121 |
Estudo investigativo clínico, laboratorial, patológico, morfométrico, molecular de 10 pacientes com pseudohermafroditismo masculino disgenético (ADS 46, XY) / Clinical, pathological and morphometric study of ten male disgenetic pseudohermaphroditism (DSD 46,XY)Dulce Rondina Guedes 15 January 2010 (has links)
O Pseudohermafroditismo masculino disgenético (Anomalia da diferenciação sexual 46,XY ADS 46,XY) é definido como ambigüidade genital num paciente com testículos e/ou cariótipo 46,XY com uma das seguintes características: alteração histológica testicular, ausência ou hipoplasia das células de Leydig em tecido previamente estimulado com gonadotrofina coriônica humana(hCG), falta de resposta de testosterona ao estímulo com hCG sem acúmulo de precursores, ausência de células germinativas, presença de derivados müllerianos indicando inadequada produção do hormônio antiMülleriano (HAM) ou resistência de seus receptores. Esse estudo apresenta uma avaliação clínica, laboratorial, anátomopatológica, morfométrica e molecular de 10 pacientes com ADS 46,XY; dois pacientes apresentaram mutação no SF1 (fator esteroidogênico 1), duas mutações no domínio hingee uma terceira produziu um stop códon na posição 404; três pacientes com deleção da cópia do DAZ2. A morfometria testicular mostrou todos os diâmetros tubulares médios (DTM) moderado a gravemente diminuídos e os índices de fertilidade tubular leve a moderadamente diminuídos. Devido à dificuldade do diagnóstico diferencial e etiológico, o estudo morfométrico e molecular deve sempre acompanhar esses casos de ADS 46,XY. / The dysgenetic male pseudohermaphroditism 46,XY ; disorders of sex development (DSD 46,XY) is defined as sexual ambiguity in patients with testis and/or 46,XY karyotype and one of the characteristics: hystologic alteration of the testis; absence or hypoplasia of Leydig cells; a decreased testosterone response to human chorionic gonadotropin stimulation without accumulation of testosterone precursors; absent germ cells; presence of müllerian duct derivatives showing inappropriate production of antimüllerian hormone (AMH) or resistance to its receptors. This study shows the clinic, laboratory, histologic, morphometric and molecular evaluation of 10 patients with DSD 46,XY; two patients showed mutations in the SF1 gene (steroidogenic factor-1); two in the hinge domain and one stop codon at the position 404 of the protein; three patients exhibited deletion of DAZ2. The testis morphometry showed reduction: marked to severe of all mean tubular diameter (MTD) while the reduction of the tubular fertility index (TFI) were slight to marked. Due to difficulties establishing the differential diagnosis and the etiology, the morphometric and molecular evaluation must be always done in the patients with DSD 46,XY.
|
122 |
Human Spermatogenesis : Differential Gene Expression And RegulationSanyal, Amartya 04 1900 (has links)
Spermatogenesis is a complex process of male germ cell development in which the diploid spermatogonia undergo series of mitotic divisions and differentiation steps culminating into the preleptotene spermatocytes which then enter into the meiotic prophase following a single replication cycle. This phase is characterized by meiotic recombination and is followed by reduction division resulting in haploid round spermatids. These cells then undergo extensive morphological and nuclear changes to form a unique cell, spermatozoa. This entire germ cell differentiation process occurs in a unique environment present inside the seminiferous tubules which is created by the Sertoli cells, the somatic cells in the tubules by forming junctions with each other thus providing unique milieu to the developing germ cells. Within the tubule, the germ cells are also arranged in an orderly manner called stages of spermatogenesis indicating a complex mechanism of germ cell differentiation.
