• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • 1
  • Tagged with
  • 24
  • 24
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Indirect Searches for Galactic Dark Matter with IceCube-DeepCore and PINGU

Wolf, Martin January 2014 (has links)
The cubic-kilometer sized IceCube neutrino observatory is burieddeep in the glacial ice at the Earth’s South Pole. Its low-energyextension array DeepCore enables physicists to search indirectlyfor light Dark Matter (DM) particles with masses as low as tensof GeV/c2 situated within our home galaxy, the Milky Way. GeVneutrinos could be produced through DM particle annihilations,propagating to the Earth where they could be detected by IceCube. This licentiate thesis presents a search for Weakly Interacting Mas-sive Particles (WIMPs) with masses as low as 30 GeV/c2 in theGalactic center (GC) using the 79-string configuration of the IceCubeneutrino detector. Data from 319.7 live-days have been analyzedusing a cut-and-count analysis approach, and found to be consistentwith the background-only hypothesis with expected backgroundfrom atmospheric muons and neutrinos. Thus, upper limits wereset on the velocity averaged DM annihilation cross-section. The Precision IceCube Next Generation Upgrade (PINGU) as apossible future neutrino detector within DeepCore would reducethe neutrino energy detection threshold to a few GeV. In additionto the data analysis with DeepCore, a sensitivity study has beenconducted to investigate the performance of PINGU for indirectDM searches in the GC and the Sun. In the Sun WIMPs could begravitationally captured through elastic scattering off nucleons. Inthis thesis, we derive PINGU sensitivities for the velocity averagedDM annihilation cross-section of WIMPs in the GC, and for theSpin-Dependent (SD) and Spin-Independent (SI) WIMP-protonscattering cross-sections, under the assumption of thermodynamicequilibrium between the WIMP capturing and annihilation rate inthe Sun. / IceCube
12

Applications of High-Resolution Astrometry to Galactic Studies

Salim, Samir 11 September 2002 (has links)
No description available.
13

Massive stars in the Galactic Center Quintuplet cluster

Liermann, Adriane January 2009 (has links)
The presented thesis describes the observations of the Galactic center Quintuplet cluster, the spectral analysis of the cluster Wolf-Rayet stars of the nitrogen sequence to determine their fundamental stellar parameters, and discusses the obtained results in a general context. The Quintuplet cluster was discovered in one of the first infrared surveys of the Galactic center region (Okuda et al. 1987, 1989) and was observed for this project with the ESO-VLT near-infrared integral field instrument SINFONI-SPIFFI. The subsequent data reduction was performed in parts with a self-written pipeline to obtain flux-calibrated spectra of all objects detected in the imaged field of view. First results of the observation were compiled and published in a spectral catalog of 160 flux-calibrated $K$-band spectra in the range of 1.95 to 2.45,$mu$m, containing 85 early-type (OB) stars, 62 late-type (KM) stars, and 13 Wolf-Rayet stars. About 100 of these stars are cataloged for the first time. The main part of the thesis project was concentrated on the analysis of the WR stars of the nitrogen sequence and one further identified emission line star (Of/WN) with tailored Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres (Hamann et al. 1995) that are applied to derive the stellar parameters of these stars. For this purpose, the atomic input data of the PoWR models had to be extended by further line transitions in the near-infrared spectral range to enable adaequate model spectra to be calculated. These models were then fitted to the observed spectra, revealing typical paramters for this class of stars. A significant amount of hydrogen of up to $X_text{H} sim 0.2$ by mass fraction is still present in their stellar atmospheres. The stars are also found to be very luminous ($log{(L/L_odot)} > 6.0$) and show mass-loss rates and wind characteristics typical for radiation-driven winds. By comparison with stellar evolutionary models (Meynet & Maeder 2003a; Langer et al. 1994), the