• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 7
  • 6
  • 2
  • 2
  • Tagged with
  • 142
  • 142
  • 61
  • 41
  • 41
  • 21
  • 21
  • 20
  • 20
  • 19
  • 19
  • 17
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The Symmetries and Scaling of Tidal Tails in Galaxies

Struck, Curtis, Smith, Beverly J. 01 May 2012 (has links)
We present analytic models for the formation and evolution of tidal tails and related structures following single or multiple impulsive disturbances in galaxy collisions. Since the epicyclic approximation is not valid for large radial excursions, we use orbital equations of the form we call p-ellipses (a class of precessing ellipses). These have been shown to provide accurate representations of orbits in logarithmic and power-law halo potentials. In the simplest case of an impulsive collision yielding a purely tidal disturbance the resulting tidal tails have simple structure. Scalings for their maximum lengths and other characteristics as non-linear functions of the tidal amplitude and the exponent of the power-law potentials are described. The analytic model shows that azimuthal caustics (orbit crossing zones of high density also seen in numerical models) are produced generically in these tails at a fixed azimuth relative to the point of closest approach. Long tails, with high-order caustics at their base, and ocular waveforms are also produced at larger amplitudes. The analysis is then extended to non-linear disturbances and multiple encounters, which break the symmetries of purely tidal perturbations. The p-ellipse orbital solutions are similar to those in the linear tidal case. However, as the strength of the non-linear terms is varied the structure of the resulting forms varies from symmetric tails to one-armed plumes. Cases with two or more impulse disturbances are also considered as the simplest analytic models distinguishing between prograde and retrograde encounters. The model shows explicitly how tail growth differs in the two cases. In the prograde case a specific mechanism for the formation of tidal dwarf galaxies at the end of tails is suggested as a consequence of resonance effects in multiple or prolonged encounters. Qualitative comparisons to Arp Atlas systems suggest that the limiting analytic cases are realized in real systems. For example, we identify a few Arp systems which have multiple tidal strands meeting near the base of long tails. These may be swallowtail caustics, where dissipative gas streams are converging and triggering star formation. Ultraviolet and optical images reveal luminous knots of young stars at these 'hinge clump' locations.
72

Delayed Galaxies

Struck, Curtis, Hancock, Mark, Smith, Beverly J., Appleton, Phillip N., Charmandaris, Vassilis, Giroux, Mark 01 June 2007 (has links)
We can define Delayed Galaxies as a class of rare galaxies that maintained the bulk of their gas for most of the age of the universe following the initial formation of their disks, with little or no star formation. Invisible galaxies and Malin 1 type low-surface-brightness galaxies qualify as class members. Rare examples among interacting galaxies show that collisions can restart the stalled evolution of such galaxies, and suggest that other members of the Delayed class can be found among interacting systems with vigorous current star formation.
73

Kinematics and dynamics pf giant stars in the solar neighbourhood

Famaey, Benoît 29 September 2004 (has links)
We study the motion of giant stars in the Solar neighbourhood and what they tell us about the dynamics of the Galaxy: we thus contribute to the huge project of understanding the structure and evolution of the Galaxy as a whole. <p><p>We present a kinematic analysis of 5952 K and 739 M giant stars which includes for the first time radial velocity data from an important survey performed with the CORAVEL spectrovelocimeter at the Observatoire de Haute Provence. Parallaxes from the Hipparcos catalogue and proper motions from the Tycho-2 catalogue are also used.<p><p>A maximum-likelihood method, based on a bayesian approach, is applied to the data, in order to make full use of all the available stars, and to derive the kinematic properties of the subgroups forming a rich small-scale structure in velocity space. Isochrones in the Hertzsprung-Russell diagram reveal a very wide range of ages for stars belonging to these subgroups, which are thus most probably related to the dynamical perturbation by transient spiral waves rather than to cluster remnants. A possible explanation for the presence of young group/clusters in the same area of velocity space is that they have been put there by the spiral wave associated with their formation, while the kinematics of the older stars of our sample has also been disturbed by the same wave. The emerging picture is thus one of "dynamical streams" pervading the Solar neighbourhood and travelling in the Galaxy with a similar spatial velocity. The term "dynamical stream" is more appropriate than the traditional term "supercluster" since it involves stars of different ages, not born at the same place nor at the same time. We then discuss, in the light of our results, the validity of older evaluations of the Solar motion in the Galaxy. <p><p>We finally argue that dynamical modeling is essential for a better understanding of the physics hiding behind the observed kinematics. An accurate axisymmetric model of the Galaxy is a necessary starting point in order to understand the true effects of non-axisymmetric perturbations such as spiral waves. To establish such a model, we develop new galactic potentials that fit some fundamental parameters of the Milky Way. We also develop new component distribution functions that depend on three analytic integrals of the motion and that can represent realistic stellar disks. / Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished
74

