and Fe-sulfides occur in late-orogenic structures. Here we use an established tectonic framework to constrain mineral systems (tectonic/thermal drives, metal and ligand sources, fluid pathways, traps, remobilization mechanisms) related to the early and late phases of the Svecokarelian orogeny in the Kiruna mining district. U-Pb zircon geochronology of intrusions in the district indicates a thermal drive was present during the early phase of the Svecokarelian orogeny from ca. 1920-1865 Ma, however remains enigmatic for the late Svecokarelian orogeny. Zircon grains from a magnetite-ilmenite gabbro yielded an age of 1881 ± 8 Ma, coeval with the Kiirunavaara IOA deposit and suggested to represent an important generation of mafic magmatism related to the ore. Lithogeochemistry of early bimodal Svecokarelian intrusions in the district indicates a within-plate to active continental margin environment with a volcanic arc affinity, pointing to a back arc environment. Epsilon Ndi and 87Sr/86Sri values calculated from the U-Pb ages for the igneous intrusions were compared to samples of ore-related alteration from epigenetic Pahtohavare and Rakkurijärvi deposits, district greenstone, and Archean samples. Results show that each deposit sourced Sr and Nd from a variety of rocks suggesting broad fluid transport. Each deposit has a distinct Sr mixing trend suggesting they formed from different ore-forming fluids and pathways. This is supported by new structural data that constrain the folding event and the ore-related quartz-carbonate-sulfide veins in the Pahtohavare area to a late orogenic timing, compared to the early orogenic timing of Rakkurijärvi. Sulfide trace element and sulfur isotope data from structurally constrained ores within the tectonic framework also record distinct characteristics between early and late deposits. However, remobilization of early Pahtohavare sulfides associated to an increase in Co content and heavier sulfur isotope compositions is recorded. The results of this study illustrate that using a structural framework approach to constrain the ingredients of mineral systems is a powerful strategy for interpreting ore deposit processes in tectonically complex terrains where both IOA and IOCG deposits occur.
316

STRUCTURAL ARCHITECTURE AND TECTONIC EVOLUTION OF THE ULUKISLA SEDIMENTARY BASIN IN SOUTH-CENTRAL TURKEY

Engin, Can 17 December 2013 (has links)
No description available.
317

Analysis of Model-driven vs. Data-driven Approaches to Engaging Student Learning in Introductory Geoscience Laboratories

Lukes, Laura 13 May 2004 (has links)
Increasingly, teachers are encouraged to use data resources in their classrooms, which are becoming more widely available on the web through organizations such as Digital Library for Earth System Education, National Science Digital Library, Project Kaleidoscope, and the National Science Teachers Association. As "real" data becomes readily accessible, studies are needed to assess and describe how to effectively use data to convey both content material and the nature of scientific inquiry and discovery. In this study, we created two introductory undergraduate physical geology lab modules for calculating plate motion. One engages students with a model-driven approach using contrived data. Students are taught a descriptive model and work with a set of contrived data that supports the model. The other lab exercise uses a data-driven approach with real data. Students are given the real data and are asked to make sense of it. They must use the data to create a descriptive model. Student content knowledge and understanding of the nature of science were assessed in a pretest-posttest experimental design using a survey containing 11 Likert-like scale questions covering the nature of science and 9 modified true/false format questions covering content knowledge. Survey results indicated that students gained content knowledge and increased their understanding of the nature of science with both approaches. Lab observations and written interviews indicate these gains resulted from students experiencing different pedagogical approaches used in each of the two labs. / Master of Science
318