initial masses were estimated and indicate that the Quintuplet WN stars are descendants from the most massive O stars with $M_text{init} > 60 M_odot$ and their ages correspond to a cluster age of 3-5,million years. The analysis of the individual WN stars revealed an average extinction of $A_K =3.1 pm 0.5$,mag ($A_V = 27 pm 4$) towards the Quintuplet cluster. This extinction was applied to derive the stellar luminosities of the remaining early-type and late-type stars in the catalog and a Hertzsprung-Russell diagram could be compiled. Surprisingly, two stellar populations are found, a group of main sequence OB stars and a group of evolved late-type stars, i.e. red supergiants (RSG). The main sequence stars indicate a cluster age of 4 million years, which would be too young for red supergiants to be already present. A star formation event lasting for a few million years might possibly explain the Quintuplet's population and the cluster would still be considered coeval. However, the unexpected and simultaneous presence of red supergiants and Wolf-Rayet stars in the cluster points out that the details of star formation and cluster evolution are not yet well understood for the Quintuplet cluster. / Die vorgelegte Arbeit befasst sich mit der Spektralanalyse der massereichen Sterne, speziell der Wolf-Rayet Sterne der Stickstoffsequenz, des Quintuplet-Sternhaufens im Galaktischen Zentrum, welches durch Staubwolken vor visuellen Beobachtungen verborgen ist. Der Sternhaufen wurde in einer der ersten Infrarot-Durchmusterungen entdeckt (Okuda et al. 1987, 1989) und f"ur dieses Projekt mit dem Grossteleskop ESO-VLT und dem Infrarotinstrument SINFONI-SPIFFI beobachtet. Die Daten wurden aufbereitet und die flusskalibrierten Spektren in einem Katalog ver"offentlicht. Darin enthalten sind 85 Sterne fr"uhen Spektraltyps (O- und B-Sterne), 62 Sterne sp"aten Spektraltyps (K- und M-Sterne), sowie 13 Wolf-Rayet Sterne. Etwa 100 Sterne sind zum ersten mal detektiert und katalogisiert worden. Die flusskalibrierten Spektren der Wolf-Rayet Sterne der Stickstoffsequenz (WN) wurden mit den Potsdam Wolf-Rayet Modellen f"ur expandierende Sternatmosph"aren (Hamann et al. 1995) untersucht, wozu zun"achst Atomdaten der Modelle f"ur den Infrarotbereich erg"anzt werden mussten. Verschiedene Modellspektren und -energieverteilungen wurden mit den Beobachtungen verglichen, um die Sternparameter Temperatur, Radius, Leuchtkraft und die Charakteristik des Sternwinds Geschwindigkeit, chemische Zusammensetzung und Massenverlustrate zu bestimmen. Der ermittelte hohe Wasserstoffgehalt der Winde der WN-Sterne zeigt, dass sie Abk"ommlinge von massereichen O-Sternen sind, die die Hauptreihe verlassen haben. Desweiteren sind die Sterne sehr leuchtkr"aftig ($log(L/L_odot) > 6$) und zeigen Massenverlustraten, die typisch sind f"ur strahlungsgetriebenen Sternwinde. Im Vergleich mit Sternentwicklungsmodellen (Meynet & Maeder 2003a; Langer et al. 1994) ergeben sich Anfangsmassen von $M_text{init}>60,M_odot$, sowie ungef"ahre Sternalter von 3-5 Millionen Jahren f"ur die WN-Sterne, was dem angenommenen Altern des Quintuplet-Haufens entspricht. Durch die Analyse der spektralen Energieverteilungen der einzelnen WN-Sterne konnte eine mittlere interstellare Extinktion von $A_K =3.1 pm 0.5$,mag ($A_V = 27 pm 4$,mag) in der Richtung des Quintuplet-Haufens ermittelt und f"ur die Bestimmung der Leuchtkr"afte der verbleibenden Sterne des Katalog verwendet werden. Die anschliess ende vorl"aufige Analyse ergab eine Dichotomie der Sternpopulation von fr"uhen und sp"aten Sternen im Hertzsprung-Russell-Diagramm. W"ahrend die OB-Sterne entsprechend der Entwicklungstheorie auf der Hauptreihe des Haufens liegen, befinden sich die KM-Sterne im entwickelten Stadium der Roten Riesen, welches f"ur Sterne diesen Typs fr"uhestens nach 7 Millionen Jahren erwartet wird. Somit steht die zeitgleiche Entstehung aller Sterne des Sternhaufens in Frage. Sie wird im Rahmen von Haufenzugeh"origkeit und einer Phase ausgedehnter Sternentstehung diskutiert. Es bleibt anzuerkennen, dass die Sternentstehung und -entwicklung auch im speziellen Fall des Quintuplet-Haufens noch nicht hinreichend gut verstanden sind.
14