This complex differentiation process is a consequence of developmentally and precisely regulated differential gene expression (Eddy, 2002). Unraveling the molecular mechanisms involved in the male germ cell development is an uphill task due to the complexity of the cyto-architecture existing in the tubules and further complicated by unavailability of established germ cell lines and lack of cell culture systems that facilitate the germ cell differentiation in vitro. Comparative gene expression analysis of spermatogenesis in nematodes, flies and rodents revealed highly conserved transcriptomes and have provided some insights into its regulation (Schlecht and Primig, 2003). However, these data fail to represent the genetic and biological complexity of human spermatogenesis. In the present study, an attempt has been made to identify the genes that are differentially expressed in human tetraploid and haploid germ cells and to investigate the mechanism of regulation of the genes expressed in the post-meiotic germ cells.
To identify the cell type specific genes, expression profiling of the human tetraploid and haploid germ cells was carried out using cDNA microarray. These cells were purified by centrifugal elutriation (Meistrich et al., 1981; Shetty et al., 1996) from the human testicular tissues obtained from the patients undergoing orchidectomy as treatment for prostate cancer. Purity of the enriched population of the germ cells was ascertained by DNA flow cytometry and by RT-PCR analysis using the known cell-specific markers and ruling out contamination of the somatic cells such as the Sertoli cells and the Leydig cells. Microarray experiments were carried out with the RNA isolated from each cell type and labeling the cDNA with Cy3/Cy5-dUTP and hybridizing to the human 19K array chip (University Health Network, Toronto, Canada) containing 19,200 ESTs. Two independent hybridizations were carried out using the germ cells isolated from two individuals and the microarray data were analyzed using Avadis 3.1 software (Strand Life Sciences, India). Analysis of the microarray data following normalization revealed that 723 transcripts showed higher expression in the meiotic cells whereas 459 transcripts showed higher expression in the post-meiotic germ cells. Microarray data were validated further by RT-PCR analysis of some of the differentially regulated genes. The DAVID analysis (Database for Annotation, Visualization and Integrated Discovery; http://david.abcc.ncifcrf.gov/) of these genes revealed that many genes associated with diverse functions and pathways appeared to be differentially expressed in both cell types.
It is known that many biological systems exhibit distinct temporal gene expression profiles during different processes related to cell cycle, stress response and differentiation. Similarly, there are sets of genes, which respond to specific stimuli, appear to be synchronized in their expression. Such ‘synexpressed’ genes have been shown to be regulated by common transcription regulatory processes and have similar upstream transcription factor binding sites (Niehrs and Pollet, 1999). And therefore, having identified genes that appeared to be differentially expressed in the haploid and the tetraploid germ cells, attempt was made to analyze transcription factor binding sites in the promoter of those genes.
In silico promoter analysis of several genes showing higher post-meiotic expression was carried out in order to identify the common regulatory motifs. Analysis of the annotated promoters (available from Eukaryotic Promoter Database; http://www.epd.isb-sib.ch/) of about forty genes highly expressed in the post-meiotic germ cells using TFSEARCH program (http://www.cbrc.jp/ research/db/TFSEARCH.html) confirmed that many genes had common transcription factor binding sites. Interestingly, almost all of the analyzed genes harbored SRY (Sex determining Region in Y)/SOX (SRY-box containing) binding motifs. In addition, the promoters of genes such as Protamine 1 and 2, Transition protein 1 and 2, A kinase (PRKA) anchor protein 4 that are known to be expressed post-meiotically, also harbor SRY binding sites suggesting that SRY may be one of the key regulators of the post-meiotic gene expression.
SRY is a HMG-box containing member of Sox-family of architectural transcription factors. SRY is encoded by the Y chromosome and was first discovered as the testis-determining factor in mammals (Koopman et al., 1991). SRY HMG-box is eighty amino acids conserved motif that binds to the minor groove of the DNA in a sequence-dependent manner resulting in its bending and thus regulating the gene expression. The RT-PCR analysis of the human haploid and tetraploid germ cells showed very high expression of SRY in the post-meiotic cells further suggesting key role of SRY in the post-meiotic gene regulation.