THE VLT LEGA-C SPECTROSCOPIC SURVEY: THE PHYSICS OF GALAXIES AT A LOOKBACK TIME OF 7 Gyr

van der Wel, A., Noeske, K., Bezanson, R., Pacifici, C., Gallazzi, A., Franx, M., Muñoz-Mateos, J. C., Bell, E. F., Brammer, G., Charlot, S., Chauké, P., Labbé, I., Maseda, M. V., Muzzin, A., Rix, H.-W., Sobral, D., Sande, J. van de, Dokkum, P. G. van, Wild, V., Wolf, C. 22 April 2016 (has links)
The Large Early Galaxy Census (LEGA-C-16) is a Public Spectroscopic Survey of similar to 3200 K-band selected galaxies at redshifts z. =. 0.6 - 1.0 with stellar masses M-* > 10(10) M-circle dot, conducted with VIMOS on ESO's Very Large Telescope. The survey is embedded in the COSMOS field (R.A. = 10h00; decl. = +2 deg). The 20 hr long integrations produce high-signal-to-noise ratio continuum spectra that reveal ages, metallicities and velocity dispersions of the stellar populations. LEGA-C's unique combination of sample size and depth will enable us for the first time to map the stellar content at large lookback time, across galaxies of different types and star formation activity. Observations started in 2014 December and are planned to be completed by mid 2018, with early data releases of the spectra and value-added products. In this paper we present the science case, the observing strategy, an overview of the data reduction process and data products, and a first look at the relationship between galaxy structure and spectral properties, as it existed 7 Gyr ago.
75

Local Volume TiNy Titans: gaseous dwarf–dwarf interactions in the Local Universe

Pearson, Sarah, Besla, Gurtina, Putman, Mary E., Lutz, Katharina A., Fernández, Ximena, Stierwalt, Sabrina, Patton, David R., Kim, Jinhyub, Kallivayalil, Nitya, Johnson, Kelsey, Sung, Eon-Chang 21 June 2016 (has links)
In this paper, we introduce the Local Volume TiNy Titans sample (LV-TNT), which is a part of a larger body of work on interacting dwarf galaxies: TNT . This LV-TNT sample consists of 10 dwarf galaxy pairs in the Local Universe (< 30 Mpc from Milky Way), which span mass ratios of M-*,M- 1/M-*,M- 2 < 20, projected separations < 100 kpc, and pair member masses of log(M-*/M-aS (TM)) < 9.9. All 10 LV-TNT pairs have resolved synthesis maps of their neutral hydrogen, are located in a range of environments and captured at various interaction stages. This enables us to do a comparative study of the diffuse gas in dwarf-dwarf interactions and disentangle the gas lost due to interactions with haloes of massive galaxies, from the gas lost due to mutual interaction between the dwarfs. We find that the neutral gas is extended in the interacting pairs when compared to non-paired analogues, indicating that gas is tidally pre-processed. Additionally, we find that the environment can shape the H i distributions in the form of trailing tails and that the gas is not unbound and lost to the surroundings unless the dwarf pair is residing near a massive galaxy. We conclude that a nearby, massive host galaxy is what ultimately prevents the gas from being re-accreted. Dwarf-dwarf interactions thus represent an important part of the baryon cycle of low-mass galaxies, enabling the 'parking' of gas at large distances to serve as a continual gas supply channel until accretion by a more massive host.
76

Comparing Cosmological Hydrodynamic Simulations with Observations of High-Redshift Galaxy Formation

