Spelling suggestions: "subject:"cometria simplética"" "subject:"cometria simpléctica""
11 |
Geometria complexa generalizada e tópicos relacionados / Generalized complex geometry and related topicsAlves, Leonardo Soriani, 1991- 27 August 2018 (has links)
Orientadores: Luiz Antonio Barrera San Martin, Lino Anderson da Silva Grama / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T10:27:44Z (GMT). No. of bitstreams: 1
Alves_LeonardoSoriani_M.pdf: 542116 bytes, checksum: b4db821b86b39eb2b221b4f63a4c9829 (MD5)
Previous issue date: 2015 / Resumo: Estudamos geometria complexa generalizada, que tem como casos particulares as geometrias complexa e simplética. Começamos com os seus fundamentos algébricos num espaço vetorial e transportamos essas noções para variedades. Estudamos o colchete de Courant na soma direta dos fibrados tangente e cotangente de uma variedade, que é essencial para definir a integrabilidade das estruturas complexas generalizadas. Verificamos que em nilvariedades de dimensão 6 sempre existe estrutura complexa generalizada invariante à esquerda, ainda que algumas delas não admitam estrutura complexa ou simplética. Estudamos duas noções de T-dualidade e suas relações com geometria complexa generalizada. Por fim recapitulamos a simetria do espelho para curvas elípticas e obtemos uma manifestação de simetria do espelho através de geometria complexa generalizada / Abstract: We study generalized complex geometry, which encompasses complex and symplectic geometry as particular cases. We begin with the algebraic basics on a vector space and then we transport these concepts to manifolds. We study the Courant bracket on the direct sum of tangent and cotangent bundles of a manifold, which is essential to define the integrability of the generalized complex structures. We check that on every $6$ dimensional nilmanifolds there is a left invariant generalized complex structure, even though some of them do not admit complex or symplectic structure. We study two notions of T-dualidade and its relations to generalized complex geometry. We recall mirror symmetry for elliptic curves and derive a manifestation of mirror symmetry from generalized complex geometry / Mestrado / Matematica / Mestre em Matemática
|
12 |
Mapas momento em teoria de calibre / Moment maps in gauge theoryBranco, Lucas Magalhães Pereira Castello, 1988- 22 August 2018 (has links)
Orientador: Marcos Benevenuto Jardim / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-22T22:29:57Z (GMT). No. of bitstreams: 1
Branco_LucasMagalhaesPereiraCastello_M.pdf: 1981391 bytes, checksum: 7ecd7674514f634b8bb527c0bcab1a06 (MD5)
Previous issue date: 2013 / Resumo: Neste trabalho os aspectos básicos da teoria de calibre são abordados, incluindo as noções de conexão e curvatura em fibrados principais e vetoriais, considerações sobre o grupo de transformações de calibre e o espaço de moduli de soluções para a equação anti-auto-dual em dimensão quatro (o espaço de moduli de instantons). Posteriormente, mapas momento e redução são introduzidos. Primeiramente, no contexto clássico de geometria simplética e depois no contexto de geometria hyperkähler. Por fim, são apresentadas aplicações da teoria de mapas momento e redução em teoria de calibre. As equações ADHM são introduzidas e mostra se que estas podem ser dadas como o conjunto de zeros de um mapa momento hyperkähler. Além disso, considerações são feitas acerca da construção ADHM de instantons, que relaciona soluções dessas equações com as soluções da equação de anti-auto-dualidade. O espaço de moduli de conexões planas é também abordado. Neste caso, a curvatura é vista como um mapa momento e os cálculos podem ser generalizados para o espaço de moduli de conexões planas sobre variedades Kähler de dimensões mais altas e para o espaço de moduli de instantons sobre variedades hyperkähler de dimensão quatro / Abstract: In this work it is developed the basic concepts of gauge theory, including the notions of connections and curvature on principal bundles and vector bundles, considerations on the group of gauge transformations and the moduli space of anti-self-dual connections in dimension four (the instanton moduli space). After, moment maps and reduction are introduced. First in the classical context of symplectic geometry, then in hyperkähler geometry. At last, applications to the theory of moment maps and reduction in gauge theory are given. The ADHM equations are introduced and it is shown that solutions to these equations can be given by the zeros of a hyperkähler moment map. Furthermore, the ADHM construction, that relates the ADHM equations to instanton solutions, is discussed. The moduli space of flat connections over a Riemann surface is also treated. In this case, the curvature is seen as a moment map and the calculations can be generalized to flat connections over higher-dimensional Kähler manifolds and to the instanton moduli space over four dimensional hyperkähler manifolds / Mestrado / Matematica / Mestre em Matemática
|
Page generated in 0.0466 seconds