Role of SRY in the post-meiotic gene expression was investigated by determining the effect of SRY on human Protamine 1 (PRM1) promoter, a gene known to be exclusively expressed in the round spermatids and as indicated above, harbors many SRY binding sites in its promoter. SRY cDNA was cloned into the mammalian expression vector, pcDNA3.1 and the PRM1 promoter was cloned into the promoter-less pGL3 Basic vector upstream of the Luciferase reporter gene. Co-transfection of both constructs led to up-regulation of PRM1 promoter activity in both HeLa cells and LNCaP cells in a dose-dependent manner clearly demonstrating the role of SRY in PRM1 gene expression. Sequential deletion of the SRY binding sites in the PRM1 promoter led to the identification of the critical SRY binding motif important for SRY-mediated upregulation of PRM1 gene expression. This was confirmed by demonstrating in vitro binding of SRY to its critical binding site in the PRM1 promoter by gel shift assay using the nuclear extract of the HeLa cells transfected with FLAG-tagged SRY.
The human SRY is an atypical transcription factor that binds DNA through its HMG, but unlike the mouse Sry and other Sox proteins, lacks the trans-activation domain and therefore requires other factors for its actions. Recently, the glutamine-rich, zinc-finger containing transactivator, Specificity protein 1 (Sp1) has been identified as one such interacting partner (Wissmuller et al., 2006). RT-PCR analysis showed that human SP1 is highly expressed in the haploid germ cells and could up-regulate PRM1 expression which harbors two SP1 binding sites in its promoter. When co-transfected, SRY and SP1 up-regulated PRM1 promoter in co-operative manner suggesting that SP1 may act in coordination with SRY in regulating PRM1. All these data taken together clearly signifies a critical role of SRY in post-meiotic germ cell gene expression.
Recent reports suggest that SRY is also expressed in the adult human brain and prostate. However, its role in these tissues is not clearly understood. The Y chromosome has been shown to be frequently lost in prostate cancer and has also been shown to suppress the tumorigenicity of the PC-3 prostate cancer cells suggesting that the Y chromosome encoded genes may be involved in tumor suppression. SRY can physically interact with the androgen receptor (AR) and thereby interfere in its downstream signaling (Yuan et al., 2001). Since the prostate tumors show initial androgen-dependency, it was interesting to look at the role of SRY in the prostate cancer. To decipher the effect of SRY on the androgen-responsive LNCaP cells, stable clones of LNCaP expressing human SRY were generated. These clones showed significant decrease in growth in response to 5α-dihydrotestosterone (DHT) compared to the vector transfected or the parental LNCaP cells. In the soft agar colony formation assay, the SRY expressing LNCaP formed smaller colonies as compared to the controls in presence of DHT. Preliminary experiments in male athymic nude mice demonstrated that one of the SRY expressing clones showed reduced tumor growth compared to control cells suggesting that SRY may play a role in prostate cancer progression by decreasing the sensitivity to DHT.
To summarize, the present study has identified several genes differentially expressed in the human haploid and tetraploid germ cells and further showed that SRY may be one of the key regulators of the post-meiotic gene expression.
|
123 |
The function of the germline rna helicase (GLH) genes in caenorhabditis elegansKuznicki, Kathleen January 2000 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 107-112). Also available on the Internet.
|
124 |
Radiation-induced epigenome deregulation in the male germlineTamminga, Jan, University of Lethbridge. Faculty of Arts and Science January 2008 (has links)
Approximately 45% of men will develop cancer during their lifetime; some of which will be of reproductive age (Canadian Cancer Society, 2008). Current advances in treatment regimens such as radiotherapy have significantly lowered cancer-related mortality rates; however, one major quality-of-life issue in cancer survivors is the ability to produce healthy offspring. Exposure to ionizing radiation (IR) leads to genomic instability in the germline, and further to transgeneration genome instability in unexposed offspring of preconceptionally exposed parents. The results presented in this thesis define, in part, the molecular consequences of direct and indirect irradiation for the male germline. Direct exposure results in a significant accumulation of DNA damage, altered levels of global DNA methylation and microRNAome dysregulation of testis tissue. Localized cranial irradiation results in a significant accumulation of unrepaired DNA lesions and loss of global DNA methylation in the rodent (rat) germline. Biological consequences of the changes observed are discussed. / xii, 121 leaves : ill. ; 29 cm.
