• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 271
  • 152
  • 89
  • 25
  • 17
  • 10
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 651
  • 232
  • 192
  • 161
  • 148
  • 121
  • 108
  • 78
  • 74
  • 72
  • 71
  • 67
  • 65
  • 57
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation

Temimi, Helmi 02 April 2008 (has links)
We propose a new discontinuous finite element method for higher-order initial value problems where the finite element solution exhibits an optimal convergence rate in the L2- norm. We further show that the q-degree discontinuous solution of a differential equation of order m and its first (m-1)-derivatives are strongly superconvergent at the end of each step. We also establish that the q-degree discontinuous solution is superconvergent at the roots of (q+1-m)-degree Jacobi polynomial on each step. Furthermore, we use these results to construct asymptotically correct a posteriori error estimates. Moreover, we design a new discontinuous Galerkin method to solve the wave equation by using a method of lines approach to separate the space and time where we first apply the classical finite element method using p-degree polynomials in space to obtain a system of second-order ordinary differential equations which is solved by our new discontinuous Galerkin method. We provide an error analysis for this new method to show that, on each space-time cell, the discontinuous Galerkin finite element solution is superconvergent at the tensor product of the shifted roots of the Lobatto polynomials in space and the Jacobi polynomial in time. Then, we show that the global L2 error in space and time is convergent. Furthermore, we are able to construct asymptotically correct a posteriori error estimates for both spatial and temporal components of errors. We validate our theory by presenting several computational results for one, two and three dimensions. / Ph. D.
182

Méthode de Legendre-Galerkin appliquée au contrôle de l'équation des ondes. Filtrage des hautes fréquences

Gagnon, Ludovick 19 April 2018 (has links)
Le présent travail sera consacré à l'étude de la contrôlabilité et l'observabilité de l'équation des ondes ainsi qu'à l'obtention de l'observabilité uniforme du système observable discrétisé. Dans un premier temps, les notions de bases ainsi que les résultats importants sur l'observabilité et la contrôlabilité de l'équation des ondes seront donnés pour l'équation des ondes aux conditions limites de Dirichlet. Par la suite, nous étudierons la semi-discrétisation du système observable par la méthode spectrale de Legendre-Galerkin. Finalement, nous tenterons d'obtenir une observabilité uniforme par rapport à la dimension de l'espace d'approximation par une méthode de filtre sur cet espace.
183

Higher-Degree Immersed Finite Elements for Second-Order Elliptic Interface Problems

Ben Romdhane, Mohamed 16 September 2011 (has links)
A wide range of applications involve interface problems. In most of the cases, mathematical modeling of these interface problems leads to partial differential equations with non-smooth or discontinuous inputs and solutions, especially across material interfaces. Different numerical methods have been developed to solve these kinds of problems and handle the non-smooth behavior of the input data and/or the solution across the interface. The main focus of our work is the immersed finite element method to obtain optimal numerical solutions for interface problems. In this thesis, we present piecewise quadratic immersed finite element (IFE) spaces that are used with an immersed finite element (IFE) method with interior penalty (IP) for solving two-dimensional second-order elliptic interface problems without requiring the mesh to be aligned with the material interfaces. An analysis of the constructed IFE spaces and their dimensions is presented. Shape functions of Lagrange and hierarchical types are constructed for these spaces, and a proof for the existence is established. The interpolation errors in the proposed piecewise quadratic spaces yield optimal <i>O</i>(h³) and <i>O</i>(h²) convergence rates, respectively, in the L² and broken H¹ norms under mesh refinement. Furthermore, numerical results are presented to validate our theory and show the optimality of our quadratic IFE method. Our approach in this thesis is, first, to establish a theory for the simplified case of a linear interface. After that, we extend the framework to quadratic interfaces. We, then, describe a general procedure for handling arbitrary interfaces occurring in real physical practical applications and present computational examples showing the optimality of the proposed method. Furthermore, we investigate a general procedure for extending our quadratic IFE spaces to <i>p</i>-th degree and construct hierarchical shape functions for <i>p</i>=3. / Ph. D.
184