Finlator, Kristian Markwart January 2009 (has links)
We use cosmological hydrodynamic simulations to study the impact of out-flows and radiative feedback on high-redshift galaxies. For outflows, we consider simulations that assume (i) no winds, (ii) a .constant-wind. model in which the mass-loading factor and outflow speed are constant, and (iii) "momentum driven" winds in which both parameters vary smoothly with mass. In order to treat radiative feedback, we develop a moment-based radiative transfer technique that operates in both post-processing and coupled radiative hydrodynamic modes. We first ask how outflows impact the broadband spectral energy distributions (SEDs) of six observed reionization-epoch galaxies. Simulations reproduce five regardless of the outflow prescription, while the sixth suggests an unusually bursty star formation history. We conclude that (i) simulations broadly account for available constraints on reionization-epoch galaxies, (ii) individual SEDs do not constrain outflows, and (iii) SED comparisons efficiently isolate objects that challenge simulations. We next study how outflows impact the galaxy mass metallicity relation (MZR). Momentum-driven outflows uniquely reproduce observations at z = 2. In this scenario, galaxies obey two equilibria: (i) The rate at which a galaxy processes gas into stars and outflows tracks its inflow rate; and (ii) The gas enrichment rate owing to star formation balances the dilution rate owing to inflows. Combining these conditions indicates that the MZR is dominated by the (instantaneous) variation of outflows with mass, with more-massive galaxies driving less gas into outflows per unit stellar mass formed. Turning to radiative feedback, we use post-processing simulations to study the topology of reionization. Reionization begins in overdensities and then .leaks. directly into voids, with filaments reionizing last owing to their high density and low emissivity. This result conflicts with previous findings that voids ionize last. We argue that it owes to the uniqely-biased emissivity field produced by our star formation prescriptions, which have previously been shown to reproduce numerous post-reionization constraints. Finally, preliminary results from coupled radiative hydrodynamic simulations indicate that reionization suppresses the star formation rate density by at most 10.20% by z = 5. This is much less than previous estimates, which we attribute to our unique reionization topology although confirmation will have to await more detailed modeling.
77

On the redshift distribution and physical properties of ACT-selected DSFGs

Su, T., Marriage, T. A., Asboth, V., Baker, A. J., Bond, J. R., Crichton, D., Devlin, M. J., Dünner, R., Farrah, D., Frayer, D. T., Gralla, M. B., Hall, K., Halpern, M., Harris, A. I., Hilton, M., Hincks, A. D., Hughes, J. P., Niemack, M. D., Page, L. A., Partridge, B., Rivera, J., Scott, D., Sievers, J. L., Thornton, R. J., Viero, M. P., Wang, L., Wollack, E. J., Zemcov, M. 01 January 2017 (has links)
We present multi-wavelength detections of nine candidate gravitationally lensed dusty starforming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of z = 4.1(-1.0)(+1.1) (68 per cent confidence interval), as expected for 218 GHz selection, and an apparent total infrared luminosity of log10(mu LIR/L-circle dot) = 13.86(-0.30)(+0.33), which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is root mu d = 4.2(-1.0)(+1.7) kpc, further evidence of strong lensing or multiplicity, since the typical diameter of DSFGs is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modelling without the assumption of optically thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = 4.2(-1.9)(+3.7)) to dust around the peak in the modified blackbody spectrum (lambda(obs) <= 500 mu m), a result that is robust to model choice.
78

Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

Pope, Alexandra, Montaña, Alfredo, Battisti, Andrew, Limousin, Marceau, Marchesini, Danilo, Wilson, Grant W., Alberts, Stacey, Aretxaga, Itziar, Avila-Reese, Vladimir, Bermejo-Climent, José Ramón, Brammer, Gabriel, Bravo-Alfaro, Hector, Calzetti, Daniela, Chary, Ranga-Ram, Cybulski, Ryan, Giavalisco, Mauro, Hughes, David, Kado-Fong, Erin, Keller, Erica, Kirkpatrick, Allison, Labbe, Ivo, Lange-Vagle, Daniel, Lowenthal, James, Murphy, Eric, Oesch, Pascal, Gonzalez, Daniel Rosa, Sánchez-Argüelles, David, Shipley, Heath, Stefanon, Mauro, Vega, Olga, Whitaker, Katherine, Williams, Christina C., Yun, Min, Zavala, Jorge A., Zeballos, Milagros 03 April 2017 (has links)
We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717_Az9, is at z > 4 and the strong lensing model (mu = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 x 10(10) L-circle dot and an obscured star formation rate of 14.6 +/- 4.5 M-circle dot yr(-1). The unobscured star formation rate from the UV is only 4.1 +/- 0.3 M-circle dot yr(-1), which means the total star formation rate (18.7 +/- 4.5 M-circle dot yr(-1)) is dominated (75%-80%) by the obscured component. With an intrinsic stellar mass of only 6.9 x 10(9) M circle dot, MACS0717_Az9 is one of only a handful of z. >. 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX-beta) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.
79