|
125 |
Roles Of A Nuclear Hormone Receptor During C. Elegans Germline DevelopmentGracida Canales, Xicotencatl 18 April 2012 (has links) (PDF)
Two fundamental problems of developmental biology are the understanding of cell fate specification, and the integration of broader environmental contexts into developmental programs. While cell fate specification is largely achieved by differential gene expression programs, environmental integration relies on cellular receptors. A predominant mechanism to mediate both processes utilizes nuclear hormone receptors (NHRs). However, it remains unclear how diverse the NHR’s modes of action are in regulating gene expression. This thesis utilizes the development of the C. elegans germ line as a model system to study a novel link that integrates cell fate specification and the nutritional environment. In C. elegans, germ cell fate specification is chiefly controlled by posttranscriptional mechanisms. Furthermore, overall germline development is influenced by the animal’s nutritional status. However, it remains unknown whether germline posttranscriptional control mechanisms and germ cell fate decisions are linked to nutrition, and if so, how this link may operate in molecular terms.
This thesis reports the characterization of the nuclear hormone receptor nhr-114 and its crucial functions for germline development and fertility. Depending on the tissue of expression, nhr-114 regulates overall germline organization, germ cell proliferation and oogenesis. Importantly, all aspects of nhr-114 function are linked to diet. Feeding nhr-114 mutants with a specific E. coli strain, or a tryptophan-supplemented diet significantly reduces germline development defects and sterility. Based on mutant analysis, nhr-114 was found to have overlapping functions with gld-4 cytoplasmic poly(A) polymerase (cytoPAP). This thesis provides evidence that nhr-114 may function in germ cells in a posttranscriptional manner linked to gld-4 cytoPAP. Further evidence shows that NHR-114 interacts with GLD-4 cytoPAP. Together these findings suggest that NHR-114 may control gene expression by transcriptional and posttranscriptional mechanisms in a tissue-specific manner. This thesis proposes that NHR-114 ensures the input of tryptophan to allow germline development; and that this function integrates nutritional information into the germline gene expression programs according to the environment of the worm. Therefore, NHR-114 potentially provides a direct molecular link to how a developmental program is coordinated with the nutritional status of an animal.
|
126 |
Regulation of Transcription of Mouse Immunoglobulin Germ-Line γ1 RNA: Structural Characterization of Germ-Line γ1 RNA and Molecular Analysis of the Promoter: A DissertationXu, Minzhen 01 May 1991 (has links)
The antibody class switch is achieved by DNA recombination between the sequences called switch (S) regions located 5' to immunoglobulin (Ig) heavy chain constant (CH) region genes. This process can be induced in cultured B cells by polyclonal stimulation and switching can be directed to specific antibody classes by certain lymphokines. These stimuli may regulate the accessibility of CH genes and their S regions to a recombinase as indicated by hypomethylation and transcriptional activity. For example, RNAs transcribed from specific unrearranged (germ-line) CH genes are induced prior to switching under conditions that promote subsequent switching to these same CH genes. The function of transcription of these germ-line CH genes is unknown. How stimuli regulate the accessibility of CHgenes is also unclear.