Études d'effets relativistes au Centre Galactique à l'aide de simulations d'observations d'orbites d'étoiles par l'instrument GRAVITY / Studies of relativistic effects at the Galactic Center by using stellar-orbit observation simulations of the GRAVITY instrument

Grould, Marion 14 October 2016 (has links)
Le Centre Galactique abrite en son cœur un objet compact de plusieurs millions de masses solaires. L'hypothèse faite à l'heure actuelle est que cet objet serait un trou noir supermassif décrit par la relativité générale. L'instrument de seconde génération du Very Large Telescope Interferometer, GRAVITY, va permettre d'apporter des réponses quant à la réelle nature de cet objet. Grâce à sa précision astrométrique de 10 microsecondes d'angle, il va pouvoir sonder l'espace-temps en champ fort via l'observation des étoiles et du gaz situés à proximité de l'objet central.Au cours de ma thèse j'ai mis au point un modèle permettant de simuler les observations d'orbites d'étoiles de GRAVITY, l'objectif étant d'extraire à l'aide de celui-ci les paramètres fondamentaux du candidat trou noir central ainsi que les effets relativistes. Pour cela, j'ai utilisé le code de tracé de rayons GYOTO développé à l'Observatoire de Paris. Ce code permet de calculer des trajectoires d'étoiles et de photons obtenues en présence d'un objet compact. Il est alors possible de simuler les positions apparentes d'étoiles en orbite autour du Centre Galactique en calculant leur image relativiste.J'ai d'abord validé le calcul des trajectoires des photons effectué dans GYOTO. Grâce à des tests effectués en déflexion faible et forte, j'ai pu démontrer que GYOTO était hautement satisfaisant pour simuler les observations GRAVITY. En effet, j'ai montré que l'erreur sur le calcul des géodésiques de genre lumière était inférieure à environ 10^-2 microseconde d'angle, et cela même pour de grandes distances d'intégration.Je me suis ensuite intéressée à l'étude d'une étoile appelée S2 qui a contribué à fortement contraindre la masse de l'objet central. Sa proximité au Centre Galactique fait d'elle une cible idéale pour sonder l'espace-temps en champ fort. En particulier, j'ai estimé quels étaient les temps minimaux d'observation nécessaires pour détecter des effets relativistes à l'aide de mesures astrométriques et spectroscopiques obtenues sur l'étoile S2. Pour cela, j'ai mis en place plusieurs modèles d'orbites prenant en compte chacun un certain nombre d'effets relativistes. Le modèle le plus précis est obtenu en relativité générale complète avec le code GYOTO. Néanmoins, puisque l'étoile S2 est suffisamment éloignée de l'objet compact, ce modèle néglige certains effets de lentilles gravitationnelles telles que les images secondaires et l'amplification des images primaires. Par ailleurs, je me suis également intéressée à la contraindre du moment cinétique du candidat trou noir central avec cette étoile. En particulier, j'ai déterminé, grâce au modèle le plus précis mis en place ici, qu'il était possible de contraindre la norme et la direction du moment cinétique avec une incertitude d'environ 0,1 et 20 degrés, respectivement, et cela en considérant des observations obtenues sur trois périodes de S2 et des précisions de 10 microsecondes d'angle et 10 km/s.En vue de la possible détection d'étoiles plus proches du Centre Galactique par GRAVITY, j'ai développé un modèle prenant en compte les effets de lentilles négligés dans le modèle précédent. Néanmoins, afin de minimiser le temps de calcul demandé par celui-ci, j'ai déterminé une zone de l'espace dans laquelle il était tout de même possible d'utiliser ce dernier.Enfin, j'ai étudié l'influence de corps du Système Solaire sur les mesures astrométriques de GRAVITY, c'est-à-dire sur la séparation angulaire entre deux sources du Centre Galactique. Cette étude a montré que ces mesures différentielles n'étaient déviées que de quelques microsecondes d'angle par la perturbation gravitationnelle engendrée par le Soleil. Cependant, celles-ci sont modifiées de plusieurs centaines de microsecondes d'angle par l'effet d'aberration induit par le mouvement de la Terre par rapport aux sources du Centre Galactique. Il sera donc nécessaire de prendre en compte cet effet lors de l'interprétation des données obtenues par GRAVITY. / Decades of studies have demonstrated the presence of a compact object of several million solar masses at the center of the Galaxy. Nowadays, the assumption is that this compact object is probably a supermassive black hole described by general relativity. The second generation instrument at the Very Large Telescope Interferometer, GRAVITY, is expected to better constrain the nature of this central object. By using its astrometric accuracy of about 10 microarcseconds, it will probe spacetime in strong gravitational fields by observing stars and gas located near the compact object.During my PhD I have developed a stellar-orbit model in order to interpret the future GRAVITY observations. By using this model it will be possible to extract the central black hole candidate parameters and relativistic effects. To implement the model, I used the ray-tracing code GYOTO developed at Observatoire de Paris. This code allows computing star and photon trajectories obtained in the vicinity of a compact object. It is thus possible to simulate apparent positions of stars orbiting the Galactic Center by computing relativistic images.My work started by validating the photon trajectories computed in GYOTO. By doing tests in both weak- and strong-deflection limits, I have shown that the GYOTO code is highly qualified to simulate GRAVITY observations. Indeed, the error made on the photon trajectories is inferior to 10^-2 microarcsecond, even when integrating over large distances.Then, I was interested in studying a star called S2 that contributed to importantly constrain the mass of the central object. This star is the second closest star to the Galactic Center and has an orbital period of about 16 years. Nowadays, we do not know whether closer-in stars will be discovered by GRAVITY. It is thus important to extract as much information as possible from this star. In particular, I have estimated the minimal observation times needed to detect relativistic effects by using astrometric and spectroscopic measurements of S2. To do so, I have developed different stellar-orbit models taking into account a certain number of relativistic effects. The more accurate model is obtained by using the ray-tracing code GYOTO and considering all relativistic effects. However, as the S2 star is sufficiently far from the compact object, this model neglects certain gravitational lensing effects such as the secondary images and the primary images amplification. Besides, I was also interested in the possibility of constraining the angular momentum of the central black hole candidate with the S2 star. In particular, I have shown that with a model which does not use ray-tracing, the norm and the direction of the angular momentum can be constrained with an uncertainty of about 0.1 and 20 degrees, respectively, by using observations obtained during three periods of S2 and with accuracies reaching 10 microarseconds and 10 km/s.Since closer-in stars could be detected by GRAVITY, I have developed a more accurate stellar-orbit model taking into account the lensing effects neglected in the previous model. However, in order to minimize the computing time required by this model, I determined a volume in which it is possible to neglect both the secondary images and the primary images amplification.Finally, I have studied the impact of different components of the Solar System on astrometric positions measured by GRAVITY. This study has shown that those measurements are deviated by an amount of a few microarcseconds by the gravitational perturbation generated by the Sun. However, those apparent positions are shifted by several hundred microarcseconds by the aberration effect due to the movement of the Earth with respect to the Galactic Center. It is thus necessary to take into account this effect in future interpretations of GRAVITY observations.
15

Recherche de matière noire, observation du centre galactique avec H.E.S.S.et modernisation des caméras de H.E.S.S. I / Search for dark matter, Galactic Center observation with H.E.S.S. and upgrade of the H.E.S.S. I camera