Immersed and Discontinuous Finite Element Methods

Chaabane, Nabil 20 April 2015 (has links)
In this dissertation we prove the superconvergence of the minimal-dissipation local discontinuous Galerkin method for elliptic problems and construct optimal immersed finite element approximations and discontinuous immersed finite element methods for the Stokes interface problem. In the first part we present an error analysis for the minimal dissipation local discontinuous Galerkin method applied to a model elliptic problem on Cartesian meshes when polynomials of degree at most <i>k</i> and an appropriate approximation of the boundary condition are used. This special approximation allows us to achieve <i>k</i> + 1 order of convergence for both the potential and its gradient in the L<sup>2</sup> norm. Here we improve on existing estimates for the solution gradient by a factor &#8730;h. In the second part we present discontinuous immersed finite element (IFE) methods for the Stokes interface problem on Cartesian meshes that does not require the mesh to be aligned with the interface. As such, we allow unfitted meshes that are cut by the interface. Thus, elements may contain more than one fluid. On these unfitted meshes we construct an immersed Q<sub>1</sub>/Q<sub>0</sub> finite element approximation that depends on the location of the interface. We discuss the basic features of the proposed Q<sub>1</sub>/Q<sub>0</sub> IFE basis functions such as the unisolvent property. We present several numerical examples to demonstrate that the proposed IFE approximations applied to solve interface Stokes problems maintain the optimal approximation capability of their standard counterpart applied to solve the homogeneous Stokes problem. Similarly, we also show that discontinuous Galerkin IFE solutions of the Stokes interface problem maintain the optimal convergence rates in both L<sup>2</sup> and broken H<sup>1</sup> norms. Furthermore, we extend our method to solve the axisymmetric Stokes interface problem with a moving interface and test the proposed method by solving several benchmark problems from the literature. / Ph. D.
185

Estimation of Uncertain Vehicle Center of Gravity using Polynomial Chaos Expansions

Price, Darryl Brian 14 August 2008 (has links)
The main goal of this study is the use of polynomial chaos expansion (PCE) to analyze the uncertainty in calculating the lateral and longitudinal center of gravity for a vehicle from static load cell measurements. A secondary goal is to use experimental testing as a source of uncertainty and as a method to confirm the results from the PCE simulation. While PCE has often been used as an alternative to Monte Carlo, PCE models have rarely been based on experimental data. The 8-post test rig at the Virginia Institute for Performance Engineering and Research facility at Virginia International Raceway is the experimental test bed used to implement the PCE model. Experimental tests are conducted to define the true distribution for the load measurement systems' uncertainty. A method that does not require a new uncertainty distribution experiment for multiple tests with different goals is presented. Moved mass tests confirm the uncertainty analysis using portable scales that provide accurate results. The polynomial chaos model used to find the uncertainty in the center of gravity calculation is derived. Karhunen-Loeve expansions, similar to Fourier series, are used to define the uncertainties to allow for the polynomial chaos expansion. PCE models are typically computed via the collocation method or the Galerkin method. The Galerkin method is chosen as the PCE method in order to formulate a more accurate analytical result. The derivation systematically increases from one uncertain load cell to all four uncertain load cells noting the differences and increased complexity as the uncertainty dimensions increase. For each derivation the PCE model is shown and the solution to the simulation is given. Results are presented comparing the polynomial chaos simulation to the Monte Carlo simulation and to the accurate scales. It is shown that the PCE simulations closely match the Monte Carlo simulations. / Master of Science
186

Recycling Bi-Lanczos Algorithms: BiCG, CGS, and BiCGSTAB

Ahuja, Kapil 21 September 2009 (has links)
Engineering problems frequently require solving a sequence of dual linear systems. This paper introduces recycling BiCG, that recycles the Krylov subspace from one pair of linear systems to the next pair. Augmented bi-Lanczos algorithm and modified two-term recurrence are developed for using the recycle space. Recycle space is built from the approximate invariant subspace corresponding to eigenvalues close to the origin. Recycling approach is extended to the CGS and the BiCGSTAB algorithms. Experiments on a convection-diffusion problem give promising results. / Master of Science
187

Multiscale Methods and Uncertainty Quantification

Elfverson, Daniel January 2015 (has links)
In this thesis we consider two great challenges in computer simulations of partial differential equations: multiscale data, varying over multiple scales in space and time, and data uncertainty, due to lack of or inexact measurements. We develop a multiscale method based on a coarse scale correction, using localized fine scale computations. We prove that the error in the solution produced by the multiscale method decays independently of the fine scale variation in the data or the computational domain. We consider the following aspects of multiscale methods: continuous and discontinuous underlying numerical methods, adaptivity, convection-diffusion problems, Petrov-Galerkin formulation, and complex geometries. For uncertainty quantification problems we consider the estimation of p-quantiles and failure probability. We use spatial a posteriori error estimates to develop and improve variance reduction techniques for Monte Carlo methods. We improve standard Monte Carlo methods for computing p-quantiles and multilevel Monte Carlo methods for computing failure probability.
188

Análise dinâmica não linear bidimensional local de risers em catenária considerando contato unilateral viscoelástico. / Non linear dynamic analysis of steel catenary risers considering viscoelastic unilateral contact.