I report in this dissertation the structure of the RNA transcribed from the unrearranged Cγ1 gene in mouse spleen cells treated with LPS plus a HeLa cell supernatant containing recombinant interleukin 4 (rIL-4). I will also show that an 150-bp region upstream of the first initiation site of germ-line γ1 RNA contains promoter and enhancer elements responsible for basal level expression and inducibility by phorbol 12-myristate 13-acetate (PMA) and synergy with IL-4 in an IgM+ B cell line, L10A6.2, and an IgG2a+B cell line, A20.3.
The germ-line γ1 RNA is initiated at multiple start sites 5' to the tandem repeats of the γ1 switch (Sγ1) region. As is true for analogous RNAs transcribed from other unrearranged genes, the germ-line γ1 RNA has an I exon transcribed from the region 5' to the Sγ1 region.. The Iγ1 exon is spliced at a unique site to the Cγ1 gene. The germ-line γ1 RNA has an open-reading frame (ORF) that potentially encodes a small protein 48 amino acids in length.
Elements located within the 150 bp region 5' to the first initiation site of germ-line γ1 RNA are necessary and sufficient to confer inducibility by PMA and synergy with IL-4 to a minimal thymidine kinase (TK) promoter in L10A6.2 cells but are not sufficient to confer this inducibility in A20.3 cells. Linker-scanning mutations demonstrated that these multiple elements function in a mutually dependent manner as indicated by the fact that mutation of any single element will decrease constitutive expression and inducibility by PMA and PMA plus IL-4.
This 150-bp region contains several consensus sequences that bind to known or putative transcription factors, including a C/EBP binding site/IL-4 response element (in the promoter for Ia Aαkgene), four CACCC boxes, a PU box, a TGFβ inhibitory element (TIE), an interferon-αβ response element (αβIRE), and an AP-3 site.
My results begin to provide a description of the mechanism of regulation of the accessibility of unrearranged germ-line Sγ1-Cγ1 gene. By activating the germ-line γ1 promoter, IL-4 induces transcription of germ-line γ1 RNA, thereby inducing accessibility of the Sγ1-Cγ1 gene. By inhibiting expression of the germ-line γ1 promoter, IFNγ and TGFβ down-regulate transcription of germ-line γ1 RNA, thus reducing the accessibility of the Sγ1-Cγ1 gene. My results also suggest that signaling via the antigen receptor on B cells may be involved in induction of switch to IgG1. Furthermore, this is the first case reported in which multiple functionally interdependent elements are needed to respond to PMA.
|
127 |
Avaliacao dos efeitos toxicos e mutagenicos de amostras ambientais do Rio Tiete na regiao de Suzano em Biomphalaria glabrata (SAY, 1818) / Evaluation of toxic and mutagenic effects of environmental samples of Tietê River in the region of Suzano in Biomphalaria glabrata (Say, 1818)TALLARICO, LENITA de F. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:26:23Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:24Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
128 |
Avaliacao dos efeitos toxicos e mutagenicos de amostras ambientais do Rio Tiete na regiao de Suzano em Biomphalaria glabrata (SAY, 1818) / Evaluation of toxic and mutagenic effects of environmental samples of Tietê River in the region of Suzano in Biomphalaria glabrata (Say, 1818)TALLARICO, LENITA de F. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:26:23Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:24Z (GMT). No. of bitstreams: 0 / Na região de Suzano, uma grande quantidade de resíduos industriais e domésticos é despejada no Rio Tietê. Essa região merece atenção especial devido a sua proximidade com a nascente do rio. O tratamento biológico de efluentes é realizado pela ETE Suzano (Estação de Tratamento de Esgotos de Suzano) da SABESP (Companhia de Saneamento Básico do Estado de São Paulo). O objetivo do trabalho foi avaliar o potencial impacto de efluentes lançados no Rio Tietê por meio da análise de toxicidade aguda e da mutagenicidade em caramujos de água doce Biomphalaria glabrata. Ensaios de toxicidade aguda foram realizados em espécimes adultos e embriões nos estádios de blástula, gástrula, trocófora