Lefranc, Valentin 29 June 2016 (has links)
Le réseau de 5 télescopes Tcherenkov au sol H.E.S.S. (High Energy Stereoscopic System) permet de détecter des rayons gamma à très hautes énergies (E>50GeV) pour sonder les phénomènes non thermiques les plus violents de l'univers. Ces rayons gamma peuvent provenir de l'annihilation de particules de matière noire. L'astronomie gamma permet donc de rechercher les signatures de l'annihilation de particules de matière noire dans les régions denses de l'univers. Cette thèse est composée de trois parties. Après un bref rappel sur l'instrument H.E.S.S., sont présentés en premier lieu les tests de performance effectués pour l'étalonnage de la nouvelle électronique utilisée pour la modernisation des caméras des quatre télescopes CT1 à 4. L'analyse des premières données de la caméra CT1 modernisée montre la réduction du temps mort de lecture du réseau qui permettra de bénéficier pleinement de la stéréoscopie entre les 5 télescopes du réseau. La deuxième partie de la thèse traite des 10 ans d'observations de la région du Centre Galactique avec H.E.S.S. ainsi que les récentes observations obtenues avec l'ajout en 2012 du télescope de 28 mètres de diamètre (CT5) au centre du réseau. L'analyse des données de CT5 en direction de la source centrale HESS J1745-290 permet d'avoir accès aux événements aux plus basses énergies accessibles avec H.E.S.S. (100 GeV). Le spectre de la source centrale est en très bon accord avec celui de HESS J1745-290 mesuré avec CT1-4 et les données en dessous de 150 GeV permettent de raccorder ce dernier à celui de la source Fermi 3FGHL J1745.6-2859c.Dans la troisième partie, les 10 ans de données dans la région du Centre Galactique avec la première phase de H.E.S.S sont analysés pour rechercher un signal d'annihilation de matière noire à l'aide d'une méthode de vraisemblance utilisant les caractéristiques spectrale et spatiale du signal de matière noire par rapport à celles du bruit de fond. En l'absence de signal matière noire, les contraintes sont calculées sur la section efficace d'annihilation et, pour la première fois, un réseau de télescope Tcherenkov au sol est capable de sonder la section efficace d'annihilation thermique dans le cas d'un profil de matière noire piqué. La sensibilité sur la section efficace d'annihilation de l'instrument H.E.S.S. utilisant CT5 est ensuite présentée vers le Centre Galactique et la galaxie naine récemment découverte Reticulum II. La dernière partie de cette thèse étudie le potentiel du futur réseau de télescopes Tcherenkov CTA, (Cherenkov Telescope Array) pour la détection d'un signal d'annihilation de matière noire. Vers la région du Centre Galactique le signal de matière noire attendu est significativement augmenté par la contribution de rayons gamma produits par effet Compton inverse d'électrons et positrons énergétiques sur les champs de radiation ambiants. La sensibilité obtenue permet à CTA de sonder la section efficace d'annihilation thermique dans tous les canaux d'annihilation dans le cas d’un profil de matière noire piqué. L’impact sur la sensibilité de CTA des erreurs systématiques et de l’émission diffuse mesurée par Fermi est aussi montré. Dans le cas des galaxies naines satellites de la Voie Lactée, les performances de CTA permettent de les considérer comme des objets spatialement étendus, et d'obtenir une sensibilité compétitive avec celle du Centre Galactique dans le cas d’un profil à cœur de plusieurs kpc. Dans le cas d'un signal de matière noire de type ligne, CTA sera capable de contraindre fortement des modèles spécifiques de matière noire au TeV grâce à l'effet Sommerfeld, comme le Wino et le MDM-5plet. / The ground-based Cherenkov telescope array H.E.S.S. (High Energy Stereoscopic System) is able to detect gamma rays at very high energies (E> 50GeV) to probe the most violent non-thermal phenomena in the universe. These gamma rays can also come from dark matter particle annihilation. Gamma-ray astronomy provides a promising avenue to search for signatures of these annihilations in overdense regions of the universe. This thesis is composed of three parts. After a brief reminder of the H.E.S.S. instrument, the performance tests to calibrate the new electronics used for the modernization of the four cameras CT1-4 telescopes are presented. The analysis of the upgraded camera raw data shows a reduction global array dead time allowing to maximize the benefit of the stereoscopy between the 5 telescopes. The second part of the thesis deals with 10 years of observations of the Galactic Center region with H.E.S.S. and recent observations taken with the 28-meter-diameter telescope (CT5) located at the center of the array. The data analysis towards the central source HESS J1745-290 provides access to events at lower energies (100 GeV). The spectrum of the central source is in very good agreement with the one of HESS J1745-290 measured with CT1-4 and data below 150 GeV enable to connect it to the Fermi 3FGHL J1745.6-2859c source spectrum. In the third part, the 10 years of data in the region of the Galactic Centre with the first phase of H.E.S.S. are scanned for a dark matter annihilation signal using a likelihood method using the spectral and spatial characteristics of the dark matter signal compared to background. No dark matter signal is detected. The constraints are calculated on the annihilation cross section and, for the first time, a ground-based Cherenkov telescope array is capable to probe the thermal cross section in the case of a cuspy dark matter profile. The sensitivity of the annihilation cross section of the H.E.S.S. instrument using CT5 is then presented toward the Galactic Center and the recently discovered dwarf galaxy Reticulum II. The last part of the thesis studies the potential of the future ground-based instrument CTA (Cherenkov Telescope Array) for the detection of dark matter annihilation signal. Towards the Galactic Center region, the expected dark matter signal is significantly increased by the contribution of gamma rays produced by inverse Compton process of energetic electrons and positrons on ambient radiation fields. The sensitivity obtained enables CTA to probe the thermal cross section in all annihilation channels for a cuspy dark matter profile. The impact on CTA sensitivity of systematic errors and diffuse emission measured by Fermi is also shown. In the case of dwarf galaxy satellites of the Milky Way, the CTA performances enable to consider them as extended objects and provide a competitive sensitivity with the Galactic Centre sensitivity for a kpc-core profile. In the case of a line signal, CTA will be able to strongly constrain specific TeV dark matter models through the Sommerfeld effect, as Wino and MDM-5plet.
16