Monticelli, Guilherme Cepellos 13 May 2013 (has links)
O estudo da dinâmica estrutural de risers oceânicos apresenta instigantes desafios aos pesquisadores da área da engenharia de estruturas, uma vez que os meios tradicionais de análises dinâmicas lineares nem sempre se ajustam às suas complexas particularidades. No atual estágio do desenvolvimento científico da área de engenharia de estruturas, a aplicação de técnicas de análise dinâmica não linear, dentro de determinadas hipóteses, mostra-se como uma das alternativas possíveis e viáveis à tradicional análise dinâmica linear. Com vistas a uma nova abordagem do problema, o presente trabalho adota uma metodologia de análise não linear dinâmica de risers oceânicos em configuração de lançamento de catenária, conjugada a uma técnica de processamento de Modelos de Ordem Reduzida para o estudo dos fenômenos dinâmicos manifestados por risers. Trata-se de um método de modelagem local, restrito à região de contato unilateral do riser com o solo, considerado este último um meio viscoelástico. Os resultados da aplicação desta metodologia são demonstrados nos estudos de caso apresentados com comparações com modelos numéricos (Método dos Elementos Finitos) e modelos físicos. / The dynamic study of offshore risers still demands large efforts from structural engineering researchers, since these systems may behave in a way that is not well modeled and understood using simply linear dynamic theories. Nevertheless, the current development stage of non linear dynamic theories gives hope that their use for the analyses of such systems can be of great value, even though, this must be carefully done specially by the analyst. The present work refers to a non linear dynamic methodology application to offshore risers, particularly steel catenary risers, by a technique known as reduced-order modeling, in the study of dynamic phenomena that these structures may present. The model is local, which means that it represents the touch-down zone of the riser-soil system. The soil modeling was presumed to be viscoelastic. The results obtained in case studies are compared with those from numerical (Finite Element Method) and small scale physical models.
189

Modélisation numérique de la propagation des ondes par une méthodeéléments finis Galerkin discontinue : prise en compte des rhéologies nonlinéaires des sols / Numerical modeling of wave propagation by a discontinuous Galerkin finite elements method : consideration of nonlinear rheologies of soil

Chabot, Simon 13 November 2018 (has links)
L'objectif général de la thèse est la simulation numérique des mouvements forts du sol dûs aux séismes. Les déformations importantes du sol engendrent des comportements nonlinéaires dans les couches superficielles. L'apport principal de la thèse est la prise en compte de la nonlinéarité des milieux dans un contexte éléments finis Galerkin discontinus. Différentes lois de comportement sont implémentées et analysées. Le cas particulier du modèle élastoplastique de Masing-Prandtl-Ishlinskii-Iwan (MPII) est approfondi. Cette étude est divisée en deux parties. Une première qui vise à poser la structure du problème en présentant les équations et modèles utilisés pour décrire les mouvements du sol. Dans cette partie nous présentons également la méthode d’approximation spatiale Galerkin Discontinue ainsi que les différents schémas temporels que nous avons considérés. Une attention particulière est portée sur la complexité algorithmique du modèle nonlinéaire élastoplastique MPII en vue de réduire le temps de calcul des simulations. La deuxième partie est dédiée aux applications numériques. Ces applications sont réparties en trois catégories distinctes. 1) Nous nous intéressons toutd’abord à la configuration unidimensionnelle où une seule onde de cisaillement est propagée. Dans ce contexte, un flux numérique décentré est établi et des applications aux cas nonlinéaire élastique et nonlinéaire élastoplastique sont étudiées. Une solution analytique concernant le cas nonlinéaire élastique est proposée, ce qui permet de réaliser une étude numérique de convergence. 2) Le problème unidimensionnel étendu aux trois composantes du mouvement est étudié et utilisé comme un premier pas vers le 3D compte tenu du couplage entre les ondes de cisaillement et de compression. Nous nous intéressons ici à des signaux synthétiques et réels. L’application d’une méthode permettant de réduire significativement le temps de calcul du modèle élastoplastique est détaillée. 3) Une configuration tridimensionnelle est examinée. Après différentes applications de vérification en milieu linéaire, deux cas d’étude élastoplastique sont analysés. Une première sur un mode propre d’un cube puis une seconde sur un milieu plus réaliste composé d’un bassin hémisphérique à couches sédimentaires ayant un comportement élastoplastique / The general objective of this thesis is the numerical simulation of strong ground motions due to earthquakes. Significant deformations of the soil generate nonlinear behaviors in the superficial layers. The main contribution of this work is to take into account the nonlinearity of the media in a discontinuous Galerkin finite elements context. Different constitutive laws are implemented and analyzed. The particular case of theMasing-Prandtl-Ishlinskii-Iwan (MPII) elastoplastic model is looked at in-depth. This study is divided into two parts. A first one that aims at defining the framework of the problem by presenting the equations and models used to describe the soil motion. In this part we also present the Galerkin Discontinuous spatial approximation method as well as the different temporal schemes that we considered. Particular attention is paid to the algorithmic complexity of the nonlinear elastoplastic MPII model in order to reduce the computation time of simulations. The second part is dedicated to numerical applications. These applications are divided into three distinct categories. 1) We are first interested in the one-dimensional configuration where a single shear wave is propagated. In this context, an upwind numerical flux is established and applications to nonlinear elastic and nonlinear elastoplastic cases are studied. Ananalytical solution concerning the nonlinear elastic case is proposed, which makes it possible to carry out a numerical study of convergence. 2) The one-dimensional problem extended to the three components of the motion is studied and used as a first step towards 3D applications considering the coupling between the shear and compression waves. We are interested here in synthetic and real input signals. The application of a method that significantly reduces the calculation time of the elastoplastic model
190