e véliger. Os resultados obtidos no ensaio de toxicidade aguda foram utilizados para determinar a faixa de concentração para o teste do letal dominante, que foi empregado para a detecção de mutações em células germinativas. Caramujos selvagens adultos, após o final da exposição nas soluções, foram cruzados com albinos não expostos em diferentes intervalos para avaliar os efeitos nas células germinativas em diferentes estágios da espermatogênese – 10, 17, 24, 31, 38, 45, 52 e 59 dias, para isso foram analisadas as progênies heterozigotas dos albinos quanto à freqüência de malformações. As amostras foram coletadas e transportadas pela SABESP. Os seguintes pontos foram escolhidos: P0 - Barragem Ponte Nova, P1 – 200 metros a montante da estação, P2 – o afluente da estação, P3 – o efluente tratado da estação antes do lançamento no rio e P4 – 200 metros após o lançamento do efluente no rio. Foram realizadas quatro amostragens: duas campanhas no inverno (C1 – agosto de 2006 e C3 – agosto de 2007) e duas no verão (C2 – fevereiro de 2007 e C4 – março de 2008). Nas amostras de agosto de 2006 e agosto de 2007, o afluente foi tóxico para os embriões e adultos. Os resultados foram semelhantes, com valores de CL50 de 43,04%, 41,56%, 57,16% e 60,06% para os embriões nos estádios de blástula, gástrula, trocófora e véliger, respectivamente, e 100% para caramujos adultos na primeira amostra e 48,24%, 43,71%, 55,43% e 62,64% para os embriões nos estádios de 8 blástula, gástrula, trocófora e véliger, respectivamente, e 84,16% para caramujos adultos, em agosto de 2007. A amostra de fevereiro de 2007 foi tóxica apenas para caramujos adultos, com valor de CL50 de 41,25% e a amostra de março de 2008 não foi tóxica para os caramujos adultos e embriões. Em todas as amostragens, após a descarga no rio, os efluentes tratados não foram tóxicos para adultos e embriões de B. glabrata. Não houve mutagenicidade em todas as amostras. Neste trabalho, o potencial impacto de descargas de efluentes ao biota do Rio Tietê foi observado. Foram realizadas comparações entre os ensaios normatizados de toxicidade aguda com Daphnia similis e os ensaios de toxicidade aguda com B. glabrata. Os resultados mostraram que houve resposta similar entre B. glabrata e D. similis. As novas metodologias propostas para o monitoramento da qualidade das águas: o ensaio de toxicidade aguda em adultos e embriões e o teste do letal dominante em Biomphalaria glabrata para a avaliação da mutagenicidade in vivo – mostraram ser eficientes na avaliação de amostras de água e podem ser integrados na bateria de testes já validados e empregados para o controle de poluição ambiental. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
129 |
Découverte de nouvelles protéines impliquées dans la spermatogenèse chez le rat / Discovery of novel proteins involved in spermatogenesis in the ratChocu, Sophie 30 September 2014 (has links)
La spermatogenèse chez les mammifères est une fonction biologique complexe incluant des processus de prolifération cellulaire, de méiose et de différenciation uniques visant à la production des gamètes mâles au sein du testicule. Si l’épithélium séminifère est bien décrit sur le plan de son organisation et de la morphologie des cellules qui le composent, les processus par lesquels les cellules germinales diploïdes indifférenciées entrent en méiose pour donner ensuite des cellules haploïdes subissant par la suite de nombreuses transformations morphologiques, ne sont pas totalement décryptés. Ils reposent sur l’expression coordonnée et séquentielle de gènes dont les produits spécifiques de chaque stade de développement des cellules germinales sont essentiels aux étapes clés de la spermatogenèse. La transcriptomique depuis les années 1990 et la protéomique depuis les années 2000 ont contribué à l’amélioration de la connaissance de ces mécanismes. Une étude protéomique visant à caractériser par des approches systématiques et différentielles les protéomes des cellules de Sertoli et de la lignée germinale, et d’autre part une étude récente, réalisée dans notre unité, qui a permis de caractériser et de quantifier le transcriptome des cellules