Étude de la région de la source non-identifiée HESS J1745-303 avec l'instrument LAT à bord du satellite Fermi / Study of the vicinity of the unidentified source HESS J1745-303 with the LAT instrument aboard the Fermi satellite

Falletti, Lola 03 October 2013 (has links)
Le LAT est l'instrument principal du satellite Fermi et permet d'étudier le ciel en rayons gamma de 20 MeV à plus de 300 GeV. Sa sensibilité accrue a permis l'augmentation du nombre de sources détectées dans le domaine des hautes énergies. Une partie importante de celles-ci n'a pas de contrepartie connue et une étude multi-longueur d'onde est nécessaire afin de comprendre l'origine du signal observé. Dans un premier temps, cette thèse présente l'étude morphologique et spectrale détaillée de la source non-identifiée HESS J1745--303, qui a été découverte dans le domaine gamma par l'expérience H.E.S.S. en 2006 puis analysée spécifiquement dans un article de 2008, à l'aide des données du LAT. Deux sources ponctuelles situées à une localisation proche de HESS J1745-303 sont présentes dans le catalogue à deux ans de données de Fermi (2FGL) mais une analyse dédiée de cette région est néanmoins nécessaire vu sa complexité. Elle est en effet localisée à ~1° du Centre Galactique et à moins de 0.5° du pulsar de la Souris, les deux sources les plus brillantes en gamma dans cette région.Les différents processus d'émission de photons sont présentés dans un second temps. Leurs simulations permettent d'effectuer une étude approfondie de l'origine de l'émission détectée aux hautes et très hautes énergies par le LAT et par H.E.S.S. L'émission de cette source reste en effet encore énigmatique de nos jours et une étude multi-longueur d'onde est effectuée afin de contraindre les modèles d'émission. / The LAT is the main instrument onboard the Fermi space telescope and performs unprecedented observations of the gamma-ray sky between 20 MeV and more than 300 GeV. The number of gamma-ray sources detected has grown thanks to its high sensibility. A large part of these sources has no known counterpart and a multi-wavelength study is needed in order to understand the origin of the observed signal.This thesis presents a morphological and spectral detailed study of the unidentified source HESS J1745--303, which was discovered in gamma-rays in 2006 with the H.E.S.S. experiment, using the Fermi-LAT data. Two point-like sources, located near HESS J1745--303, are included in the Fermi Large Area Telescope Second Source Catalog (2FGL) but, due to the complexity of this region, a dedicated study of the LAT data is however needed. Indeed, its location is ~1° away from the Galactic Center source and less than 0.5° from the Mouse pulsar, the two brightest gamma-ray sources in this region.The astrophysical emission processes are then detailed. We develop an extensive code which allowed us to study the origin of the HE (High Energy) and VHE (Very-High Energy) gamma-ray emissions detected by the LAT and H.E.S.S. The emission of this source is indeed still enigmatic and we perform a mutli-wavelength study to try to constrain the emission modeling.
17

Le centre Galactique aux très hautes énergies : modélisation de l’émission diffuse et premiers éléments d’analyse spectro-morphologique / The galactic center to vers high energies : diffuse emission modeling and first elements of spectromorphological analysis