Contrôle frontière des équations de Navier-Stokes / Boundary control of the Navier Stokes equations

Ngom, Evrad Marie Diokel 04 July 2014 (has links)
Cette thèse est consacrée à l'étude de problèmes de stabilisation exponentielle par retour d'état ou "feedback" des équations de Navier-Stokes dans un domaine borné Ω ⊂ Rd, d = 2 ou 3. Le cas d'un contrôle localisé sur la frontière du domaine est considéré. Le contrôle s'exprime en fonction du champ de vitesse à l'aide d'une loi de feedback non-linéaire. Celle-ci est fournie grâce aux techniques d'estimation a priori via la procédure de Faedo-Galerkin laquelle consiste à construire une suite de solutions approchées en utilisant une base de Galerkin adéquate. Cette loi de feedback assure la décroissance exponentielle de l'énergie du problème discret correspondant et grâce au résultat de compacité, nous passons à la limite dans le système satisfait par les solutions approchées. Le chapitre 1 étudie le problème de stabilisation des équations de Navier- Stokes autour d'un état stationnaire donné, tandis que le chapitre 2 examine le problème de stabilisation autour d'un état non-stationnaire prescrit. Le chapitre 3 est consacré à l'étude de la stabilisation du problème de Navier-Stokes avec des conditions aux bords mixtes (Dirichlet- Neumann) autour d'un état d'équilibre donné. Enfin, nous présentons dans le chapitre 4, des résultats numériques dans le cas d'un écoulement autour d'un obstacle circulaire / In this thesis we study the exponential stabilization of the two and three-dimensional Navier- Stokes equations in a bounded domain Ω, by means of a boundary control. The Control is expressed in terms of the velocity field by using a non-linear feedback law. In order to determine a feedback law, we consider an extended system coupling the Navier-Stokes equations with an equation satisfied by the control on the domain boundary. While most traditional approaches apply a feedback controller via an algebraic Riccati equation, the Stokes-Oseen operator or extension operators, a Galerkin method is proposed instead in this study. The Galerkin method permits to construct a stabilizing boundary control and by using energy a priori estimation technics, the exponential decay is obtained. A compactness result then allows us to pass to the limit in the nonlinear system satisfied by the approximated solutions. Chapter 1 deals with the stabilization problem of the Navier-Stokes equations around a given steady state, while Chapter 2 examines the stabilization problem around a prescribed non-stationary state. Chapter 3 is devoted to the stabilization of the Navier-Stokes problem with mixed-boundary conditions (Dirichlet-Neumann), around to a given steady-state. Finally, we present in Chapter 4, numerical results in the case of a flow around a circular obstacle

Page generated in 0.0449 seconds