testiculaires isolées de rat en utilisant le séquençage de novo des transcrits (RNA-Seq), ont été à la base de mes travaux de thèse. Cette dernière étude a mis en évidence l’accumulation de longs ARNs non codants (lncRNAs) et de transcrits testiculaires non annotés (TUTs) aux stades méiotique et post- méiotique de la spermatogenèse chez le rat. Dans ce contexte, mon travail a consisté à valider le potentiel codant de nombreux gènes exprimés dans les cellules germinales par une approche dite PIT (Proteomics Informed by Transcriptomics) couplant protéomique Shotgun et RNA-Seq. Dans ce type d’approche, les séquences protéiques déduites des transcrits des différents types cellulaires, assemblés par RNA-Seq, sont intégrées dans une base personnalisée de séquences protéiques utilisée pour interroger les données de spectrométrie de masse obtenues à partir de protéines de cellules méiotiques et post-Méiotiques. L’approche PIT a permis de montrer que 69 TUTs ou lncRNA (correspondant à 44 loci) codent pour des protéines dans les cellules méiotiques et post méiotiques. L’expression post-Méiotique de deux nouveaux transcrits, l’un codant pour la protéine VAMP9, une protéine de la famille SNARE, et l’autre pour une nouvelle énolase T-ENOL a pu être confirmée. L’expression post-Méiotique de T-ENOL a été confirmée par immunohistochimie à l’aide d’un anticorps polyclonal produit contre la protéine recombinante. Cette approche nous a également permis d’identifier de nouvelles isoformes de protéines connues spécifiques de chaque stade de la spermatogenèse. Les cellules germinales et les cellules de Sertoli entretiennent le dialogue nécessaire au bon déroulement de la spermatogenèse. Une autre partie de mon travail a consisté à identifier des protéines membranaires des cellules germinales et des corps résiduels, susceptibles d’intervenir dans le dialogue entre les cellules de Sertoli et les cellules germinales, par une approche protéomique de quantification relative ICPL. Cette approche a permis d’établir une liste de 166 protéines différentiellement exprimées entre les spermatocytes pachytène, les spermatides rondes et les corps résiduels, qui sont susceptibles de jouer un rôle dans la spermiogénèse. Grâce aux annotations de le Gene Ontology, j’ai pu établir une liste de 8 protéines ayant un rôle supposé dans la transduction du signal, la reconnaissance cellulaire ou bien la différenciation. Par ailleurs, j’ai pu établir par protéomique Shotgun un premier protéome des cellules de Sertoli, des cellules germinales et des corps résiduels chez le rat. / Spermatogenesis in mammals is a complex biological function including cellular processes such as proliferation, meiosis and differentiation, aiming to the production of male gametes in the testis. If the seminiferous epithelium is well described in terms of organization and cellular morphology of cells that compose it, the processes by which undifferentiated diploid germ cells enter meiosis and give haploid cells that undergo many morphological transformations, are not fully decrypted. These processes rely on the coordinated and sequential expression of genes, including specific products for each stage of germ cell development These gene products are essential at each key stage of spermatogenesis. Transcriptomics since the 1990s, and proteomics since the 2000s have contributed to the improved. understanding of these mechanisms. A long term proteomic study aiming at characterizing the proteomes of Sertoli cells and germ cells, and a recent study that characterized and quantified the transcriptome of isolated rat testicular cells at high resolution using de novo sequencing of transcripts (RNA-Seq), have been the basis of my thesis work. The latter study showed the accumulation of long non-Coding RNAs (lncRNAs) and testicular unannotated transcripts (TUTs) at meiotic and post-Meiotic stages of spermatogenesis in the rat. In this context, my thesis work aimed at validating the coding potential of many genes expressed in germ cells using RNA-Seq combined with shotgun proteomics, a so-Called PIT (Proteomics Informed by transcriptomics) approach. In this approach, the protein