Jouvin, Lea 27 September 2017 (has links)
Le centre Galactique (GC) est une région très riche et complexe. Le taux de supernovae (SN) associé à la formation d'étoiles massives y est très élevée et devrait créer une injection continue de rayons cosmiques (CRs) dans le GC à travers les chocs qu'elles produisent. Cette région abrite également un trou noir supermassif (SMBH) de $4 \times 10^6 \, \rm{M_{\odot}}$, nommé Sgr A*. De nombreux arguments ont permis de montrer que le SMBH pouvait accélérer des particules à très haute énergie (VHE); son activité actuelle et passée pourrait donc également contribuer à la population de CRs. En 2006, la collaboration H.E.S.S. a révélé la présence d'une émission diffuse à VHE dans les 100 pc centraux de la Galaxie, très corrélée à la distribution de matière moléculaire répartie dans la zone moléculaire centrale (CMZ). Une partie importante de cette émission a donc très probablement une origine hadronique mais celle-ci reste toujours inconnue. Nous présentons une nouvelle analyse spectrale et morphologique détaillée de la région en utilisant 10 ans de prise de données de H.E.S.S. ainsi qu’une modélisation de l'émission $\gamma$ induite par les SNe. Nous étudions l'impact de la distribution temporelle et spatiale des SNe dans le CMZ sur la morphologie et le spectre de l'émission: nous construisons un model 3D d'injection de CRs à VHE et d'une propagation diffusive dans la région avec une distribution de gaz réaliste. La contribution des SNe ne peut pas être négligée. Nous montrons qu’un profil piqué de rayon $\gamma$ ainsi qu’un excès de CRs vers le GC peuvent être obtenus en utilisant une distribution spatiale réaliste de SNe prenant en compte les amas d'étoiles massives centraux. La morphologie de l'émission est très dépendante de l'énergie dans ce scénario. Le profil de densité de CRs peut également être reproduit avec une injection stationnaire unique au centre par Sgr A* mais cela implique alors une morphologie stable en énergie. L'utilisation d'une analyse 3D est donc nécessaire pour distinguer les modèles. Nous présentons les premiers résultats de cette analyse que nous avons développé dans la librairie Gammapy afin d'ajuster simultanément un spectre et une morphologie sur des données. Avec la prochaine génération d'instruments comme le Cherenkov Telescope Array, les observations de régions avec une morphologie complexe, avec une émission diffuse ou de multiples sources, vont devenir de plus en plus nombreuses. Elles nécessitent donc également le développement de cette technique. Nous détaillons les premières validations de cette méthode appliquée sur des sources ponctuelles avec un outil Monte Carlo. Pour l’émission diffuse, nous présentons le nouveau spectre obtenu en utilisant une méthode que nous avons développée pour l’extraction spectrale 1D classique. Nous réalisons par ailleurs une analyse morphologique dans différentes bandes en énergie indépendantes en utilisant de nouveaux modèles spatiaux. Pour l'instant, aucune variation significative n'est détectée mais des observations supplémentaires sont nécessaires ainsi qu'une vraie analyse 3D de la région du GC pour pouvoir donner une conclusion définitive. Les observations de CTA permettront de donner des réponses précises à ces questions. / The Galactic center (GC) is a very rich and complex astrophysical region. The high supernovae (SN) rate associated with the strong massive star formation should create a sustained cosmic rays (CR) injection in the GC via the shocks they produce. This region also harbors a Super-Massive Black Hole (SMBH) of $4 \times 10^6 \, \rm{M_{\odot}}$, named Sgr A*. Since it has been argued that the SMBH might also accelerate particles up to very high energies (VHE), its current and past activity could contribute to the CR population. In 2006, the H.E.S.S. collaboration revealed the presence of a VHE diffuse emission in the inner 100 pc of the Galaxy in close correlation with the molecular matter spread in the central molecular zone (CMZ). A major part of this emission is thus certainly of hadronic origin but it still remains mysterious. We report a new detailed spectral and morphological analysis of this region using 10 years of H.E.S.S. observations as well as a detailed modelling of the $\gamma$-ray emission induced by the SNe. We study the impact of the spatial and temporal distribution of SNe in the CMZ on the VHE emission morphology and spectrum: we built a 3D model of VHE CR injection and diffusive propagation with a realistic gas distribution. The contribution of SNe can not be neglected. We show that a peaked $\gamma$-ray profile and CR excess towards the GC, can be obtained using realistic SN spatial distribution taking into account the central massive star clusters. A strong dependence on the morphology of the emission with the energy is expected in this scenario. The CR density profile can also be reproduced by a unique stationary injection at the center by Sgr A* but it implies a stable morphology across the energy range. To distinguish the models, we need a 3D analysis. We present the first results of this analysis that we started to design in the software Gammapy to simultaneously fit a spectral and morphological model to the data. The observations of complex morphological regions with diffuse emission or multiple sources will become more and more numerous with the next generation instruments such as the Cherenkov Telescope Array. They will also require the development of this technique. We detail the first validations of this method on point sources using a Monte Carlo tool. For the ridge emission, we report the new spectrum using a method that we developed for the classical spectral fitting necessary for faint emission. By using new spatial templates to describe the complexity of the diffuse emission, we perform a morphological analysis in different energy bands independently. No significant variation is found but more observations are needed to give a conclusive statement as well as a real 3D analysis in the GC region. The observations of CTA will allow to give precise answers to these questions.
18

Multiwavelength study of the flaring activity of the supermassive black hole Sgr A* at the center of the Milky Way / Etudes multi-longueurs d'onde de l'activité du trou noir supermassif SGR A* au centre de notre galaxie