Fault Behavior and Kinematic Evolution of the Eastern California Shear Zone

Garvue, Max Martin 07 October 2024 (has links)
The geomorphic expression, sedimentation, and near-field deformation of a fault system may be characterized to obtain an understanding of its kinematic evolution and potential seismic hazards. The dynamics and deformation history of the Eastern California shear zone (ECSZ), a wide and complex network of right-lateral strike-slip faults, is not well understood, despite hosting three large (>Mw 7.0) earthquake ruptures in recent decades. The low-net slip faults of the ECSZ (each with <10 km) offer a unique opportunity to assess strain distribution in a developing, kinematically immature strike-slip system. To do so, I conducted field-based investigations of these faults within the Mojave Block of the ECSZ. First, I investigated the morphology, structure, and controls of restraining bend growth along the numerous faults of the ECSZ via field mapping and numerical deformational modeling. I found that the ECSZ restraining bends are small (kilometer-scale), exhibit high-angle, doubly fault-bound geometries with positive flower structures, and have self-similar morphologies characterized by a "whaleback" longitudinal profile and an arrowhead shape in map view. Gradual changes in form with increasing restraining bend size suggest a common growth mechanism influenced more by the kinematics of local fault geometries than by the fault's obliquity to plate motion. Modeling results indicate that concentrated shear strain at single transpressional bends facilitates the development of new secondary faults with cumulative strain as a mechanism to accommodate horizontal shortening via uplift between the faults. The ECSZ restraining bends contribute minimally to regional contractional strain due to their small size, steep fault angles, and shallow crustal penetration (< 5 km), which also suggests that they are unlikely to obstruct large earthquake ruptures. Second, I conducted a spatiotemporal slip rate analysis of the Calico fault with new mapping and geochronology of offset alluvial fans from North Hidalgo Mountain. From this work I obtain several findings. 1) The slip rate along North Hidalgo Mountain ranges from 1.5-2.1 mm/yr in the Holocene and 0.8-2.0 mm/yr in the late Pleistocene. 2) The similarity in slip rates between North Hidalgo Mountain and the Rodman Mountains suggests that this 38 km stretch is a kinematically coherent fault segment with a relatively steady slip rate of 1.7 +0.4/-0.3 mm/yr over the past 60 ka. Faster rates reported from Newberry Springs suggest either a significant increase in slip rate from the Rodman Mountains to Newberry Springs or temporal variations in slip rate. 3) The new rates support previous work which showed the central section of the Calico fault has the highest slip rate in the Mojave Block. However, it does not resolve the discrepancy between ECSZ geodetic and geologic slip rates, implying that transient changes in slip rate, or the contribution of off-fault deformation or other structures may be required. Additionally, the lack of geological slip rate data might contribute to this discrepancy if significant spatial and temporal variations exist on other ECSZ faults. / Doctor of Philosophy / The topography and geology within a fault system may be studied to understand tectonic plate motion over time and assess earthquake hazards. The Eastern California shear zone is a complex network of strike-slip faults within the Mojave Desert, which has hosted three large earthquakes (>Mw 7.0) in recent decades. Despite this significant seismic activity, the mechanisms of motion across the numerous faults in the Eastern California shear zone remain poorly understood. The individual faults have accumulated relatively little strike-slip motion since their inception (less than 10 kilometers), offering a unique opportunity to investigate the early-stage kinematics and seismic hazards of a strike-slip fault system. To do so, I conducted field-based investigations of the faults within the Eastern California shear zone. First, I investigated the early evolution and controls of compressional strike-slip fault bends in the Eastern California shear zone. From mapping and numerical modeling, I characterized the shape, structure, and uplift of numerous small compressional bends dispersed across the faults. From these efforts, I found that uplifted crust in the fault bends exhibit self-similar forms with shallow crustal depths (<5 km). Small changes in the shape of these structures occur with increasing size indicating a predictable pattern of growth with increasing cumulative slip that appears to be partially controlled by local fault conditions. Numerical modeling of simple compressional fault bends indicate that shear strain concentrates at bend corners, which may facilitate the growth of a new fault that more efficiently accommodates contraction in the bend via uplift of the crust between the two faults. The compressional strike-slip fault bends in the Eastern California shear zone are too small to significantly impact regional contractional strain and are therefore also unlikely to impede large earthquake ruptures. Second, I studied the slip rate (or rate at which the fault moves) of the Calico fault via new mapping and age data of displaced alluvial fans. I found that 1) the Calico fault at North Hidalgo Mountain slips at a rate of 0.8-2.0 mm/yr since ~70,000 years ago. 2) The slip rates from North Hidalgo Mountain and the Rodman Mountains are similar, indicating that the 38 kilometers between them behaves consistently, with a steady rate of ~1.7 mm/yr over the last ~60,000 years. However, faster slip rates reported at Newberry Springs suggest either a significant increase in slip rate from the Rodman Mountains to Newberry Springs or that it varies over time. 3) These findings confirm that the central Calico fault has the fastest slip rate in the Mojave Block but does not reconcile regional differences between rates from geodetic and geological measurements. The difference between the slip rates measured by geodetic methods and those from geological studies in the Eastern California shear zone suggests that there could be temporary changes in slip rates or that deformation might be occurring in areas away from the main fault. Also, the lack of geological slip rate data might contribute to this discrepancy if significant spatial and temporal variations exist on other Eastern California shear zone faults.
319