sequences translated from the transcripts assembled by RNA-Seq in the different testicular cell types are integrated into a custom database of protein sequences used to query mass spectrometry data obtained from proteins of meiotic and post-Meiotic cells. The PIT approach showed that 69 TUTs or lncRNA (corresponding to 44 loci) code for proteins in meiotic cells and post meiotic cells, and we confirmed experimentally the meiotic and post-Meiotic expression for two new transcripts encoding for VAMP9, a protein of the SNARE family, and a new testicular enolase T-ENOL. The post-Meiotic expression of T-ENOL protein was confirmed by immunohistochemistry using a polyclonal antibody raised against the recombinant protein. This approach also allowed us to identify new isoforms of known proteins, specific to each stage of spermatogenesis. Germ cells and Sertoli cells maintain a dialogue which is necessary to the success of spermatogenesis and spermiogenesis. Another part of my work aimed at identifying membrane proteins, in germ cells and residual bodies, that may be involved in the dialogue between Sertoli cells and germ cells, using a ICPL relative quantification proteomic approach. The ICPL analysis enabled us to establish a list of 166 proteins whose expression is differential between pachytene spermatocytes, round spermatids and residual bodies. Their differential expression suggests that these proteins may play a role in spermiogenesis. Thanks to the Gene Ontology annotations, a list of 8 proteins with a putative role in signal transduction, cell recognition or differentiation, thus potentially involved in the dialogue between Sertoli and germ cells was drawn. In addition, I provided a first proteome of rat Sertoli cells, germ cells and residual bodies obtained by shotgun proteomics.
|
130 |
GLS-1, a novel P granule component, modulates a network of conserved RNA regulators to influence germ cell fate decisionsEckmann, Christian R., Schmid, Mark, Kupinski, Adam P., Jedamzik, Britta, Harterink, Martin, Rybarska, Agata 26 November 2015 (has links)
Post-transcriptional regulatory mechanisms are widely used to influence cell fate decisions in germ cells, early embryos, and neurons. Many conserved cytoplasmic RNA regulatory proteins associate with each other and assemble on target mRNAs, forming ribonucleoprotein (RNP) complexes, to control the mRNAs translational output. How these RNA regulatory networks are orchestrated during development to regulate cell fate decisions remains elusive. We addressed this problem by focusing on Caenorhabditis elegans germline development, an exemplar of post-transcriptional control mechanisms. Here, we report the discovery of GLS-1, a new factor required for many aspects of germline development, including the oocyte cell fate in hermaphrodites and germline survival. We find that GLS-1 is a cytoplasmic protein that localizes in germ cells dynamically to germplasm (P) granules. Furthermore, its functions depend on its ability to form a protein complex with the RNA-binding Bicaudal-C ortholog GLD-3, a translational activator and P granule component important for similar germ cell fate decisions. Based on genetic epistasis experiments and in vitro competition experiments, we suggest that GLS-1 releases FBF/Pumilio from GLD-3 repression. This facilitates the sperm-to-oocyte switch, as liberated FBF represses the translation of mRNAs encoding spermatogenesis-promoting factors. Our proposed molecular mechanism is based on the GLS-1 protein acting as a molecular mimic of FBF/Pumilio. Furthermore, we suggest that a maternal GLS-1/GLD-3 complex in early embryos promotes the expression of mRNAs encoding germline survival factors. Our work identifies GLS-1 as a fundamental regulator of germline development. GLS-1 directs germ cell fate decisions by modulating the availability and activity of a single translational network component, GLD-3. Hence, the elucidation of the mechanisms underlying GLS-1 functions provides a new example of how conserved machinery can be developmentally manipulated to influence cell fate decisions and tissue development.
|
Page generated in 0.0504 seconds