Mossoux, Emmanuelle 29 September 2016 (has links)
Sgr A*, le trou noir supermassif le plus proche de nous, émet une luminosité quiescente très faible ainsi que des éruptions en infrarouge proche (NIR), rayons X et radio. Cette thèse a pour but d'étudier l'effet du passage de DSO/G2 près de Sgr A* sur les éruptions. J'ai utilisé et amélioré trois méthodes pour l'étude en rayons X : les blocs Bayésiens en deux passes pour détecter les éruptions avec une certaine probabilité, le lissage des courbes de lumières pour diminuer le bruit de Poisson et la méthode de Monte Carlo par chaînes de Markov pour l'ajustement des spectres des éruptions. J'ai contraint les paramètres physiques de la source pour une des 3 éruptions détectées en rayons X en 2011 et pour 3 éruptions détectées en rayons X et NIR durant la campagne multi-longueurs d'onde de février-avril 2014. L'activité en rayons X et NIR de février-avril 2014 correspond à celle observée avant le passage de DSO/G2 près de Sgr A*. J'ai calculé le taux d'éruption intrinsèque en rayons X de Sgr A* en 1999-2015 et détecté une plus faible activité à partir du 28 octobre 2013. L'énergie stockée pendant cette période peut expliquer la plus forte activité observée du 30 août au 9 septembre 2014. / Sgr A*, the closest supermassive black hole, is an extremely low luminosity black hole emitting flares in near-infrared (NIR), X-rays and radio. The goal of this Ph.D. is to study the impact of the pericenter passage of the Dusty S-cluster Object DSO/G2 close to Sgr A* on the flaring activity. I used and improved three methods for the study in X-rays: the two-steps Bayesian blocks method to detect flares with a given false detection probability, the light curve smoothing to reduce the Poisson noise and the Monte Carlo Markov chains method for the fitting of the flare spectra. I constrained the physical parameters of the flaring region for one of the three X-ray flares detected in 2011 and for three NIR/X-ray flares detected during the 2014 Feb.-Apr. multiwavelength campaign. The X-ray and NIR activity during the 2014 Feb.-Apr. is not different from those observed before the DSO/G2 pericenter passage. I computed the intrinsic flaring rate in X-rays from Sgr A* in 1999-2015 and I detected a smaller flaring activity beginning on 2013 Oct. 28. The energy saved during this time period could explain the largest activity observed from 2014 Aug. 30 to Sept. 9.
19

A Search for Extended Gamma-Ray Emission from the Galactic Center with VERITAS

Kelley-Hoskins, Nathan 07 May 2020 (has links)
Dunkle Materie bindet etwa 24 % der gesamten Energie im Universum. Bis heute ist jedoch dessen Ursprung nicht bekannt. Untersuchungen von Galaxien und kosmologischen Messungen deuten auf Dunkle Materie hin. Ein Kandidat für Dunkle Materie ist das sogenannte Weakly Interactive Massive Particle (WIMP), welches nur der Schwerkraft und der schwachen Wechselwirkung unterliegt. Eines dieser supersymmetrischen Teilchen ist das Neutralino. Das Ziel dieser Arbeit ist es, nach Dunkler Materie in dieser Form zu suchen. Aufgrund seiner Nähe sowie der hohen Dichte an Dunkler Materie bietet das Zentrum unserer Galaxie besondere Möglichkeiten zur Suche nach diesen Teilchen. Es wird vermutet, dass Neutralinos miteinander wechselwirken, dabei in Teilchen des Standard Modells zerfallen und so Photonen mit hohen Energien entstehen. Die Suche nach hochenergetischen Gammastrahlen in der Nähe des Galaktischen Zentrums kann folglich das Rätsel der Dunklen Materie lösen. Das Gammastrahlenobservatorium VERITAS hat das Galaktische Zentrum für etwa 108 Stunden beobachtet. Diese Daten wurden mittels einer unbinned Likelihood-Analyse auf die Existenz von Dunkler Materie untersucht. Da VERITAS das Galaktische Zentrum bei geringer Elevation beobachtet, können nur Gammastrahlen in einem Energiebereich zwischen 4 und 70 TeV detektiert werden. Die Analysemethode modelliert sowohl die räumliche Verteilung der Dunklen Materie als auch das Gammastrahlenspektrum. Der Beitrag der Gammastrahlen, welcher nicht von Dunkler Materie erzeugt wird, ist mittels einer punktförmigen Quelle modelliert. Zum Schluss wird der Untergrund mit realen Daten außerhalb des Galaktischen Zentrums abgeschätzt. Im Energiebereich zwischen 4 und 100 TeV wurden keine Signale der Dunklen Materie gefunden. Obere Grenzwerte für den Wechselwirkungsquerschnitt der WIMPs ergeben ⟨σv⟩ < (6.6 − 7.6) × 10−25 cm^3 oberhalb von 70 TeV in einem 95-prozentigen Erwartungsintervall. / Dark matter accounts for 24% of the universe’s energy, but the form in which it is stored is currently unknown. Understanding what form this matter takes is one of the major unsolved mysteries of modern physics. Much evidence exists for dark matter in the measurements of galaxies, dwarf galaxies, galaxy clusters, and cosmological measurements. One theory posits dark matter is a new undiscovered particle that only interacts via gravity and the weak force, called a weakly interacting massive particle (WIMP). One WIMP candidate is a supersymmetric particle called a neutralino. The objective of this thesis is to search for these dark matter particles, and attempt to measure their mass and cross section. Dark matter particles appear to concentrate in most galaxy-scale gravitational wells. One region of space that is both nearby and assumed to have a high density of dark matter is the center of our own galaxy. The neutralino is expected to annihilate into Standard Model particles, which may decay into photons. Therefore, a search for gamma rays near the Galactic Center may uncover the presence of dark matter. 108 hours of VERITAS gamma-ray observations of the Galactic Center are used in an unbinned likelihood analysis to search for dark matter. The Galactic Center’s low elevation results in VERITAS observing gamma rays in the 4–70 TeV energy range. The analysis used in this thesis consists of modeling the halo of dark matter at the Galactic Center, as well as the spectrum of gamma rays produced when two WIMPs annihilate. A point source is added to model the non-dark-matter gamma-ray emission detected from the Galactic Center. Background models are constructed from data of separate off-Galactic-Center observations. No dark matter signal is found in the 4–100 TeV mass range. Upper limits on the WIMP’s velocity-averaged cross section have been calculated, which above 70 TeV result in new limits of ⟨σv⟩ < (6.6 − 7.6) × 10−25 cm3 at the 95% confidence level.
20

Study of the Galactic Center and dark matter search with H.E.S.S. / Etude du Centre Galactique et recherche de matière noire avec H.E.S.S.