A deep ALMA image of the Hubble Ultra Deep Field

Dunlop, J. S., McLure, R. J., Biggs, A. D., Geach, J. E., Michałowski, M. J., Ivison, R. J., Rujopakarn, W., van Kampen, E., Kirkpatrick, A., Pope, A., Scott, D., Swinbank, A. M., Targett, T. A., Aretxaga, I., Austermann, J. E., Best, P. N., Bruce, V. A., Chapin, E. L., Charlot, S., Cirasuolo, M., Coppin, K., Ellis, R. S., Finkelstein, S. L., Hayward, C. C., Hughes, D. H., Ibar, E., Jagannathan, P., Khochfar, S., Koprowski, M. P., Narayanan, D., Nyland, K., Papovich, C., Peacock, J. A., Rieke, G. H., Robertson, B., Vernstrom, T., Werf, P. P. van der, Wilson, G. W., Yun, M. 01 April 2017 (has links)
We present the results of the first, deep Atacama Large Millimeter Array ( ALMA) imaging covering the full similar or equal to 4.5 arcmin(2) of the Hubble Ultra Deep Field ( HUDF) imaged with Wide Field Camera 3/IR on HST. Using a 45-pointing mosaic, we have obtained a homogeneous 1.3-mm image reaching sigma 1.3 similar or equal to 35 mu Jy, at a resolution of similar or equal to 0.7 arcsec. From an initial list of similar or equal to 50 > 3.5 sigma peaks, a rigorous analysis confirms 16 sources with S-1.3 > 120 mu Jy. All of these have secure galaxy counterparts with robust redshifts (< z > = 2.15). Due to the unparalleled supporting data, the physical properties of the ALMA sources are well constrained, including their stellar masses ( M-*) and UV+FIR star formation rates ( SFR). Our results show that stellar mass is the best predictor of SFR in the high-redshift Universe; indeed at z = 2 our ALMA sample contains seven of the nine galaxies in the HUDF withM(*) = 2 x 10(10)M circle dot, and we detect only one galaxy at z > 3.5, reflecting the rapid drop-off of high-mass galaxies with increasing redshift. The detections, coupled with stacking, allow us to probe the redshift/mass distribution of the 1.3-mm background down to S1.3 similar or equal to 10 mu Jy. We find strong evidence for a steep star-forming `main sequence' at z similar or equal to 2, with SFR. M* and a mean specific SFR similar or equal to 2.2 Gyr(-1). Moreover, we find that similar or equal to 85 per cent of total star formation at z similar or equal to 2 is enshrouded in dust, with similar or equal to 65 per cent of all star formation at this epoch occurring in high-mass galaxies ( M-* > 2 x 10(10)M circle dot), for which the average obscured: unobscured SF ratio is similar or equal to 200. Finally, we revisit the cosmic evolution of SFR density; we find this peaks at z similar or equal to 2.5, and that the star-forming Universe transits from primarily unobscured to primarily obscured at z similar or equal to 4.
80

The Diversity of Diffuse Ly α Nebulae around Star-forming Galaxies at High Redshift

Xue, Rui, Lee, Kyoung-Soo, Dey, Arjun, Reddy, Naveen, Hong, Sungryong, Prescott, Moire K. M., Inami, Hanae, Jannuzi, Buell T., Gonzalez, Anthony H. 15 March 2017 (has links)
We report the detection of diffuse Ly alpha emission, or Lya halos (LAHs), around star-forming galaxies at z approximate to 3.78 and 2.66 in the NOAO Deep Wide-Field Survey Bootes field. Our samples consist of a total of similar to 1400 galaxies, within two separate regions containing spectroscopically confirmed galaxy overdensities. They provide a unique opportunity to investigate how the LAH characteristics vary with host galaxy large-scale environment and physical properties. We stack Ly alpha images of different samples defined by these properties and measure their median LAH sizes by decomposing the stacked Ly alpha radial profile into a compact galaxy-like and an extended halo-like component. We find that the exponential scale-length of LAHs depends on UV continuum and Ly alpha luminosities, but not on Ly alpha equivalent widths or galaxy overdensity parameters. The full samples, which are dominated by low UV-continuum luminosity Lya emitters (M-UV greater than or similar to -21), exhibit LAH sizes of 5-6 kpc. However, the most UV- or Ly alpha-luminous galaxies have more extended halos with scale-lengths of 7-9 kpc. The stacked Ly alpha radial profiles decline more steeply than recent theoretical predictions that include the contributions from gravitational cooling of infalling gas and from low-level star formation in satellites. However, the LAH extent matches what one would expect for photons produced in the galaxy and then resonantly scattered by gas in an outflowing envelope. The observed trends of LAH sizes with host galaxy properties suggest that the physical conditions of the circumgalactic medium (covering fraction, H I column density, and outflow velocity) change with halo mass and/or star formation rates.

Page generated in 0.1035 seconds