An integrated metamorphic and geochronological study of the south-eastern Tibetan plateau

Weller, Owen M. January 2014 (has links)
The Tibetan plateau is a vast, elevated region located in central Asia, which is underlain by the thickest crust known on Earth (up to 90 km). An outstanding question of importance to many fields within geology is how and why did the Tibetan plateau form? Models attribute the growth of the plateau to a consequence of the ongoing India-Asia continental collision, but differ in the details of how the crustal thickening was accommodated: was it by underplating of Indian lower crust or by homogeneous shortening? High-grade metamorphic rocks sampled from the region potentially hold the key to answering this question, as they contain a record of past tectonic events that can discriminate between the various proposed models. This record can be decoded by integrating field, thermobarometric and geochronological techniques, to elucidate a detailed thermotectonic understanding of a region. This methodology was applied to three case studies, each of which targeted rare tectonic windows into the mid-crust of the plateau. These regions comprise Danba in eastern Tibet, Basong Tso in south-eastern Tibet and the Western Nyainqentanglha in southern Tibet. Each case study documents previously unreported metamorphic events that have allowed original interpretations to be made regarding tectonic evolution: in Danba, all metamorphism is shown to be early Jurassic; in Basong Tso, two metamorphic belts are documented that reveal a late Triassic--early Jurassic orogenic event; and in the Western Nyainqengtanglha, Cretaceous--Neogene magmatism is shown to overprint late Triassic metamorphism. Integration of the results has enabled commentary on the large scale evolution of the Tibetan plateau from the Permian until the present day, and even hinted at its future. The results indicate that the closure of the Paleotethys played an important role in the construction of the Tibetan plateau, and suggest that homogeneous crustal thickening is not a viable model for the documented exposure levels.
320

Metamorphic Evolution of the Tjeliken Garnet-Phengite Gneiss, Northern Jämtland, Swedish Caledonides / Den metamorfa utvecklingen av Tjelikensgranat- och fengitförande gnejs, norra Jämtland, svenska Kaledoniderna

