• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • Tagged with
  • 15
  • 15
  • 15
  • 12
  • 9
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

On Generation and Recombination in Cu(In,Ga)Se2 Thin-Film Solar Cells

Malmström, Jonas January 2005 (has links)
The solar cell technology based on Cu(In,Ga)Se2 (CIGS) thin-films provides a promising route to cost competitive solar electricity. The standard device structure is ZnO:Al/ZnO/CdS/CIGS/Mo films on a glass substrate, where the first three layers are n-type semiconductors with wide bandgaps, forming a pn-junction with the p-type CIGS absorber layer; the Mo layer serves as a back contact. This thesis deals with analysis of the generation and recombination of electron-hole pairs throughout the device. These processes determine the maximum output power: generation limits the current; recombination limits the voltage. The generation is calculated with an optical model based on complex refractive indices determined for the individual layers. The main features of the optical response of the solar cell can be reproduced with a specular model neglecting scattering. A model including ideally Lambertian scattering at the front and back surface of the CIGS absorber layer is introduced to investigate the possibility to maintain a high current generation with thin absorber layers. The result highlights the relatively poor optical performance of the Mo back contact. TiN and ZrN are explored as alternatives, and improved optical performance is experimentally demonstrated for both materials. The recombination analysis emphasizes that, in general, more than one recombination path of comparable magnitude are operative in parallel. For cells with absorber bandgap increasing from 1.0 eV (CuInSe2) to 1.7 eV (CuGaSe2), a relative increase of interface recombination is found. When these cells are subject to accelerated ageing, degradation is smallest for intermediate bandgaps; an explanation involving different sensitivity to decreased absorber band bending and activation of grain boundaries is suggested. The optical gain with ZrN back contacts is counteracted by increased back contact recombination and contact resistance, but an intermediate layer of MoSe2 is shown to alleviate these problems, allowing for an overall improved efficiency.
12

Cadmium Free Buffer Layers and the Influence of their Material Properties on the Performance of Cu(In,Ga)Se2 Solar Cells

Hultqvist, Adam January 2010 (has links)
CdS is conventionally used as a buffer layer in Cu(In,Ga)Se2, CIGS, solar cells. The aim of this thesis is to substitute CdS with cadmium-free, more transparent and environmentally benign alternative buffer layers and to analyze how the material properties of alternative layers affect the solar cell performance. The alternative buffer layers have been deposited using Atomic Layer Deposition, ALD. A theoretical explanation for the success of CdS is that its conduction band, Ec, forms a small positive offset with that of CIGS. In one of the studies in this thesis the theory is tested experimentally by changing both the Ec position of the CIGS and of Zn(O,S) buffer layers through changing their gallium and sulfur contents respectively. Surprisingly, the top performing solar cells for all gallium contents have Zn(O,S) buffer layers with the same sulfur content and properties in spite of predicted unfavorable Ec offsets. An explanation is proposed based on observed non-homogenous composition in the buffer layer. This thesis also shows that the solar cell performance is strongly related to the resistivity of alternative buffer layers made of (Zn,Mg)O. A tentative explanation is that a high resistivity reduces the influence of shunt paths at the buffer layer/absorber interface. For devices in operation however, it seems beneficial to induce persistent photoconductivity, by light soaking, which can reduce the effective Ec barrier at the interface and thereby improve the fill factor of the solar cells. Zn-Sn-O is introduced as a new buffer layer in this thesis. The initial studies show that solar cells with Zn-Sn-O buffer layers have comparable performance to the CdS reference devices. While an intrinsic ZnO layer is required for a high reproducibility and performance of solar cells with CdS buffer layers it is shown in this thesis that it can be thinned if Zn(O,S) or omitted if (Zn,Mg)O buffer layers are used instead. As a result, a top conversion efficiency of 18.1 % was achieved with an (Zn,Mg)O buffer layer, a record for a cadmium and sulfur free CIGS solar cell. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 717
13

ALD Buffer Layer Growth and Interface Formation on Cu(In,Ga)Se2 Solar Cell Absorbers

Sterner, Jan January 2004 (has links)
Cu(In,Ga)Se2 (CIGS) thin film solar cells contain a thin layer of CdS. To avoid toxic heavy-metal-containing waste in the module production the development of a cadmium-free buffer layer is desirable. This thesis considers alternative Cd-free buffer materials deposited by Atomic Layer Deposition (ALD). Conditions of the CIGS surface necessary for ALD growth are investigated and the heterojunction interface is characterized by band alignment studies of ZnO/CIGS and In2S3/CIGS interfaces. The thesis also includes investigations on the surface modification of the CIGS absorber by sulfurization. According to ALD theory the growth process is limited by surface saturated reactions. The ALD growth on CIGS substrates shows nucleation failure and generally suffers from surface contaminations of the CIGS layer. The grade of growth disturbance varies for different ALD precursors. The presence of surface contaminants is related to the substrate age and sodium content. Improved growth behavior is demonstrated by different pretreatment procedures. The alignment of the energy bands in the buffer/absorber interface is an important parameter for minimization of the losses in a solar cell. The valence band and conduction band offsets was determined by in situ X-ray and UV photoelectron spectroscopy during layer by layer formation of buffer material. The conduction band offset (ΔEc) should be small but positive for optimal solar cell electrical performance according to theory. The conduction band offset was determined for the ALD ZnO/CIGS interface (ΔEc = -0.2 eV) and the ALD In2S3/CIGS interface (ΔEc = -0.25 eV). A high temperature process for bandgap grading and a low temperature process for surface passivation by post deposition sulfurization in H2S were investigated. It is concluded that the high temperature sulfurization of CuIn(1-x)GaxSe2 leads to phase separation when x>0. The low temperature process did not result in enhanced device performance.
14