Rinchiuso, Lucia 03 July 2019 (has links)
L’expérience H.E.S.S. (High Energy Spectroscopic System) composée de cinq télescopes Tcherenkov observe le ciel en rayons gamma au-delà d'une centaine de GeV jusqu'à plusieurs dizaines de TeV. Les rayons gamma sont produits par des phénomènes non-thermiques parmi les plus violents dans l'univers au voisinage d'objets astrophysique comme les pulsars, supernovae ou trous noirs, mais pourraient être également produits par l'annihilation de particules de matière noire.De nombreuses sondes cosmologiques et astrophysiques suggèrent que 85% de la matière dans l'Univers est d'origine inconnue. Cette matière appelée matière noire, de nature non baryonique, serait constituée de particules non encore découvertes dont les candidats privilégiés seraient des particules massives interagissant faiblement (WIMPs) avec la matière ordinaire, particules prédites au-delà du Modèle Standard de la physique des particules.Des particules de matière noire peuvent s'annihiler en particules du Modèle Standard dans les régions denses de l'Univers. Parmi les produits d'annihilations se trouvent les photons dont la détection à hautes énergies par des télescopes au sol à effet Tcherenkov pourrait apporter des informations uniques sur la nature de la matière noire.H.E.S.S. observe des régions du ciel dense en matière noire comme le Centre Galactique et des galaxies naines satellites de la Voie Lactée.Une interprétation d'un excès de rayons gamma détecté au Centre Galactique par H.E.S.S. en termes d’accélération de protons par une population de pulsars millisecondes est présenté.10 ans d'observations du Centre Galactique avec le réseau H.E.S.S. I de quatre télescopes, cinq ans de prise de données vers la région du Centre Galactique avec le réseau complet H.E.S.S. II, et un jeu de deux ans de données vers des galaxies naines découvertes récemment sont analysés. Les recherches de signaux d'annihilation de matière noire vers ces cibles ont produit les limites plus fortes à présent sur la section efficace d'annihilation de matière noire dans la plage en masse du TeV. Le potentiel de détection de matière noire avec le futur réseau de télescopes CTA (Cherenkov Telescope Array) vers la région central du halo Galactique est étudiés. / The H.E.S.S. (High Energy Spectroscopic System) experiment is an array of five Cherenkov telescopes that observe the sky in gamma-rays from about 100 GeV up to several ten TeV.Gamma rays are produced in violent non-thermal phenomena in the Universe in the neighborhood of pulsars, supernovae, black holes, ..., and could also be produced by the annihilation of dark matter particles.Numerous cosmological and astrophysical probes suggest that 85% of the total matter budget in the Universe is of unknown origin. This component of matter known as dark matter is non baryonic and could consist of yet undiscovered particles which privileged candidates are arguably massive particles with electroweak couplings with ordinary matter (WIMPs).Dark matter particles may annihilate into Standard Model particles in dense regions of the Universe. Among the annihilation products are photons which detection at high energy with ground-based Cherenkov telescopes could bring unique information on the nature of the dark matter.H.E.S.S. observes dark-matter-dense regions of the sky such as the Galactic Center and dwarf galaxy satellites of the Milky Way. A study on the interpretation of an excess of gamma-rays detected by H.E.S.S. at the Galactic Center in terms of acceleration of protons by a population of unresolved millisecond pulsars is performed.10 years of observations of the Galactic Center with the four-telescope H.E.S.S.-I array, five years of data taking towards the Galactic Center region with the full H.E.S.S.-II array and a two-years dataset towards newly discovered dwarf spheroidal galaxies are analyzed. The search for dark matter annihilation signals towards these targets provided the strongest limits so far on dark matter annihilation cross section in gamma rays of TeV energies. The potential of dark matter detection with the upcoming Cherenkov Telescope Array (CTA) towards the inner Galactic halo are studied. They may annihilate into Standard Model particles in dense regions of the Universe. Among the annihilation products are high energy photons. The detection of these photons with ground-based Cherenkov telescopes may reveal the nature of the dark matter. H.E.S.S. have observed some dark-matter-dense regions of the sky likethe Galactic Center and dwarf galaxies satellites of the Milky Way. In this work 10 years of observations of the Galactic Center with the four-telescopes H.E.S.S.-I array, five years of data taking towards the Galactic Center region with the full H.E.S.S.-II array and a two-years dataset towards newly discovered dwarf spheroidal galaxies are analyzed. The searches for dark matter annihilation signals towards these targets produced the strongest limits so far on dark matter annihilation cross section in gamma rays of TeV energies.Perspectives of dark matter detection with the future array CTA (Cherenkov Telescope Array) towards the inner Galactic halo are also discussed. A study on the interpretation of an excess of gamma-rays detected by H.E.S.S. at the Galactic Center in terms of acceleration of protons by a population of unresolved millisecond pulsars complements the dark matter searches.

Page generated in 0.0672 seconds