Andersson, Barbro January 2016 (has links)
The Tjeliken Mountain in northern Jämtland, central Scandinavian Caledonides is by most authors considered to belong to the Lower Seve Nappe Complex (SNC). However, recently P-T conditions similar to the Middle Seve have been constrained for the eclogite at the top of the mountain, revitalizing the tectonic debate about Tjeliken. Also the timing of high-pressure metamorphism is debated. Two earlier studies of the eclogite yield ages between 464 Ma and 446 Ma. This study focuses on the garnet-phengite gneiss hosting the eclogite. By construction of P-T conditions and dating the two discrepancies above are investigated. U/Pb zircon dating by secondary ion mass spectrometry technique (SIMS) targeted on metamorphic rims yield a concordia age of 460.2 ± 2.7 Ma corresponding well to earlier c. 463.7 ± 8.9 Ma Sm/Nd dating of the eclogite. The inferred peak mineral assemblage of the gneiss is garnet + phengite + quartz + K-feldspar + titanite ± H2O. Thermodynamic modelling reveal that garnet cores equilibrated within 1.9 - 2.6 GPa and 600 - 700 oC. Fe2+-Mg garnet-phengite thermometry involving garnet rims yields temperatures of c. 650 - 715 oC revealing relatively similar temperatures during growth of garnet core and rim, respectively. Garnet chemistry is characterised by oscillatory zoning with an antithetic pattern of Ca and Fe. The former decreases from core to rim, whereas the latter increases. The opposite trend is observed in epidote-group minerals suggesting exchange between the two minerals during garnet growth. Skeletal textures and atoll textures together with observed chemical pattern may indicate multiple garnet growth episodes. The results of the study points toward similar P-T history of the Tjeliken eclogite and gneiss in favour of the interpretation of considering the whole Tjeliken to belong to the Lower Seve. The obtained U/Pb age support other age constraints in the area suggesting high-pressure metamorphism at c. 460 Ma related to a subduction event affecting the central Scandinavian Caledonides at c. 460 - 450 Ma. / Den skandinaviska fjällkedjan, vetenskapligt benämnd de skandinaviska Kaledoniderna, har bildats på samma sätt som Himalaya och har därför liknande uppbyggnad. Från början tros fjällen ha varit av samma storlek som Himalayas berg. Deras ålder på cirka 400 miljoner år gör dock att miljontals års påverkan från vatten och vind har eroderat ner dem till dagens betydligt lägre fjäll. Den bergsyta vi ser idag utgör därför vad som från början var fjällkedjans kärna. Därför utgör de skandinaviska Kaledoniderna en unik möjlighet att studera en bergskedjas inre, vilket kan ge viktig information om bergkedjebildande processer.Forskning har visat att fjällkedjan bildades då Japetushavet mellan kontinenterna Baltika och Laurentia stängdes. Detta resulterade till slut i en kollision mellan de två kontinenterna där stora flak (skollor) av mellanliggande havsbotten och kontinentalskorpa transporterades hundratals kilometer upp på Baltika. Skollorna utgör idag våra fjäll. Känt är också att innan kontinentalkollisionen så kolliderade Baltika med öar i havet, varvid dess kontinentalkant pressades djupt ner under jordskorpan, ända ner i manteln. Bevis för detta återfinns idag i Sevesskollan ibland annat de jämtländska fjällen i form av högtrycksbergarter. Dessa har bildats under de höga tryck och temperaturer som råder på stora djup i jordens inre. Genom att studera högtrycksbergarter kan man förstå fjällkedjans bildande. Fjället Tjeliken i norra Jämtland är en av de idag kända fyndplatserna av högtrycksbergarter. Dess topp består av bergarten eklogit och dess lägre delar av gnejs, samt kvarts. Tidigare studier av eklogiten visar att den har bildats vid tryck och temperatur på cirka 2.6 GPa och 700 °C, vilket motsvarar att den varit nedpressad cirka 80 km under jordytan. Den exakta tidpunkten då detta skedde har inte kunnat fastställas då olika dateringsmetoder gett olika resultat mellan cirka 464 till 446 miljoner år sedan. I denna studie studeras tryck- och temperaturförhållanden för gnejsen som jämförelse till eklogiten, för att kunna fastställa om de båda bergarterna har genomgått samma bildningsprocesser. En ny datering genomförs också för att bättre kunna fastställa tidpunkten för högtrycksfasen.Datering baserat på radioaktivt sönderfall av uran till bly i mineralet zirkon visar att högtrycksfasen inträffade för cirka 460 miljoner år sedan. Modellering baserat på termodynamiska principer visar att kärnorna i mineralet granat bildades inom tryck- och temperaturområdet 1.9–2.6 GPa och c. 680-700 °C. En komplex kemisk zonering av granaterna indikerar att de möjligen bildades under flera tillväxtfaser, vilka inom ramen för denna studie inte kunnat modelleras, då mer avancerade metoder krävs. Denna studie visar dock att eklogiten och gnejsen sannolikt delar en gemensam tryck- och temperaturhistoria, vilken är relaterad till den djupa nedpressningen av Baltikas kontinentalkant under sen ordovicium. Dateringen stödjer även övriga åldersdateringar i området av högtrycksfasen.

Page generated in 0.0871 seconds