Band Alignment Between ZnO-Based and Cu(In,Ga)Se2 Thin Films for High Efficiency Solar Cells

Platzer-Björkman, Charlotte January 2006 (has links)
Thin-film solar cells based on Cu(In,Ga)Se2 contain a thin buffer layer of CdS in their standard configuration. In order to avoid cadmium in the device for environmental reasons, Cd-free alternatives are investigated. In this thesis, ZnO-based films, containing Mg or S, grown by atomic layer deposition (ALD), are shown to be viable alternatives to CdS. The CdS is an n-type semiconductor, which together with the n-type ZnO top-contact layers form the pn-junction with the p-type Cu(In,Ga)Se2. From device modeling it is known that a buffer layer conduction band (CB) position of 0-0.4 eV above that of the Cu(In,Ga)Se2 layer is consistent with high photovoltaic performance. For the Cu(In,Ga)Se2/ZnO interface this position is measured by photoelectron spectroscopy and optical methods to –0.2 eV, resulting in increased interface recombination. By including sulfur into ZnO, a favorable CB position to Cu(In,Ga)Se2 can be obtained for appropriate sulfur contents, and device efficiencies of up to 16.4% are demonstrated in this work. From theoretical calculations and photoelectron spectroscopy measurements, the shift in the valence and conduction bands of Zn(O,S) are shown to be non-linear with respect to the sulfur content, resulting in a large band gap bowing. ALD is a suitable technique for buffer layer deposition since conformal coverage can be obtained even for very thin films and at low deposition temperatures. However, deposition of Zn(O,S) is shown to deviate from an ideal ALD process with much larger sulfur content in the films than expected from the precursor pulsing ratios and with a clear increase of sulfur towards the Cu(In,Ga)Se2 layer. For (Zn,Mg)O, single-phase ZnO-type films are obtained for Mg/(Zn+Mg) < 0.2. In this region, the band gap increases almost linearly with the Mg content resulting in an improved CB alignment at the heterojunction interface with Cu(In,Ga)Se2 and high device efficiencies of up to 14.1%.
15

Optimisation d'un procédé hybride de co-pulvérisation/évaporation pour l'obtention de cellules solaires à base de Cu(In,Ga)Se2 / Optimization of a hybrid co-sputtering/evaporation process for Cu(In,Ga)Se2 thin film solar cells applications

Posada Parra, Jorge Ivan 17 March 2015 (has links)
Les cellules solaires en couches minces à base d'absorbeurs de type Cu(In,Ga)Se2 (CIGS) représentent une technologie d'avenir à haut rendement de conversion d'énergie. Plusieurs techniques sont utilisées pour synthétiser le CIGS. La pulvérisation cathodique réactive est une technique de dépôt adaptée aux grandes surfaces offrant la possibilité d'effectuer un scale-up industriel. L'objectif de ce travail est de développer et d'optimiser un procédé alternatif hybride de co-pulvérisation/évaporation pour la synthèse du composé CIGS. Pour répondre à cet objectif, différentes études ont été réalisées afin d'assurer le contrôle des différents paramètres de dépôt. Dans un premier temps, la phase plasma a été étudiée à l'aide de la spectroscopie d'émission optique pour pouvoir établir des corrélations entre la composition des couches déposées et les espèces présentes dans le plasma. Ceci a permis d'établir des courbes d'étalonnage et de suivi in-situ de la composition et l'homogénéité de l'épaisseur des couches déposées, ainsi que de déterminer l'existence de différentes modes de pulvérisation, reliés à la température appliquée pour l'évaporation du sélénium. Dans un deuxième temps, différents absorbeurs de CIGS ont été synthétisés à partir du procédé hybride développé. Ces absorbeurs ont été déposés en une et en trois étapes pour analyser l'influence des gradients de composition sur leurs propriétés morphologiques, structurales et optoélectroniques. Un absorbeur de CIGS avec un rendement de conversion maximum de 10,4 % a été fabriqué à partir d'une séquence de dépôt en une étape. Un rendement de 9,4 % a été obtenu avec une séquence dépôt en trois étapes. / Cu(In,Ga)Se2 (CIGS) thin film solar cells are a very promising technology for high efficiency energy conversion. Several techniques are used to synthesize CIGS absorbers. Magnetron reactive sputtering is an attractive deposition technique for depositing CIGS absorbers because of its potential for providing uniform coatings over large areas, thus offering the possibility for more competitive industrial scale-up. The objective of this work is to develop and optimize a hybrid alternative co-sputtering/evaporation CIGS deposition process. To meet this goal, various studies have been conducted to ensure control of the various deposition parameters. Initially, plasma was studied with Optical Emission Spectroscopy in order to establish correlations between plasma species and thin film composition, structure and morphology. This has allowed to establish in-situ calibration curves for monitoring the deposited layers composition and their homogeneity, and to determine the existence of different sputtering modes, linked to the selenium evaporation temperature. Then, different CIGS absorbers were synthesized with the stabilized hybrid process. These absorbers were deposited in one and three stages to analyze the influence of composition gradients on their morphological, structural and optoelectronic properties. A CIGS absorber giving a maximum conversion efficiency of 10.4 % was fabricated with a one step process. A 9.3 % efficiency solar cell was obtained with a three-stage deposition process.

Page generated in 0.05 seconds